KR100858551B1 - A method of extraction of platinum group metals from the spent catalysts by electrochemical processes - Google Patents

A method of extraction of platinum group metals from the spent catalysts by electrochemical processes Download PDF

Info

Publication number
KR100858551B1
KR100858551B1 KR20060111811A KR20060111811A KR100858551B1 KR 100858551 B1 KR100858551 B1 KR 100858551B1 KR 20060111811 A KR20060111811 A KR 20060111811A KR 20060111811 A KR20060111811 A KR 20060111811A KR 100858551 B1 KR100858551 B1 KR 100858551B1
Authority
KR
South Korea
Prior art keywords
platinum group
electrolyte
group metal
metal
extraction
Prior art date
Application number
KR20060111811A
Other languages
Korean (ko)
Other versions
KR20080043149A (en
Inventor
티치닌 블라디므르
Original Assignee
진인수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR20060111811A priority Critical patent/KR100858551B1/en
Application filed by 진인수 filed Critical 진인수
Priority to BRPI0716687 priority patent/BRPI0716687A2/en
Priority to EP07808482A priority patent/EP2081685A4/en
Priority to PCT/KR2007/004828 priority patent/WO2008060038A1/en
Priority to MX2009005036A priority patent/MX2009005036A/en
Priority to JP2009536148A priority patent/JP2010509050A/en
Priority to CA 2762522 priority patent/CA2762522A1/en
Priority to AU2007320303A priority patent/AU2007320303A1/en
Priority to CN2007800419687A priority patent/CN101534948B/en
Priority to US12/312,473 priority patent/US20100065436A1/en
Publication of KR20080043149A publication Critical patent/KR20080043149A/en
Application granted granted Critical
Publication of KR100858551B1 publication Critical patent/KR100858551B1/en
Priority to IL198707A priority patent/IL198707A0/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/048Recovery of noble metals from waste materials from spent catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/06Chloridising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/045Leaching using electrochemical processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 폐촉매로부터 백금족 금속을 전기화학적 방법에 의해 추출하는 방법에 관련된 것으로서, 흐르는 전해조의 양(兩)전극 사이에 처리할 물질을 놓아두는 단계; 전해질로 0.3-10.0% 염산 수용액을 전해조에 채우는 단계; 정전의 상태에서 전극의 극성을 역전 전극으로 백금족금속을 활성화시키는 단계; 상기 활성화 과정 이후, 귀금속의 수화된 음이온 염소 복합체가 형성되는 속도로 양극(anode)으로부터 음극(cathode)으로 전해질을 순환시키는 단계로 구성된다. 본 발명의 폐촉매로부터 백금족 금속을 추출하는 방법을 이용하면 기술적 과정의 단순화, 백금족 금속의 추출 비용이 낮고, 추출되는 귀금속의 생산성이 현저히 탁월하여 경제성이 뛰어나다.

Figure R1020060111811

폐촉매, 귀금속, 추출방법, 전기화학적 방법

The present invention relates to a method for extracting a platinum group metal from a spent catalyst by an electrochemical method, comprising: placing a material to be treated between positive electrodes of a flowing electrolyzer; Filling an electrolytic cell with an aqueous 0.3-10.0% hydrochloric acid solution with an electrolyte; Activating a platinum group metal with an inverted electrode of the polarity of the electrode in the state of power failure; After the activation process, the electrolyte is circulated from the anode to the cathode at a rate at which the hydrated anion chlorine complex of the precious metal is formed. By using the method of extracting the platinum group metal from the waste catalyst of the present invention, the technical process is simplified, the extraction cost of the platinum group metal is low, the productivity of the extracted precious metal is remarkably excellent, and the economic efficiency is excellent.

Figure R1020060111811

Waste catalyst, precious metals, extraction method, electrochemical method

Description

전기화학적 방법에 의해 폐촉매로부터 백금족 금속을 추출하는 방법{A method of extraction of platinum group metals from the spent catalysts by electrochemical processes}A method of extraction of platinum group metals from the spent catalysts by electrochemical processes}

도 1은 폐촉매로부터 백금족 금속을 추출하기 위한 전해조의 개략도. 1 is a schematic representation of an electrolyzer for extracting platinum group metals from spent catalyst.

도 2는 전해조에서 염산, 용해된 염소 및 백금족 금속의 농도 흐름의 순환을 나타낸 도면.2 shows the circulation of concentration streams of hydrochloric acid, dissolved chlorine and platinum group metals in an electrolytic cell.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1. 전해조1. Electrolyzer

2. 흑연 음극2. Graphite Cathode

3. IrO2 풋 레이어(put layer)를 가진 거대 격자로 형성된 양극3. Anode formed of a large lattice with an IrO 2 put layer

4. 연동펌프4. Peristaltic pump

5. 전기히터5. Electric heater

6. 용액 순환을 위한 파이프6. Pipe for solution circulation

7. 다공성 격막7. Porous Diaphragm

8. 염소 수용액8. Aqueous Chlorine Solution

9. 폐촉매 입자9. Waste catalyst particles

10. 활성탄 입자10. Activated Carbon Particles

11. 초기 전해질 용액11. Initial Electrolyte Solution

본 발명은 폐촉매로부터 전기화학적 방법에 의해 귀금속을 추출하는 방법에 관한 것이다.The present invention relates to a method for extracting a noble metal from the spent catalyst by an electrochemical method.

백금(Pt), 팔라듐(Pd)과 같은 백금족 금속(Platinum group metals:PGM)은 용해온도가 높고, 화학적 침식에 의한 내식성이 뛰어날 뿐만 아니라, 환원 촉매작용 등 독특한 화학적 특성을 갖고 있다. 백금족 금속의 세계 년 평균 생산량은 200톤 정도로서, 90% 이상이 남아프리카공화국과 구 소련에서 생산되고 있으며, 캐나다가 약 6%, 남미, 미국, 호주, 일본 등지에서 소량 생산되고 있다. 이들 백금족 금속은 백금족 금속 회로 등의 전기전자공업용을 제외하면 거의 자동차용 촉매와 석유화학공업용 촉매로 이용되고 있다.Platinum group metals (PGM), such as platinum (Pt) and palladium (Pd), have high dissolution temperatures, excellent corrosion resistance due to chemical erosion, and have unique chemical characteristics such as reduction catalysis. The global average annual production of platinum group metals is around 200 tonnes, with more than 90% produced in South Africa and the former Soviet Union, and about 6% in Canada, in South America, the United States, Australia and Japan. These platinum group metals are almost used as catalysts for automobiles and petrochemical industries except for electric and electronic industries such as platinum group metal circuits.

이들 촉매와 부품은 사용하는 시간이 경과함에 따라 그 성능이 저하되고 최종적으로 수명을 다하여 폐기되지만, 특히 백금족 금속은 고가이며 전량을 수입하고 있기 때문에 회수하여 재이용하는 것이 경제적으로 크게 이로울 뿐만 아니라 자원의 효율적 활용에 큰 역할을 할 수 있다.These catalysts and components are degraded over time and eventually discarded at the end of their lifetime, but especially since platinum group metals are expensive and imported in their entirety, it is not only economically beneficial to recover and reuse them. Can play a big role in the efficient use of

촉매의 담체상에 담지된 귀금속류의 회수에 있어서 여러 가지 방법이 보고되 었지만 각각 기술적인 장단점을 가지고 있다. 특히 백금족 금속은 이온화 전위가 매우 높아 금속 자체의 용해가 어려우며, 촉매 담체와 기타 촉매 성분 및 오염으로 인하여 백금족 금속의 추출 및 분리는 더욱 어렵다.Several methods have been reported for the recovery of precious metals supported on catalyst carriers, but each has technical advantages and disadvantages. In particular, the platinum group metal has a very high ionization potential, making it difficult to dissolve the metal itself, and it is more difficult to extract and separate the platinum group metal due to the catalyst carrier and other catalyst components and contamination.

일반적으로 폐촉매에서 귀금속의 함량은 0.02-5.0% 정도이다. 일반적으로 폐촉매로부터 백금, 팔라듐, 로듐 또는 이들의 혼합물을 추출하는 방법으로 폐촉매를 분쇄하고 왕수등의 무기산으로 백금족금속을 용해한 후 담채와 백금족금속이 용해된 액을 여과하여 음이온 교환막을 가진 전해질이 함유된 전해조에서 추출하여 수득하는 방법이 알려져 있다. 그러나 이들은 고가의 이온 교환막이 필요하고, 추출과정에서 발생되는 염소(chlorine)의 침전으로 인하여 상기 막의 수명이 짧아 자주 교환해야 하는 문제점이 있으며, 추출된 액속의 귀금속의 농도가 낮아 귀금속의 분리가 복잡해지고 공정비용이 많이 들며, 추출 시간도 길어지는 문제점이 있다. 또한 공정이 많은 단계를 거쳐야 하는 단점을 가지고 있다.Generally, the amount of precious metal in spent catalyst is about 0.02-5.0%. Generally, the waste catalyst is pulverized by extracting platinum, palladium, rhodium, or a mixture thereof from the spent catalyst, the platinum group metal is dissolved with an inorganic acid such as aqua regia, and then the solution in which the tin and platinum group metal are dissolved is filtered and the electrolyte has an anion exchange membrane. The method of extracting and obtaining from this containing electrolytic cell is known. However, they require expensive ion-exchange membranes, and due to the precipitation of chlorine generated during the extraction process, the membranes have a short lifespan, which requires frequent replacements, and the separation of precious metals is complicated due to the low concentration of precious metals in the extracted liquid. The process costs a lot, and the extraction time is long. It also has the disadvantage that the process has to go through many steps.

일반적으로 전해질로서 5-35% 농도를 갖는 염산용액을 사용하고 있으며, 침출은 폐촉매 입자의 고정된 여과 층에서 수행되거나, 침출 재료 층을 통해 전해질의 순환 시에 유동층에서 수행된다. 그 후 양이온 교환 막을 가진 두 번째 전해조의 음극 챔버(cathodic chamber)에서 탄소입자로 환원된 용액에 의해 귀금속이 포위된다. 마지막으로, 귀금속들은 유동층에서 전해질 용액으로 다시 침출되는 것이다.In general, hydrochloric acid solution having a concentration of 5-35% is used as the electrolyte, and leaching is carried out in a fixed filtration layer of spent catalyst particles or in a fluidized bed during circulation of the electrolyte through the leach material layer. The precious metal is then surrounded by a solution reduced to carbon particles in a cathodic chamber of a second electrolyzer with a cation exchange membrane. Finally, the precious metals are leached back into the electrolyte solution in the fluidized bed.

현재 이용되고 있는 폐촉매, 슬라임(slime), 농축액 등 무기성분을 함유한 물질들로부터 백금족 금속을 추출하는 방법은 백금족 금속의 침출, 충전된 캐소드에서의 백금족 금속의 침전이 한 단계로서 동시에 이루어지는 방법이다. 이 방법 은 여과액에 한정된 농도만을 얻을 수 있고, 별개의 기술 블록 들을 이용하기 때문에 공정이 복잡하다는 문제점이 있다.Platinum group metals are extracted from inorganic-containing materials such as spent catalysts, slimes, concentrates, etc. which are currently used in which leaching of platinum group metals and precipitation of platinum group metals in a charged cathode are performed simultaneously as one step. to be. This method has a problem in that the process is complicated because only a limited concentration of the filtrate can be obtained and separate technical blocks are used.

따라서, 본 발명의 목적은 폐촉매로부터 백금족 금속을 추출함에 있어 기술 공정이 단순하면서도, 백금족 금속의 추출비용이 현저히 경제적이며 생산성 역시 높은 방법으로서, 폐촉매로부터 백금족 금속을 전기화학적 방법에 의해 추출하는 방법을 제공함을 그 목적으로 한다.Accordingly, an object of the present invention is a method of extracting a platinum group metal from a spent catalyst, while the technical process is simple, and the extraction cost of the platinum group metal is remarkably economical and high in productivity. Its purpose is to provide a method.

상기 목적을 달성하기 위하여, 본 발명은 폐촉매를 전해조의 양(兩)전극 사이에 부가하는 단계; 전극의 극성을 규칙적으로 서로 바꾸어 주면서 백금족 금속을 활성화시키는 단계; 전해질을 양극(anode)으로부터 음극(cathode)으로 순환시켜 백금족 금속을 음극 상에 석출시키는 단계로 구성되는 것을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of adding a waste catalyst between the positive electrode of the electrolytic cell; Activating the platinum group metal while regularly changing the polarity of the electrodes; Circulating an electrolyte from an anode to a cathode, thereby depositing a platinum group metal on a cathode, thereby providing an electrochemical extraction method of a platinum group metal from a spent catalyst.

상기 전해질은 염소 음이온을 발생시킬 수 있는 전해질, 예를 들어 0.3-10.0% 염산 수용액을 사용함을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법을 제공한다.The electrolyte provides an electrochemical extraction method of the platinum group metal from the spent catalyst, characterized in that an electrolyte capable of generating chlorine anions, for example, 0.3-10.0% aqueous hydrochloric acid solution.

상기 전기화학적 침출은 전극의 극성을 주기적으로 변환시키는 것에 의해 활성화됨을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법을 제공한다.The electrochemical leaching provides an electrochemical extraction method of a platinum group metal from a waste catalyst, which is activated by periodically changing the polarity of the electrode.

상기 전해질의 순환은 양극(anode)으로부터 음극(cathode)으로 일어나며, 전해질은 0.3-10.0% 염산 수용액을 사용하는 것을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법을 제공한다. 상기 폐촉매는 분쇄하지않은 원형 그대로의 알갱이 형태로 전해조에 장입되는 것을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법을 제공한다.The circulation of the electrolyte occurs from the anode (anode) to the cathode (cathode), the electrolyte provides an electrochemical extraction method of the platinum group metal from the spent catalyst, characterized in that using 0.3-10.0% hydrochloric acid aqueous solution. The waste catalyst provides an electrochemical extraction method of the platinum group metal from the waste catalyst, characterized in that it is charged into the electrolytic cell in the form of pellets as it is not pulverized.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 백금족 금속의 전기화학적 추출방법은 유가금속을 함유하고 있는 입자 형태의 담체촉매로부터 백금족 금속등의 유가금속을 추출하는 경우에 이용될 수 있다.The electrochemical extraction method of the platinum group metal of the present invention can be used when extracting valuable metals such as platinum group metals from a carrier catalyst in the form of particles containing valuable metals.

상기 폐촉매는 0.01-10.0%, 바람직하게는 0.1-5.0%의 귀금속을 함유하는 폐촉매 입자를 전해조의 양(兩)전극 사이에 놓아둘 수 있다.The waste catalyst may place waste catalyst particles containing 0.01-10.0%, preferably 0.1-5.0%, of precious metal between the positive electrodes of the electrolyzer.

상기 전해질은 염소 음이온을 발생시킬 수 있는 전해질, 예를 들어 0.3-10.0% 염산 수용액을 사용한다. The electrolyte uses an electrolyte capable of generating chlorine anions, for example, an aqueous solution of 0.3-10.0% hydrochloric acid.

상기 전기화학적 침출은 전극의 극성을 주기적으로 변환시키는 것에 의해 활성화된다. The electrochemical leaching is activated by periodically changing the polarity of the electrode.

상기 전기화학적 활성화 단계에서 전해질의 순환은 없다. There is no circulation of the electrolyte in the electrochemical activation step.

상기와 같이 전극의 극성을 주기적으로 변환시키는 전처리 과정은 귀금속의 전기화학적 침출을 활성화시킨다. 이렇게 활성화 과정을 거치지 않으면 전기화학적 침출은 입자의 중심에서는 일어나지 않고 입자의 표면에서만 침출이 일어나므로 회수율이 낮아진다. 따라서, 불활성화 조건에서는 대부분의 귀금속이 담체에 남아 있고, 소량만이 음극 상에 위치한다.As described above, the pretreatment process of periodically changing the polarity of the electrode activates the electrochemical leaching of the precious metal. Without this activation, the electrochemical leaching does not occur at the center of the particles, but only at the surface of the particles, so that the recovery rate is low. Thus, in the inactivation conditions, most of the precious metal remains in the carrier, and only a small amount is located on the negative electrode.

양극에서: Cl- + 2H2O - 4e- → ClO2 + 4H+ At the anode: Cl - + 2H 2 O - 4e - → ClO 2 + 4H +

이산화염소의 발생은 염화이온을 발생시키는 역반응 과정의 정도에 의존하게 되다.The generation of chlorine dioxide will depend on the degree of reverse reaction process that generates chloride ions.

ClO2 + 4H+ → Cl- + 2H2O - 4e- ClO 2 + 4H + → Cl - + 2H 2 O - 4e -

음극에서: 4H+ + 4e- → 4HIn the cathode: 4H + + 4e - → 4H

삭제delete

Pt0 - e- → Pt+ Pt 0 - e - → Pt +

삭제delete

본 발명의 전해질의 순환은 양극(anode)으로부터 음극(cathode)으로 일어난다. Circulation of the electrolyte of the present invention takes place from an anode to a cathode.

0.3-10.0% HCl을 함유한 전해질을 순환시키면 캐소드에서 귀금속의 침전이 발생하고, 귀금속의 음이온 복합체들의 움직임의 반대방향인 양극(anode)으로부터 음극(cathode) 방향으로 일어난다.Circulating an electrolyte containing 0.3-10.0% HCl causes precipitation of the precious metal at the cathode and occurs from the anode to the cathode, which is the opposite of the movement of the anionic complexes of the precious metal.

상기 전해질의 순환은 펌프에 의해 제공된다. 전해질의 순환은 전해질에서의 모든 금속의 침전을 활성화시킨다. The circulation of the electrolyte is provided by a pump. Circulation of the electrolyte activates the precipitation of all metals in the electrolyte.

용해된 금속(귀금속의 수화된 음이온 염소 복합체) 들은 양극으로 향한다. 그 후 음이온 복합체들은 붕괴되고, 귀금속의 양이온들은 그것의 침전이 일어나는 음극으로 향한다.Dissolved metals (hydrated anionic chlorine complexes of precious metals) are directed to the anode. The anionic complexes then collapse and the cations of the noble metal are directed to the cathode, where their precipitation takes place.

전해질이 순환되지 않고 양극액(anolyte)이 교환되는 경우, 음극상에서 풍부한 금속이 생성되지 않는다. When the electrolyte is not circulated and the anolyte is exchanged, no abundant metal is produced on the negative electrode.

양극으로부터 음극으로 운반조 내에서의 전해질의 순환에서는, 음극 상에서 금속의 집중적인 배치가 일어나고, 금속의 배치 속도는 비순환 상태(static mode)에서보다 2-5배가 빠르다. 이는 금속이 산화되어 소비되는 만큼 양극액이 늘어나고 염소가 풍부한 활성을 가짐을 의미한다. 전해질 순환은 금속의 종류와 전해질의 농도에 따라 달라질수 있으며 전해질의 순환이 이루어질 때, 금속의 석출이 원활하게 이루어진다. In the circulation of the electrolyte in the transport tank from the positive electrode to the negative electrode, intensive disposition of the metal occurs on the negative electrode, and the disposition rate of the metal is 2-5 times faster than in the static mode. This means that as the metal is oxidized and consumed, the anolyte is increased and chlorine is rich in activity. The electrolyte circulation may vary depending on the type of metal and the concentration of the electrolyte. When the electrolyte is circulated, the metal is smoothly precipitated.

이하에서, 본 발명을 실시 예에 의하여 더욱 상세하게 설명한다. 다만, 하기의 실시예는 본 발명의 예시일 뿐, 본 발명이 이에 의하여 한정되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely examples of the present invention, and the present invention is not limited thereto.

실시예 1. Example 1.

가로 20cm, 세로 20cm, 길이 100cm의 전해조의 전극 사이에 팔라듐을 granite에 담지한 폐촉매 40리터를 채웠다. 폐촉매는 팔라듐 함량이 0.3 중량%이고 직경 5mm의 미립자형태로 전처리 없이 그대로 사용하였다. 전해질로서 2% HCl 수용액을 사용하였고, 1시간 동안 매 1분마다 전극의 극성을 서로 바꾸어 주었다. 전해 추출시 전극의 전압은 21V, 전류는 6A (전류밀도: 0.015A/cm2)이었다. 펌프를 사용하여 0.5 ℓ/분의 속도로 양극에서 음극으로 계속 순환시켰다. 온도는 70℃로 유지하였다.40 liters of spent catalyst carrying palladium in granite was filled between electrodes of an electrolytic cell of 20 cm in width, 20 cm in length, and 100 cm in length. The spent catalyst was used as it is without pretreatment in the form of fine particles having a palladium content of 0.3% by weight and a diameter of 5mm. A 2% aqueous HCl solution was used as the electrolyte, and the polarities of the electrodes were changed every 1 minute for 1 hour. At the time of electrolytic extraction, the electrode had a voltage of 21 V and a current of 6 A (current density: 0.015 A / cm 2 ). The pump was used to continuously circulate from the positive to the negative electrode at a rate of 0.5 L / min. The temperature was kept at 70 ° C.

삭제delete

삭제delete

그 결과 85-90%의 귀금속을 함유하는 금속의 박편이 음극에서 발생하였다. 이 박편은 음극에서 쉽게 제거할 수 있었다.As a result, flakes of the metal containing 85-90% of the precious metal were generated in the cathode. This flake could be easily removed from the cathode.

10시간 동안 운전한 후에 분석 결과 전해질내의 팔라듐의 농도는 1ppm 이하이었으며, 전해추출한 후의 폐촉매를 분석한 결과 팔라듐함량은 0.0015% 이하로 팔라듐 추출 정도는 99.5%이었다. 폐촉매의 외형상의 형태는 그대로 유지되었으며 색깔은 흰색으로 변하였고, 팔라듐 외에 폐촉매 구성 성분이 추출되어 나온 것은 없었다. 소모 전기량은 전기분해에 1.25kWh, 전해질의 가열 및 순환에 7.5kWh이었다. After operation for 10 hours, the concentration of palladium in the electrolyte was less than 1 ppm, and the spent catalyst after electrolytic extraction showed that the palladium content was 0.0015% or less and the degree of palladium extraction was 99.5%. The shape of the spent catalyst remained unchanged and the color turned white. No waste catalyst components were extracted except palladium. The electricity consumed was 1.25 kWh for electrolysis and 7.5 kWh for heating and circulation of the electrolyte.

실시예 2.Example 2.

화학적인 침출 과정을 거친 팔라듐-알루미나 촉매에서 팔라듐을 좀 더 추출해 내기 위한 방법이 시도되었다. 팔라듐의 함량은 0.02-0.03% 이었고, 이것은 미국특허 제 4,775,452 호에서 처리한 후의 담체 상에 남아 있는 팔라듐의 농도와 유사한 수준이다. 전해조내의 촉매의 부피는 40리터이고, 직경 10mm, 높이 15mm의 원통형의 모양을 가졌다. 전해질로는 0.3% HCl 수용액을 사용하였고, 고정상과 액체상의 부피비는 1:1이었다. 촉매 표면에서의 활성화를 위하여 처음 한 시간 동안은 매 1분마다 전극의 극성을 바꾸어 주었다. 전해질을 순환시키면서 15시간동안 전기화학적 추출을 수행하였고, 캐소드에서 팔라듐 금속이 석출되었다. 반응 온도는 60℃에서 수행되었고, 전류밀도는 0.06A/cm2이었다. 그 결과 담체에서의 팔라듐 농도는 0.005% 이었고, 전해질에서의 팔라듐 성분은 1 ppm 이하이었다.Attempts have been made to extract more palladium from the chemically leached palladium-alumina catalyst. The content of palladium was 0.02-0.03%, which is similar to the concentration of palladium remaining on the carrier after treatment in US Pat. No. 4,775,452. The volume of the catalyst in the electrolyzer was 40 liters and had a cylindrical shape of 10 mm in diameter and 15 mm in height. 0.3% HCl aqueous solution was used as the electrolyte, and the volume ratio of the fixed and liquid phases was 1: 1. The electrode polarity was changed every 1 minute for the first hour for activation on the catalyst surface. Electrochemical extraction was carried out for 15 hours while circulating the electrolyte, and palladium metal was precipitated at the cathode. The reaction temperature was carried out at 60 ° C., and the current density was 0.06 A / cm 2 . As a result, the palladium concentration in the carrier was 0.005% and the palladium component in the electrolyte was 1 ppm or less.

실시예 3.Example 3.

직경이 3-5mm 입도를 가지도록 전처리한 0.4% 백금을 함유한 백금-알루미나 폐촉매 40ℓ를 전해조에 채웠다. 전해질로는 4% HCl 수용액을 사용하였으며, 고체 및 액체는 1:1의 부피를 가지도록 하였다. 침출이 활성화될 수 있도록 1시간동안 매 1분마다 전극의 극성을 바꾸어 주었다. 전류밀도 0.025A/cm2(전해조의 전류 10A), 온도는 80℃로 유지하고 실시예 1에서와 같은 방법으로 전해질을 순환시키면서 20시간동안 전기화학적 침출을 수행하였다. 그 결과 98%의 백금이 추출되었고, 캐소드에 분말 응집체로 붙어 있는 백금의 함량은 60-70%이었다.40 L of platinum-alumina spent catalyst containing 0.4% platinum pretreated to have a particle diameter of 3-5 mm in diameter was charged to the electrolyzer. A 4% aqueous HCl solution was used as the electrolyte, and the solid and liquid had a volume of 1: 1. The polarity of the electrode was changed every 1 minute for 1 hour so that leaching could be activated. The electrochemical leaching was carried out for 20 hours while circulating the electrolyte in the same manner as in Example 1 while maintaining a current density of 0.025 A / cm 2 (current 10 A in the electrolytic bath) and the temperature at 80 ° C. As a result, 98% of platinum was extracted, and the content of platinum attached to the cathode as a powder aggregate was 60-70%.

본 발명의 추출방법에 의할 경우 고효율, 고수율로 백금족 금속을 추출할 수 있고, 추출과정이 단순화되며, 백금족 금속 추출의 비용을 현저히 줄일 수 있어 매우 경제적인 방법이며, 폐촉매로부터 백금족 금속을 추출함으로써 전량수입에 의존하는 백금족 금속의 재활용에 있어서 아주 유용한 발명이다.According to the extraction method of the present invention, the platinum group metal can be extracted with high efficiency and high yield, the extraction process can be simplified, and the cost of the platinum group metal extraction can be significantly reduced, which is a very economical method. Extraction is a very useful invention for the recycling of platinum group metals that are dependent on imports.

Claims (4)

폐촉매를 전해조의 양(兩)전극 사이에 부가하는 단계; 전극의 극성을 규칙적으로 서로 바꾸어 주면서 백금족 금속을 활성화시키는 단계; 전해질을 양극(anode)으로부터 음극(cathode)으로 순환시켜 백금족 금속을 음극 상에 석출시키는 단계로 구성되는 것을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법.Adding a spent catalyst between positive electrodes of the electrolytic cell; Activating the platinum group metal while regularly changing the polarity of the electrodes; Circulating an electrolyte from an anode to a cathode to precipitate the platinum group metal on the cathode, wherein the electrochemical extraction method of the platinum group metal from the spent catalyst is carried out. 제 1항에 있어서, 상기 전해질은 0.3-10.0% 염산 수용액을 사용함을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법.The electrochemical extraction method of a platinum group metal from a spent catalyst according to claim 1, wherein the electrolyte is 0.3-10.0% aqueous hydrochloric acid. 제 1항에 있어서, 상기 폐촉매는 분쇄하지않은 입자 상태로 전해조의 양 전극 사이에 부가되는 것을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법.The electrochemical extraction method of a platinum group metal from a waste catalyst according to claim 1, wherein the waste catalyst is added between both electrodes of the electrolytic cell in the form of unpulverized particles. 제 1 항에 있어서, 상기 전해조는 수직형 또는 수평형 전해조인 것을 특징으로 하는 폐촉매로부터 백금족 금속의 전기화학적 추출방법.The electrochemical extraction method of a platinum group metal from a spent catalyst according to claim 1, wherein the electrolytic cell is a vertical or horizontal electrolytic cell.
KR20060111811A 2006-11-13 2006-11-13 A method of extraction of platinum group metals from the spent catalysts by electrochemical processes KR100858551B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR20060111811A KR100858551B1 (en) 2006-11-13 2006-11-13 A method of extraction of platinum group metals from the spent catalysts by electrochemical processes
EP07808482A EP2081685A4 (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalists through electrochemical process
PCT/KR2007/004828 WO2008060038A1 (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalists through electrochemical process
MX2009005036A MX2009005036A (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalists through electrochemical process.
BRPI0716687 BRPI0716687A2 (en) 2006-11-13 2007-10-02 METHOD EXTRACTION METHOD OF THE PLATINUM GROUP FROM CATALYTIC WASTE THROUGH ELECTROCHEMICAL PROCESS
JP2009536148A JP2010509050A (en) 2006-11-13 2007-10-02 Extraction of platinum group metals from spent catalyst by electrochemical method
CA 2762522 CA2762522A1 (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalists through electrochemical process
AU2007320303A AU2007320303A1 (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalists through electrochemical process
CN2007800419687A CN101534948B (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalysts through electrochemical process
US12/312,473 US20100065436A1 (en) 2006-11-13 2007-10-02 Method of extracting platinum group metals from waste catalysts through electrochemical process
IL198707A IL198707A0 (en) 2006-11-13 2009-05-12 Method of extracting platinum group metals from waste catalysts through electrochemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20060111811A KR100858551B1 (en) 2006-11-13 2006-11-13 A method of extraction of platinum group metals from the spent catalysts by electrochemical processes

Publications (2)

Publication Number Publication Date
KR20080043149A KR20080043149A (en) 2008-05-16
KR100858551B1 true KR100858551B1 (en) 2008-09-25

Family

ID=39401820

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20060111811A KR100858551B1 (en) 2006-11-13 2006-11-13 A method of extraction of platinum group metals from the spent catalysts by electrochemical processes

Country Status (11)

Country Link
US (1) US20100065436A1 (en)
EP (1) EP2081685A4 (en)
JP (1) JP2010509050A (en)
KR (1) KR100858551B1 (en)
CN (1) CN101534948B (en)
AU (1) AU2007320303A1 (en)
BR (1) BRPI0716687A2 (en)
CA (1) CA2762522A1 (en)
IL (1) IL198707A0 (en)
MX (1) MX2009005036A (en)
WO (1) WO2008060038A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178586A1 (en) * 2013-04-29 2014-11-06 한국지질자원연구원 Method for recovering acid and platinum group metal from leaching solution of waste catalyst

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048791B1 (en) * 2008-11-24 2011-07-15 진인수 Vertical flow electrolyzer for electrochemical leaching of platinum group metals from granule catalysts
TWI404830B (en) * 2010-04-15 2013-08-11 Solar Applied Mat Tech Corp Method for electrochemical dissolution of ru-co-based alloy
CN102234812B (en) * 2010-04-29 2013-12-25 光洋应用材料科技股份有限公司 Electrochemical dissolving method of ruthenium-cobalt-based alloy
EP2573196B1 (en) * 2010-05-20 2015-03-11 Jin, In-Soo Apparatus for extracting precious metal from an inorganic granular waste catalyst
WO2014166494A1 (en) * 2013-04-11 2014-10-16 Syddansk Universitet Method for recovering platinum group metals from catalytic structures
JP6109769B2 (en) * 2014-02-28 2017-04-05 株式会社東芝 Recovery of noble metals from membrane electrode assemblies of fuel cells
JP6652454B2 (en) * 2016-06-24 2020-02-26 株式会社東芝 Metal recovery method and metal recovery device
DE102018207589A1 (en) * 2018-05-16 2019-11-21 Robert Bosch Gmbh Process for recovering gold, silver and platinum metals from components of a fuel cell stack or an electrolyzer
RU194300U1 (en) * 2018-12-27 2019-12-05 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) VOLUME AC ELECTRODE FOR EXTRACTION OF NOBLE METALS
CN112342385B (en) * 2020-09-28 2022-10-25 西北工业大学 Device and method for extracting uranium from uranium-containing wastewater or seawater and application of device and method
CN113215590A (en) * 2021-04-25 2021-08-06 郴州百一环保高新材料有限公司 Platinum element extraction process for waste ternary catalyst based on electrolytic reaction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000303A1 (en) 1980-07-11 1982-02-04 N Soedermark A process for recovering noble metals and an electrolyzer for use in the process
US4775452A (en) 1985-04-25 1988-10-04 Chlorine Engineers Corp. Ltd. Process for dissolution and recovery of noble metals
US4795538A (en) 1987-03-25 1989-01-03 Rhone-Poulenc Sante Electrochemical process for recovering metallic rhodium from aqueous solutions of spent catalysts
KR20010085545A (en) * 2000-02-25 2001-09-07 페터스,슈베르트페거 Process for recovering catalyst transition metals from salt-containing reaction mixtures
KR20010107449A (en) * 2000-05-29 2001-12-07 임의신 Recovery method of platinum group metals from waste water
KR20030040117A (en) * 2001-11-14 2003-05-22 하.체. 스타르크 게엠베하 Process for electrochemical decomposition of superalloys
KR20050035976A (en) * 2003-10-14 2005-04-20 진인수 Recovery of precious metals from waste catalysts

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535218A (en) * 1967-09-26 1970-10-20 Donald A Brown Process for recovering copper from leach liquor
JPS57169027A (en) * 1981-04-11 1982-10-18 Toyota Motor Corp Method for recovering platinum group element
US4435258A (en) * 1982-09-28 1984-03-06 Western Electric Co., Inc. Method and apparatus for the recovery of palladium from spent electroless catalytic baths
JPH08176691A (en) * 1994-12-28 1996-07-09 Sumitomo Metal Mining Co Ltd Method for recovery of platinum group from spent catalyst
RU2198947C2 (en) * 2000-09-12 2003-02-20 Антонов Андрей Александрович Technology of removal of noble metals
EP1224972A1 (en) * 2001-01-18 2002-07-24 Shipley Co. L.L.C. A method for recovering catalytic metals from a colloidal solution
DE10216944A1 (en) * 2002-04-17 2003-11-06 Starck H C Gmbh Process for the electrochemical dissolution of powders and suitable electrolysis cells
JP3734779B2 (en) * 2002-08-05 2006-01-11 同和鉱業株式会社 Dry recovery of platinum group elements
EP1607488A4 (en) * 2003-03-14 2008-05-14 Dowa Metals & Mining Co Ltd Method for recovering platinum group element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000303A1 (en) 1980-07-11 1982-02-04 N Soedermark A process for recovering noble metals and an electrolyzer for use in the process
US4775452A (en) 1985-04-25 1988-10-04 Chlorine Engineers Corp. Ltd. Process for dissolution and recovery of noble metals
KR900001832B1 (en) * 1985-04-25 1990-03-24 크로닌 엔지니어즈 코포레이션, 리미티드 Method of dissolving and recovering noble metals
US4795538A (en) 1987-03-25 1989-01-03 Rhone-Poulenc Sante Electrochemical process for recovering metallic rhodium from aqueous solutions of spent catalysts
KR20010085545A (en) * 2000-02-25 2001-09-07 페터스,슈베르트페거 Process for recovering catalyst transition metals from salt-containing reaction mixtures
KR20010107449A (en) * 2000-05-29 2001-12-07 임의신 Recovery method of platinum group metals from waste water
KR20030040117A (en) * 2001-11-14 2003-05-22 하.체. 스타르크 게엠베하 Process for electrochemical decomposition of superalloys
KR20050035976A (en) * 2003-10-14 2005-04-20 진인수 Recovery of precious metals from waste catalysts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178586A1 (en) * 2013-04-29 2014-11-06 한국지질자원연구원 Method for recovering acid and platinum group metal from leaching solution of waste catalyst
US10190192B2 (en) 2013-04-29 2019-01-29 Korea Institute Of Geoscience And Mineral Resources Method of recovering acid and platinum group metal from leaching solution of spent catalyst

Also Published As

Publication number Publication date
KR20080043149A (en) 2008-05-16
JP2010509050A (en) 2010-03-25
EP2081685A1 (en) 2009-07-29
CN101534948B (en) 2013-10-16
US20100065436A1 (en) 2010-03-18
EP2081685A4 (en) 2010-12-15
IL198707A0 (en) 2010-02-17
MX2009005036A (en) 2009-06-17
AU2007320303A1 (en) 2008-05-22
CN101534948A (en) 2009-09-16
BRPI0716687A2 (en) 2014-03-11
WO2008060038A1 (en) 2008-05-22
CA2762522A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
KR100858551B1 (en) A method of extraction of platinum group metals from the spent catalysts by electrochemical processes
US4028199A (en) Method of producing metal powder
JPH07508073A (en) Method of manufacturing metals from minerals
KR101392179B1 (en) Recovery method of platinum group metal and apparatus for recovering platinum group metal
Yap et al. An electrogenerative process for the recovery of gold from cyanide solutions
KR100683961B1 (en) Electrogenerated chloride leaching and its apparatus
US3650925A (en) Recovery of metals from solution
CA2050201C (en) Electrogeneration of bromine and use thereof in recovery of precious metals and water treatment
US5942098A (en) Method of treatment of water and method and composition for recovery of precious metal
US11384443B2 (en) Method for producing metallic silver by electro-deposition
JP2520674B2 (en) Method and device for recovering metal supported on carrier
US11566333B2 (en) Method for cleanly extracting metallic silver
KR101082458B1 (en) The dissolution apparatus and method for metals
KR101922493B1 (en) Method for recovering environmentally-friendly platinum group metal and system for recovering platinum group metal
JPS5919994B2 (en) Method for producing metal powder from dilute solution of metal
JP6345524B2 (en) Method and apparatus for producing chemicals by electrochemical process
RU2198947C2 (en) Technology of removal of noble metals
Khattab et al. Comparison between fixed and fluidized bed cathodes and effect of supporting electrolyte in electrochemical removal of copper ion from dilute solutions
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
Fleet Electrochemical reactor systems for pollution control and the removal of toxic metals from industrial wastewaters
Yap et al. Electrogenerative processes for environmental applications
KR102391443B1 (en) Method for collecting platinum group noble metal from metallic object
CN105624422A (en) Recovery method for gold in iodized gold leaching noble solution considering recycling of waste liquor
JPH06212473A (en) Method for recovering noble metal
Amin et al. Electrochemical Techniques Applied for Industrial Wastewater Treatment: A Review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120911

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130805

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140904

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150806

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160720

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170711

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190906

Year of fee payment: 12