JPH11286796A - Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell - Google Patents

Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell

Info

Publication number
JPH11286796A
JPH11286796A JP9336898A JP9336898A JPH11286796A JP H11286796 A JPH11286796 A JP H11286796A JP 9336898 A JP9336898 A JP 9336898A JP 9336898 A JP9336898 A JP 9336898A JP H11286796 A JPH11286796 A JP H11286796A
Authority
JP
Japan
Prior art keywords
electrolytic cell
main electrode
box
fluidized
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9336898A
Other languages
Japanese (ja)
Inventor
Takashi Murakami
隆 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP9336898A priority Critical patent/JPH11286796A/en
Publication of JPH11286796A publication Critical patent/JPH11286796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized-bed electrolytic cell excellent in treating efficiency, a water treating method using the cell and especially a method for efficiently recovering and removing low-concn. metals in a waste water and low-concn. nickel in the waste water. SOLUTION: A main electrode 11 consists of the inner side face of a box- shaped electrolytic cell, an auxiliary electrode 13 consists of a plate of net- shaped electrode covered with a diaphragm, the auxiliary electrode 13 is arranged opposedly to the main electrode 11 in the box-shaped electrolytic cell, and conductive grains are packed in the cell in contact with the main electrode 11. The bottom face of the cell is formed by a substrate substantially permeable to the water to be treated and impermeable to the conductive grains, the water to be treated is introduced from the lower part to fluidize the grains, and a DC voltage is applied between the main electrode 11 and auxiliary electrode 13. In this fluidized-bed electrolytic cell 10 system, one or more electrolytic cells 10 are arranged in parallel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Au,Ag,P
t,Pd,Cu,Pb,Cr,Cdなどの各種金属の回
収や精製、粒体への電気メッキ及び有機化合物及び/又
はシアン化合物などの分解等各種の電気化学反応に使用
する流動床を用いる電解槽に関し、特に該電解槽を用い
て排水中に含まれるNi、Sn、などの金属イオンを回
収除去する方法に関する。
TECHNICAL FIELD The present invention relates to Au, Ag, P
A fluidized bed used for various electrochemical reactions such as recovery and purification of various metals such as t, Pd, Cu, Pb, Cr, and Cd, electroplating of granules, and decomposition of organic compounds and / or cyanides, etc. The present invention relates to an electrolytic cell, and more particularly to a method for collecting and removing metal ions such as Ni and Sn contained in wastewater using the electrolytic cell.

【0002】[0002]

【従来の技術】現在、我々が生活をする上で様々な種類
の水が使用されている。例えば、井戸水、水道水、工業
用水、純水、超純水、浴槽水、プール水などである。
又、使用された水は工業排水或いは生活排水となる。或
いは、各種産業においていろいろな物質を含有する水が
利用されている。工場排水などには様々な不純物が含ま
れており、環境汚染防止のための不純物除去或いは有用
物質の回収が行われている。特に貴重な水資源の有効利
用のため、排水を処理して再利用することが行われてい
る。
2. Description of the Related Art At present, various kinds of water are used in our daily lives. For example, well water, tap water, industrial water, pure water, ultrapure water, bathtub water, pool water, etc.
The used water is industrial wastewater or domestic wastewater. Alternatively, water containing various substances is used in various industries. Various impurities are contained in factory wastewater and the like, and impurities are removed or useful substances are collected to prevent environmental pollution. In particular, wastewater is treated and reused for effective use of precious water resources.

【0003】例えば、メッキ工程ではメッキ後に製品に
付着したメッキ液を洗浄除去するため、金属イオンを含
んだ洗浄排水がでてくる。含まれる金属イオンは一般に
低い濃度ではあるが、排水量が多いため、その処理には
イオン交換樹脂の負荷が大きいという問題があった。例
えば、アルミニウムの装飾のために、ニッケルメッキが
行われているが、この洗浄排水にはニッケルや錫が10
〜100ppm程度で含まれており、その処理に用いら
れているイオン交換樹脂の負荷が大きかった。
For example, in a plating step, a cleaning wastewater containing metal ions comes out in order to wash and remove a plating solution attached to a product after plating. Although the contained metal ions are generally low in concentration, the amount of wastewater is large, and there is a problem that the treatment requires a large load on the ion exchange resin. For example, nickel plating is used to decorate aluminum, and nickel or tin is added to this washing wastewater.
-100 ppm, and the load of the ion exchange resin used for the treatment was large.

【0004】[0004]

【発明が解決しようとする課題】本発明は排水などに含
まれる微量の金属の回収・除去、金属の精製、粒体への
メッキ、有機化合物或いはシアン化合物などの分解がで
きる電解槽及びそれを用いた水処理方法を提供すること
を目的としている。
SUMMARY OF THE INVENTION The present invention relates to an electrolytic cell capable of recovering and removing trace amounts of metals contained in wastewater and the like, purifying metals, plating particles, and decomposing organic compounds or cyanide compounds. It is intended to provide a used water treatment method.

【0005】特に排水に含まれるニッケルなどの金属を
効率的に回収する方法を提供することも目的としてい
る。
It is another object of the present invention to provide a method for efficiently recovering metals such as nickel contained in wastewater.

【0006】[0006]

【課題を解決するための手段】本発明の目的は次の技術
手段(1)〜(10)の何れかによって達成される。
The object of the present invention is achieved by any of the following technical means (1) to (10).

【0007】(1) 主電極が箱形電解槽の内側側面部
からなり、補助電極が隔膜で覆われた板状もしくは網状
電極からなり、補助電極は前記主電極である箱形電解槽
内に対向配置され、該箱形電解槽内に主電極に接触でき
る状態で、導電性粒子が充填されており、箱形電解槽の
底面が実質的に被処理水は通過できるが、導電性粒子は
通過できない支持体からなり、下部より被処理水を送液
して、導電性粒子を流動状態とし、前記主電極と補助電
極間に直流電圧を印加する流動床電解槽であって、該電
解槽が1以上並列に配置したことを特徴とする流動床電
解槽。
(1) The main electrode is composed of a box-shaped electrolytic cell, and the auxiliary electrode is composed of a plate or mesh electrode covered with a diaphragm. The auxiliary electrode is provided in the box-shaped electrolytic cell as the main electrode. Oppositely disposed, the box-shaped electrolytic cell is filled with conductive particles in a state capable of contacting the main electrode, and the bottom surface of the box-shaped electrolytic tank can substantially pass water to be treated, but the conductive particles are A fluidized-bed electrolytic cell comprising a support that cannot pass through, supplying treated water from the lower part to bring the conductive particles into a fluidized state, and applying a DC voltage between the main electrode and the auxiliary electrode. Are arranged in parallel in one or more fluidized bed electrolytic cells.

【0008】(2) 主電極が箱形電解槽の内側側面部
からなり、補助電極が隔膜で覆われた少なくとも2枚の
有孔板状電極もしくは網状電極からなり、該少なくとも
2枚の電極によって形成された隙間を有し、この隙間に
補助電極上で発生したガスが通過できるように配置され
ており、該補助電極は前記主電極である箱形電解槽内に
対向配置され、該箱形電解槽内に主電極に接触できる状
態で、導電性粒子が充填されており、箱形電解槽の底面
が実質的に被処理水は通過できるが、導電性粒子は通過
できない支持体からなり、下部より被処理水を送液し
て、導電性粒子を流動状態とし、前記主電極と補助電極
間に直流電圧を印加する流動床電解槽であって、該電解
槽が1以上並列に配置したことを特徴とする流動床電解
槽。
(2) The main electrode comprises the inner side surface of the box-shaped electrolytic cell, and the auxiliary electrode comprises at least two perforated plate electrodes or mesh electrodes covered with a diaphragm. It has a formed gap, is arranged so that gas generated on the auxiliary electrode can pass through this gap, the auxiliary electrode is disposed facing the inside of the box-shaped electrolytic cell which is the main electrode, the box-shaped In a state in which the conductive particles can be brought into contact with the main electrode in the electrolytic cell, the bottom surface of the box-shaped electrolytic cell can substantially pass through the water to be treated, but is made of a support that cannot pass through the conductive particles, A fluidized bed electrolytic cell for supplying treated water from the lower part to bring the conductive particles into a fluidized state and applying a DC voltage between the main electrode and the auxiliary electrode, wherein one or more electrolytic cells are arranged in parallel. A fluidized bed electrolytic cell characterized by the above-mentioned.

【0009】(3) (1)項又は(2)項に記載の流
動床電解槽において、該電解槽が、下記の式(1)で求
められるFBE値が0.2以上となるように構成されて
いることを特徴とする流動床電解槽。
(3) In the fluidized bed electrolyzer according to the above item (1) or (2), the electrolyzer is configured such that the FBE value obtained by the following equation (1) is 0.2 or more. A fluidized-bed electrolytic cell characterized in that:

【0010】 FBE=2(D+W)/(DW−PQ)・・・式(1) P:内部空間も含む補助電極部分の厚み(cm) Q:補助電極の幅(cm) W:箱形主電極室の短辺の長さ(cm) D:箱形主電極室の長辺の長さ(cm) (4) (1)〜(3)項の何れか1項に記載の流動床
電解槽を用いて、排水からの金属の回収又は除去を行わ
せる金属回収除去方法であって、陰極となる主電極であ
る箱形電解槽側面部の電流密度が1.5A/dm2以上
であり、かつ主電極に接触している流動床の電流濃度が
3A/L以上で運転することを特徴とする流動床電解槽
を用いた金属回収除去方法。
FBE = 2 (D + W) / (DW−PQ) (1) P: thickness of auxiliary electrode portion including internal space (cm) Q: width of auxiliary electrode (cm) W: box-shaped main Length of the short side of the electrode chamber (cm) D: Length of the long side of the box-shaped main electrode chamber (cm) (4) The fluidized bed electrolytic cell according to any one of (1) to (3) A method for recovering or removing metal from wastewater using the method, wherein the current density of the side surface of the box-shaped electrolytic cell that is the main electrode serving as the cathode is 1.5 A / dm 2 or more; A method for recovering and removing metal using a fluidized-bed electrolytic cell, wherein the fluidized-bed is operated at a current concentration of 3 A / L or more in contact with the main electrode.

【0011】(5) (1)〜(3)項の何れか1項に
記載の流動床電解槽を用いて、金属の回収又は除去を行
わせる水処理方法であって、金属濃度が500ppm以
下でかつ電気伝導度が100mS/m以下の排水を処理
することを特徴とする流動床電解槽を用いた水処理方
法。
(5) A water treatment method for recovering or removing a metal using the fluidized bed electrolytic cell according to any one of (1) to (3), wherein the metal concentration is 500 ppm or less. A water treatment method using a fluidized-bed electrolytic cell, wherein wastewater having an electric conductivity of 100 mS / m or less is treated.

【0012】(6) 金属イオンを含む被処理水を流動
床電解槽で処理して、含まれる金属成分を回収又は除去
する方法であって、電解による被処理水のpH変動を制
御するため、流動床電解槽通過前もしくは通過後の液の
一部又は全部を陰イオン交換樹脂で処理することを特徴
とする流動床電解槽を用いた金属の回収除去方法。
(6) A method for treating the water to be treated containing metal ions in a fluidized-bed electrolytic cell to recover or remove the contained metal component. A method for recovering and removing metals using a fluidized bed electrolytic cell, wherein a part or all of the liquid before or after passing through the fluidized bed electrolytic cell is treated with an anion exchange resin.

【0013】(7) ニッケル含有濃度が500ppm
以下の濃度で排水中に含まれるニッケルを10ppm以
下となるように流動床電解槽で回収又は除去する方法で
あって、電解槽内の処理液のpHを6〜10に維持する
ことを特徴とするニッケルの回収除去方法。
(7) The nickel content is 500 ppm
A method for recovering or removing nickel contained in wastewater at a concentration of 10 ppm or less in a fluidized-bed electrolytic cell so as to have a concentration of 10 ppm or less, wherein the pH of a treatment solution in the electrolytic cell is maintained at 6 to 10. To remove and remove nickel.

【0014】(8) ニッケル含有濃度が500ppm
以下の濃度で排水中に含まれるニッケルを5ppm以下
となるように流動床電解槽で回収又は除去する方法であ
って、処理液のpHを7.7〜9.2に維持することを
特徴とするニッケルの回収除去方法。
(8) The nickel concentration is 500 ppm
A method for recovering or removing nickel contained in wastewater at a concentration of 5 ppm or less in a fluidized bed electrolytic cell so as to have a concentration of 5 ppm or less, wherein the pH of the treatment liquid is maintained at 7.7 to 9.2. To remove and remove nickel.

【0015】(9) 流動床電解槽を用いて、ニッケル
含有濃度が100ppm以下、電気伝導度が100mS
/m以下の排水中に含まれるニッケルを回収又は除去す
る方法であって、処理液のpHを7.7〜9.2に維持
して処理することを特徴とする流動床を用いた排水中の
ニッケルの回収除去方法。
(9) Using a fluidized bed electrolytic cell, the nickel content is 100 ppm or less, and the electric conductivity is 100 mS.
/ M or less in wastewater using a fluidized bed, wherein the treatment is performed while maintaining the pH of the treatment solution at 7.7 to 9.2. Nickel recovery method.

【0016】(10) 主電極が筒状もしくは箱状電解
槽の内側側面部からなり、隔膜で覆われた補助電極が主
電極内に対向配置され、該主電極に接触できる状態で、
導電性粒子が充填されており、前記電解槽の底面が実質
的に被処理水は通過できるが、導電性粒子は通過できな
い支持体からなり、下部より被処理水を送液して、導電
性粒子を流動状態とし、前記主電極と補助電極間に直流
電圧を印加する流動床電解槽であって、流動状態の粒子
よりも上部に被処理水と電解ガスは通過できるが、粒子
は通過できない障壁板が設けられていることを特徴とす
る流動床電解槽。
(10) The main electrode is formed of a cylindrical or box-shaped electrolytic cell having an inner side surface, and an auxiliary electrode covered with a diaphragm is disposed facing the main electrode so that the main electrode can contact the main electrode.
It is filled with conductive particles, and the bottom surface of the electrolytic cell is made of a support that can substantially pass through the water to be treated but cannot pass through the conductive particles. A fluidized bed electrolytic cell in which particles are in a fluidized state and a DC voltage is applied between the main electrode and the auxiliary electrode, wherein the water to be treated and the electrolytic gas can pass above the particles in a fluidized state, but the particles cannot. A fluidized-bed electrolytic cell provided with a barrier plate.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明するが、本発明はこれらに限定されない。
また、以下の説明には用語等に対する断定的な表現があ
るが、本発明の好ましい例を示すもので、本発明の用語
の意義や技術的な範囲を限定するものではない。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.
In the following description, although there are definite expressions for terms and the like, they show preferred examples of the present invention, and do not limit the meaning of the terms of the present invention and the technical scope.

【0018】本発明は排水などに含まれる微量の金属の
回収・除去、金属の精製、粒体へのメッキ、有機化合物
或いはシアン化合物などの分解ができる電解槽を提供す
ることを目的としており、特に排水に含まれる微量の金
属を回収・除去することを目的とした流動床電解槽及び
それを用いた水処理方法を提供するものである。
An object of the present invention is to provide an electrolytic cell capable of recovering and removing a trace amount of metal contained in waste water, purifying metal, plating on granules, and decomposing organic compounds or cyanide compounds. In particular, an object of the present invention is to provide a fluidized bed electrolytic cell for recovering and removing a trace amount of metal contained in wastewater and a water treatment method using the same.

【0019】本発明の電解槽は、図1の水平断面図、図
2の側面断面図、図3の正面断面図、図4の斜視図にそ
の一例を示したように主電極11が箱形電解槽の内側側
面部である電極面11Aからなり、補助電極13が平板
或いは網状電極からなり、好ましくは2枚の電極の間に
ガス排出路19となる隙間を有する箱形をしており、主
電極11と補助電極13の極間距離が略一定となるよう
に補助電極13が前記箱形電解槽の内部に配置されてい
る。
As shown in the horizontal sectional view of FIG. 1, the side sectional view of FIG. 2, the front sectional view of FIG. 3, and the perspective view of FIG. The electrode surface 11A which is the inner side surface portion of the electrolytic cell, the auxiliary electrode 13 is a flat plate or a mesh electrode, and preferably has a box shape having a gap serving as a gas discharge path 19 between two electrodes, The auxiliary electrode 13 is disposed inside the box-shaped electrolytic cell so that the distance between the main electrode 11 and the auxiliary electrode 13 is substantially constant.

【0020】該補助電極は隔膜15によって区画され、
箱形電解槽内には主電極11と接触できるような状態で
導電性粒子14Aが充填されているものである。
The auxiliary electrode is defined by a diaphragm 15,
The box-shaped electrolytic cell is filled with the conductive particles 14 </ b> A so as to be able to contact the main electrode 11.

【0021】例えば金属の回収・除去の場合は主電極1
1である箱形電解槽側を陰極とし、導電性粒子も陰極と
し、補助電極13を陽極とする。下部よりポンプ等で送
液された被処理液は導電性粒子14Aを流動させながら
間隙を通過して上昇し、その際に導電性粒子上及び主電
極上に金属成分が電解析出される。処理された液は上部
より排出される。被処理水の処理は基本的に循環で処理
されるが、通電電流を調整することによって1パスで処
理することも可能である。
For example, in the case of collecting and removing metal, the main electrode 1
1, the box-shaped electrolytic cell side is a cathode, the conductive particles are also a cathode, and the auxiliary electrode 13 is an anode. The liquid to be treated, which is sent from below by a pump or the like, rises through the gap while flowing the conductive particles 14A, and at this time, metal components are electrolytically deposited on the conductive particles and the main electrode. The treated liquid is discharged from the upper part. The treatment of the water to be treated is basically carried out by circulation, but it is also possible to treat the water in one pass by adjusting the supplied current.

【0022】図1、図2、図3、図4に本発明の電解槽
の一例を示したが、箱形電解槽は好ましくは金属からな
り、内側側面部は主電極として作用し、箱形電解槽に囲
まれた部分は主電極室となる。箱形電解槽の高さH(c
m)、箱形電解槽内側の短辺の長さW(cm)、箱形電
解槽内側の長辺の長さD(cm)である。又、箱形電解
槽の内部には補助電極13が配置されており、好ましく
は補助電極13で発生した電解ガスを排出できるガス排
出路19を有することが望ましく、補助電極13の厚み
P(cm)は一枚の補助電極板の厚みか或いは2枚の板
から構成されているこの隙間を含めた補助電極の厚みを
示している。
FIGS. 1, 2, 3 and 4 show an example of the electrolytic cell of the present invention. The box-type electrolytic cell is preferably made of metal, and the inner side surface acts as a main electrode. The part surrounded by the electrolytic cell is the main electrode chamber. Height of box-shaped electrolytic cell H (c
m), the length W (cm) of the short side inside the box-shaped electrolytic cell, and the length D (cm) of the long side inside the box-shaped electrolytic cell. An auxiliary electrode 13 is disposed inside the box-shaped electrolytic cell, and preferably has a gas discharge path 19 through which the electrolytic gas generated by the auxiliary electrode 13 can be discharged. ) Indicates the thickness of one auxiliary electrode plate or the thickness of the auxiliary electrode including the gap formed by two plates.

【0023】補助電極13を2枚の板から構成し、内部
に空間を設けた場合、補助電極上で発生した電解ガスを
ここから上部に排出することによって電極ガスによる電
極のマスキングを防止し効率的な電解処理ができる。そ
のため補助電極13は有孔の板状でもよいが、メッシュ
状のものが好ましく用いられる。
When the auxiliary electrode 13 is composed of two plates and a space is provided inside, the electrolytic gas generated on the auxiliary electrode is discharged to the upper portion to prevent the masking of the electrode by the electrode gas and to improve the efficiency. Electrolytic treatment can be performed. Therefore, the auxiliary electrode 13 may be a perforated plate shape, but a mesh shape is preferably used.

【0024】又、補助電極13は隔膜15で覆われた状
態で配置される。補助電極13と主電極11になる箱形
電解槽との間の間隙に導電性粒子14Aが充填され、流
動床14として用いられる。流動床14は主電極側から
電位が与えられることになる。箱形電解槽の下部は処理
液が通過できて、充填されている粒子は通過できない網
状の支持板17で構成されている。
The auxiliary electrode 13 is arranged in a state covered by the diaphragm 15. The gap between the auxiliary electrode 13 and the box-shaped electrolytic cell serving as the main electrode 11 is filled with conductive particles 14 </ b> A and used as a fluidized bed 14. The fluidized bed 14 is supplied with a potential from the main electrode side. The lower part of the box-shaped electrolytic cell is constituted by a mesh-like support plate 17 through which the processing liquid can pass and the filled particles cannot pass.

【0025】本発明ではこの形態の電解槽が特に式
(1)から算出されるFBE値が0.2以上のときに特
に流動床電解槽10として好ましいことが確認された。
In the present invention, it has been confirmed that the electrolytic cell of this embodiment is particularly preferable as the fluidized bed electrolytic cell 10 when the FBE value calculated from the equation (1) is 0.2 or more.

【0026】 FBE=2(D+W)/(DW−PQ)・・・式(1) P:内部空間も含む補助電極の厚み(cm) Q:補助電極の幅(cm) W:箱形主電極室の短辺の長さ(cm) D:箱形主電極室の長辺の長さ(cm) FBEの値は本発明の電解槽において、流動床14とな
る主電解室の容積、主電極11の面積、通水断面積、主
電極11と補助電極13間の距離、ガス排出部の断面積
などと複雑に関連しており、主電解室の容積当たりの主
電極11の面積が重要である。FBEの値を示す上記式
(1)の分子にHを乗ずれば主電極11の面積になり、
分母にHを乗ずれば主電解室の容積になることを示して
いる。特に排水に含まれる低濃度の金属を電解で回収す
るような場合にこの条件を満たすことが好ましいのであ
る。ただし、主電解室の断面積(DWcm2)に対して
ガス排出部の断面積(PQcm2)が大きくなると、設
置面積を無駄に大きくしてしまうなどの弊害が生じる。
すなわち、PQ/DWは0.4以下となるように設計す
ることが望ましい。
FBE = 2 (D + W) / (DW−PQ) Equation (1) P: thickness of auxiliary electrode including internal space (cm) Q: width of auxiliary electrode (cm) W: box-shaped main electrode Length of the short side of the chamber (cm) D: Length of the long side of the box-shaped main electrode chamber (cm) The value of FBE is the volume of the main electrolysis chamber which becomes the fluidized bed 14 in the electrolysis cell of the present invention, the main electrode. 11 and the cross-sectional area of water, the distance between the main electrode 11 and the auxiliary electrode 13, the cross-sectional area of the gas discharge part, etc., and the area of the main electrode 11 per volume of the main electrolytic chamber is important. is there. By multiplying the numerator of the above formula (1) indicating the value of FBE by H, the area of the main electrode 11 is obtained,
This shows that multiplying the denominator by H becomes the volume of the main electrolysis chamber. In particular, it is preferable to satisfy this condition when a low-concentration metal contained in wastewater is recovered by electrolysis. However, if the cross-sectional area (PQcm 2 ) of the gas discharge part becomes larger than the cross-sectional area (DWcm 2 ) of the main electrolysis chamber, adverse effects such as an unnecessary increase in installation area occur.
That is, it is desirable to design so that PQ / DW is 0.4 or less.

【0027】又、主電極室となる箱形電解槽の内側側面
部である電極面11Aと補助電極13間の距離(極間距
離=(W−P)/2)は1〜10cmが好ましく、特に
1.5〜4cmが好ましく用いられる。
The distance (electrode distance = (WP) / 2) between the electrode surface 11A, which is the inner side surface of the box-shaped electrolytic cell serving as the main electrode chamber, and the auxiliary electrode 13 is preferably 1 to 10 cm. In particular, 1.5 to 4 cm is preferably used.

【0028】又、電解槽の高さH(cm)はメンテナン
スなどの問題から20〜200cmが好ましく用いられ
る。
The height H (cm) of the electrolytic cell is preferably 20 to 200 cm from the viewpoint of maintenance and the like.

【0029】図7の流動床電解槽の側面断面図、そのA
−A断面図である図8には本発明の流動床電解槽10を
用いた一例を示した。又、本発明の流動床電解槽は図5
の斜視図に示したように、図1、図2、図3、図4に示
した電解槽を1つのユニットとし、必要な処理能力に応
じてこれを並列に複数配置することが可能であり、本発
明の流動床電解槽10はこのようなスケールアップが容
易に行える点で優れている。
FIG. 7 is a side sectional view of the fluidized bed electrolytic cell of FIG.
FIG. 8 which is a cross-sectional view of FIG. 8 shows an example using the fluidized-bed electrolytic cell 10 of the present invention. FIG. 5 shows a fluidized-bed electrolytic cell according to the present invention.
As shown in the perspective view of FIG. 1, the electrolytic cells shown in FIGS. 1, 2, 3, and 4 can be made into one unit, and a plurality of the electrolytic cells can be arranged in parallel according to a required processing capacity. The fluidized bed electrolytic cell 10 of the present invention is excellent in that such scale-up can be easily performed.

【0030】本発明の方法及び流動床電解槽10の用途
は、金属の回収・除去、金属の精製、粒体へのメッキ、
有機化合物或いはシアン化合物などの分解である。
The method of the present invention and the fluidized bed electrolyzer 10 are used for collecting and removing metals, purifying metals, plating on granules,
Decomposition of organic compounds or cyanide compounds.

【0031】金属の回収・除去或いは精製、粒体へのメ
ッキの場合は、箱形電解槽の側面部を陰極の主電極11
とし、ここに補助電極13として隔膜15で覆われた陽
極の挿入された形態となる。箱形電解槽内部に導電性粒
子14Aが充填されてここが主電解室となる。そのた
め、導電性粒子14Aは陰極となる。
In the case of recovering / removing or purifying a metal or plating a granular material, the side surface of the box-shaped electrolytic cell is connected to the main electrode 11 of the cathode.
Here, the anode covered with the diaphragm 15 as the auxiliary electrode 13 is inserted. The inside of the box-shaped electrolytic cell is filled with the conductive particles 14A, and this serves as a main electrolytic chamber. Therefore, the conductive particles 14A serve as a cathode.

【0032】又、本発明の流動床電解槽10を陽極酸化
を利用して有機物の分解或いはシアン化合物等の分解を
する場合は、箱形電解槽の側面部が陽極となり、この中
に補助電極13として隔膜15で覆われた陰極が挿入さ
れることなる。そして箱形電解槽内部に導電性粒子14
Aが充填されてここが主電解室となる。この場合、導電
性粒子14Aは陽極となる。
When the fluidized-bed electrolytic cell 10 of the present invention is used to decompose organic substances or decompose a cyanide or the like by utilizing anodic oxidation, the side surface of the box-shaped electrolytic cell serves as an anode, and an auxiliary electrode is provided therein. As 13, the cathode covered with the diaphragm 15 is inserted. Then, the conductive particles 14 are placed inside the box-shaped electrolytic cell.
This is the main electrolytic chamber after A is filled. In this case, the conductive particles 14A serve as an anode.

【0033】陰極粒子を用いる場合、その材質としては
グラファイト、グラッシーカーボン、活性炭などの炭素
系素材のほか、白金、金、銀、銅、ニッケル、錫、鉛、
等の金属或いは合金それらの酸化物などの導電性素材が
利用される。更にこれらの導電性素材がグラファイト、
活性炭、ガラス、セラミックス、或いはポリスチレンな
どの各種樹脂からなる粒子上に被覆されたものも利用す
ることができる。陽極粒子を使用する場合には、グラフ
ァイト、ガラス、セラミックス、樹脂、金属などから選
択される粒子上に貴金属、貴金属酸化物、鉛等が被覆さ
れたものを使用することができる。
When the cathode particles are used, the material may be a carbon-based material such as graphite, glassy carbon, or activated carbon, as well as platinum, gold, silver, copper, nickel, tin, lead, or the like.
Conductive materials such as metals or alloys thereof and oxides thereof are used. Furthermore, these conductive materials are graphite,
Those coated on particles made of various resins such as activated carbon, glass, ceramics, and polystyrene can also be used. When anode particles are used, particles obtained by coating a particle selected from graphite, glass, ceramics, resin, metal, and the like with a noble metal, a noble metal oxide, lead, or the like can be used.

【0034】流動床14として用いられる粒子は0.0
5〜3.0mmのものが用いられ、好ましくは0.1〜
1.0mmのものが用いられる。又、比重は1.1〜
3.0程度のものが好ましく用いられる。又、使用する
粒子の粒子径や重さはできるだけ均一であることが安定
した流動状態を維持するため望ましい。
The particles used as the fluidized bed 14 have a particle diameter of 0.0
Those having a thickness of 5 to 3.0 mm are used, preferably 0.1 to 3.0 mm.
A 1.0 mm one is used. The specific gravity is 1.1 to
Those having a value of about 3.0 are preferably used. It is desirable that the particle diameter and weight of the particles used are as uniform as possible in order to maintain a stable fluidized state.

【0035】又、金属回収の場合はこの粒子上に金属が
電解析出することになる。そのため、粒子の見かけの比
重が重くなるため、それに応じて処理液の流量を増加さ
せ、最適流動状態を維持するようにすることが好まし
い。
In the case of recovering the metal, the metal is electrolytically deposited on the particles. For this reason, the apparent specific gravity of the particles is increased. Therefore, it is preferable to increase the flow rate of the processing liquid accordingly and maintain the optimum flow state.

【0036】主電極11と補助電極13(陰極又は陽極)
の材質としては、グラファイト、ステンレス、チタン、
白金又は貴金属酸化物で被覆したチタンなど一般に使用
されている電極素材が利用できる。特に金属回収・除去
の場合、箱形電解槽(陰極)はチタンもしくは白金被覆
チタン、白金・イリジウム被覆チタン、陽極は白金被覆
チタン、白金・イリジウム被覆チタンが好ましく用いら
れる。
Main electrode 11 and auxiliary electrode 13 (cathode or anode)
The materials of are graphite, stainless steel, titanium,
Commonly used electrode materials such as platinum or titanium coated with a noble metal oxide can be used. In particular, in the case of collecting and removing metals, titanium or platinum-coated titanium, platinum-iridium-coated titanium is preferably used for the box-shaped electrolytic cell (cathode), and platinum-coated titanium or platinum-iridium-coated titanium is preferably used for the anode.

【0037】主電解室内の導電性粒子14Aと補助電極
13とを区画するための隔膜15は、粒子を通過させず
にイオン或いは電解質を通過させるものであればよく、
有孔性隔膜の場合は粒子サイズ以下の孔径を有するもの
であり、10〜100μmであることが好ましい。隔膜
の材質はポリテトラフルオロエチレン、ポリプロピレ
ン、ポリエチレン、ナイロン等の非電導性有機化合物も
しくはガラス繊維、多孔質セラミックなどの非電導性無
機化合物とするのがよい。又、この隔膜15はイオン交
換機能を有するものであってもよい。
The diaphragm 15 for separating the conductive particles 14A and the auxiliary electrode 13 in the main electrolysis chamber may be any as long as it allows ions or electrolyte to pass without passing through the particles.
In the case of a porous membrane, the porous membrane has a pore size equal to or smaller than the particle size, and preferably 10 to 100 μm. The material of the diaphragm is preferably a non-conductive organic compound such as polytetrafluoroethylene, polypropylene, polyethylene or nylon, or a non-conductive inorganic compound such as glass fiber or porous ceramic. Further, the diaphragm 15 may have an ion exchange function.

【0038】補助電極13は該電極上で発生するガスを
該電極の内側に抜くために、有孔状とするとともに、隔
膜15と密着させることが好ましい。例えば該有孔状補
助電極13はエキスパンドメッシュや板に孔を設けたも
のや焼結体、多孔質体などを用いることが好ましい。
The auxiliary electrode 13 is preferably formed in a perforated shape and closely adhered to the diaphragm 15 in order to discharge gas generated on the electrode to the inside of the electrode. For example, the perforated auxiliary electrode 13 is preferably made of an expanded mesh, a plate provided with holes, a sintered body, a porous body, or the like.

【0039】この電解槽に下部より被処理液を送液し、
箱形電解槽内に配置した導電性粒子を上昇流によって流
動状態を維持させながら、主電極11である箱形電解槽
と補助電極13に通電し、金属の除去或いは回収などを
行わせるのである。この流動状態は主電解室内の粒子が
相互に接触、離脱を繰り返しながらその隙間を処理液が
通過していく状態のことである。流動状態が、送水停止
時の静止状態の見かけの流動床容積に対し、その見かけ
の容積が、上昇流によって105〜150%となるよう
に膨張させながら電解処理することが好ましい。
The liquid to be treated is sent to the electrolytic cell from the lower part,
While maintaining the flowing state of the conductive particles arranged in the box-shaped electrolytic tank by the ascending flow, the box-shaped electrolytic tank as the main electrode 11 and the auxiliary electrode 13 are energized to remove or recover the metal. . This flow state is a state in which the processing liquid passes through the gap while the particles in the main electrolytic chamber repeatedly contact and separate from each other. The electrolytic treatment is preferably performed while the fluidized state is expanded so that the apparent volume becomes 105% to 150% by the ascending flow with respect to the apparent fluidized bed volume in the stationary state when the water supply is stopped.

【0040】この状態で電解を行うと、主電極11の箱
形電解槽内の粒子表面で電解が行われるため、効率的な
処理が可能となる。
When the electrolysis is performed in this state, the electrolysis is performed on the particle surface of the main electrode 11 in the box-shaped electrolytic cell, so that an efficient treatment can be performed.

【0041】又、電解処理の際の被処理水の温度は20
〜70℃で処理することが好ましい。
The temperature of the water to be treated during the electrolytic treatment is 20
It is preferred to process at ~ 70 ° C.

【0042】箱形電解槽の高さH(cm)は少なくとも
流動状態の粒子の高さHf(cm)以上であることが好
ましく。HがHfの1.1〜1.8倍程度であることが
望ましい。又、補助電極の高さは少なくとも流動状態の
粒子の高さHf(cm)以上であることが好ましく、箱
形電解槽の高さH(cm)と同じかそれ以上であること
が望ましい。
The height H (cm) of the box-shaped electrolytic cell is preferably at least equal to or higher than the height Hf (cm) of the fluidized particles. It is desirable that H is about 1.1 to 1.8 times Hf. The height of the auxiliary electrode is preferably at least equal to or higher than the height Hf (cm) of the particles in the fluidized state, and more preferably equal to or higher than the height H (cm) of the box-shaped electrolytic cell.

【0043】このような箱形電解槽は図5の一部斜視図
で表した説明図、或いは図6の側面断面図に示したよう
に必要な処理能力に応じて複数個を並列に配置すること
ができ電解条件を変更したり、再度検討する必要がなく
スケールアップが容易になる。
As shown in the partial perspective view of FIG. 5 or the side sectional view of FIG. 6, a plurality of such box-shaped electrolytic cells are arranged in parallel according to the required processing capacity. This makes it easy to scale up without having to change the electrolysis conditions or reconsider.

【0044】電解槽上部には被処理液をスムーズに排出
するための処理液排出部を有することが望ましく、この
部分は送液の線速を低下させて上昇流から粒子を分離し
やすくするように設計することが望ましく、通水断面積
を広くすることがある。また、この部分は電解には関与
しないため、非電導性素材からなり、例えば塩化ビニル
樹脂、アクリル樹脂、テフロン樹脂、ガラスなどが用い
られる。特に透明な樹脂で形成されていることが望まし
い。前述のように複数の箱形電解槽を並列配置した場合
は図5或いは図6に示したようにこの処理液排出部は一
体に形成することができる。
It is desirable to have a processing liquid discharge section for smoothly discharging the liquid to be processed at the upper portion of the electrolytic cell, and this section reduces the linear velocity of the liquid supply so that particles can be easily separated from the upward flow. It is desirable to design it to have a wide cross section. Since this part does not participate in electrolysis, it is made of a non-conductive material, for example, a vinyl chloride resin, an acrylic resin, a Teflon resin, glass, or the like is used. In particular, it is desirable to be formed of a transparent resin. When a plurality of box-shaped electrolytic cells are arranged in parallel as described above, the processing liquid discharge portion can be formed integrally as shown in FIG. 5 or FIG.

【0045】又、流動床電解槽10で電解処理を行う
と、電解ガスが発生する。流動床14部分で発生したガ
スは流動床14内部で大きな気泡となり、流動床14の
粒子を局部的に吹き上げることがある。或いは、粒子に
気泡が付着して上部を浮遊することがあった。そのた
め、粒子が電解槽10外に流出するという問題を生じて
いた。そこで、鋭意検討した結果、流動状態の粒子14
Aよりも上部に被処理水と電解ガスは通過できるが、粒
子は通過できない障壁板18を設けることによって解決
できることを見いだした。
When the electrolytic treatment is performed in the fluidized bed electrolytic cell 10, an electrolytic gas is generated. The gas generated in the fluidized bed 14 becomes large bubbles inside the fluidized bed 14 and may locally blow up particles in the fluidized bed 14. Alternatively, air bubbles may adhere to the particles and float on the upper part. Therefore, there has been a problem that the particles flow out of the electrolytic cell 10. Therefore, as a result of intensive studies, it was found that the particles 14
It has been found that the problem can be solved by providing a barrier plate 18 above which the water to be treated and the electrolytic gas can pass but the particles cannot pass.

【0046】障壁板18は有孔の板或いは多孔質板、網
などを利用することができる。これにより、電解ガスの
局部的吹き出しによる粒子の吹き上げがあっても粒子が
電解槽外に流出することが防止できるようになった。図
7の側面断面図に示した電解槽では流動床14の上部
に、障壁板18として粒子の流出防止用の網が設けられ
ている。この障壁板18には非導電性素材が用いられる
が、導電性素材に主電極11と同じ電位を印加したもの
を用いても良い。
The barrier plate 18 may be a perforated plate, a porous plate, a net, or the like. This makes it possible to prevent the particles from flowing out of the electrolytic cell even when the particles are blown up by local blowing of the electrolytic gas. In the electrolytic cell shown in the side sectional view of FIG. 7, a net for preventing outflow of particles is provided as a barrier plate 18 above the fluidized bed 14. Although a non-conductive material is used for the barrier plate 18, a material obtained by applying the same potential as the main electrode 11 to the conductive material may be used.

【0047】金属の回収・除去或いは精製を目的とした
場合、主電極室内の陰極粒子上に対象となる金属が電解
析出されるため、適宜これらを取り出し、金属を回収す
ることができる。そのため、流動床電解槽10の下部に
は主電解室内の粒子14Aの取り出し口33或いは排出
バルブ34が設けられていることが望ましい。また、粒
子の取り出し口33は流動床電解槽10の短辺側に設け
る方が複数の電解槽の設置の際に邪魔にならないため好
ましい。
For the purpose of recovering / removing or purifying the metal, the target metal is electrolytically deposited on the cathode particles in the main electrode chamber. Therefore, the target metal can be taken out and the metal can be recovered. Therefore, it is desirable to provide an outlet 33 or a discharge valve 34 for the particles 14A in the main electrolysis chamber below the fluidized bed electrolyzer 10. Further, it is preferable that the particle take-out port 33 be provided on the short side of the fluidized bed electrolytic cell 10 because it does not hinder the installation of a plurality of electrolytic cells.

【0048】析出した金属は酸等で再溶解させて回収す
ることもできるが、溶鉱炉などで溶融させて回収するこ
ともできる。酸等で溶解させて回収する場合は粒子は再
利用することも可能であり、回収液は高濃度で少量とな
っているため経済的に回収することが可能となる。
The deposited metal can be recovered by re-dissolving it with an acid or the like, but can also be recovered by melting it in a blast furnace or the like. When the particles are recovered by dissolving them in an acid or the like, the particles can be reused, and the recovered liquid has a high concentration and a small amount, and can be economically recovered.

【0049】或いは、粒子上に析出した金属を再溶解さ
せるために印加電圧の極性を反転させて、少量の処理液
で循環運転させて粒子上に析出した金属を再溶解させる
こともできる。
Alternatively, the polarity of the applied voltage may be reversed in order to redissolve the metal deposited on the particles, and the metal deposited on the particles may be redissolved by circulating with a small amount of processing liquid.

【0050】有機化合物或いはシアン化合物の分解に利
用する場合は、陽極粒子上に析出することはないため、
特に分離操作は不要である。ただし、陰極となる補助電
極上に析出したスケール等が電解を妨げるようであれば
定期的に洗浄することが必要な場合もある。或いは、析
出した金属が粒子から剥離しやすいものであるときは、
流動床電解槽10の後段にフィルター26を設置して微
細な金属粉として回収することもできる。
When used for the decomposition of an organic compound or a cyanide compound, they do not precipitate on the anode particles.
In particular, no separation operation is required. However, if scale or the like deposited on the auxiliary electrode serving as a cathode hinders electrolysis, it may be necessary to periodically wash the scale. Alternatively, when the deposited metal is easily peeled from the particles,
A filter 26 can be provided at the subsequent stage of the fluidized bed electrolytic cell 10 to recover as fine metal powder.

【0051】本発明の流動床電解槽10を金属の回収除
去に用いる場合、主電極11となる箱形電解槽側面部で
ある電極面11Aの電流密度が1.5A/dm2で主電
極11に接触している流動床14の電流濃度が一定の粒
子体積当たり3A/L以上となるように運転することが
好ましい。低い電流密度或いは電流濃度では効率的な金
属の回収除去を行うことが困難である。
When the fluidized-bed electrolytic cell 10 of the present invention is used for collecting and removing metals, the current density on the electrode surface 11A, which is the side surface of the box-shaped electrolytic cell serving as the main electrode 11, is 1.5 A / dm 2 and the main electrode 11 is used. It is preferable that the operation is performed so that the current concentration of the fluidized bed 14 that is in contact with the liquid is 3 A / L or more per fixed particle volume. If the current density or current concentration is low, it is difficult to efficiently collect and remove the metal.

【0052】本発明の流動床電解槽10は特に廃液中に
含まれる低濃度の金属の回収・除去に有効であり、50
0ppm以下、特に100ppm以下の非常に低い濃度
で含まれる金属を10ppm以下或いは1ppm以下ま
で効率的に回収・除去することが可能である。
The fluidized-bed electrolytic cell 10 of the present invention is particularly effective for recovering and removing low-concentration metals contained in waste liquid.
It is possible to efficiently collect and remove metals contained at a very low concentration of 0 ppm or less, particularly 100 ppm or less, to 10 ppm or less or 1 ppm or less.

【0053】本発明の別の態様ではニッケルの回収方法
も提供する。ニッケルメッキ工程で発生する排水に含ま
れるニッケル濃度は通常数十ppm程度の低濃度である
が、排水の量が多いため、これを処理するイオン交換樹
脂への負荷が大きいものとなっていた。このような排液
を流動床電解槽での処理を試みたが、十分にニッケルの
濃度を低減させることはできなかった。
Another embodiment of the present invention also provides a method for recovering nickel. The concentration of nickel contained in the wastewater generated in the nickel plating step is usually as low as several tens of ppm, but the amount of the wastewater is large, so that the load on the ion exchange resin for treating the wastewater is large. An attempt was made to treat such effluent in a fluidized bed electrolytic cell, but the concentration of nickel could not be sufficiently reduced.

【0054】そこで、この問題を解決するために鋭意検
討を重ねた結果、電解中の排水のpHを6〜10に維持
することで排液中のニッケル含有濃度が10ppm以下
に低減できることが確認された。更に好ましくは処理液
のpHを7.7〜9.2に維持することによって、排液
中のニッケル含有濃度が1ppm以下まで低減できたの
である。pH7.7以上ではニッケルが低濃度まで回収
可能であるが、pH9.2を越えると粒子として使用し
ている活性炭が電解中に崩壊して処理液が黒く着色して
くることが確認され、特にpH7.7〜9.2で処理す
ることが好ましいことが判明した。また、強アルカリ側
では排水中のニッケル・イオンが水酸化物になるため好
ましくはない。
Therefore, as a result of intensive studies to solve this problem, it was confirmed that the nickel content in the wastewater can be reduced to 10 ppm or less by maintaining the pH of the wastewater during electrolysis at 6 to 10. Was. More preferably, by maintaining the pH of the treatment solution at 7.7 to 9.2, the nickel content in the wastewater can be reduced to 1 ppm or less. When the pH is 7.7 or higher, nickel can be recovered to a low concentration. However, when the pH exceeds 9.2, it is confirmed that the activated carbon used as particles is broken down during electrolysis and the treatment liquid is colored black. It has been found that it is preferable to treat at a pH of 7.7 to 9.2. On the strong alkali side, nickel ions in the wastewater are converted to hydroxides, which is not preferable.

【0055】又、この時本発明の電解槽において、箱形
電解槽内側側面部である電極面11Aの陰極と補助電極
13である陽極との間の極間距離は4cm以下のときに
高い処理効率でニッケル濃度を低減させることができ
た。試験したニッケルメッキ排水には、錫イオン、硫酸
イオン、酒石酸、硫酸アンモニウムなどの成分が含まれ
ていたが、特にこれらによって妨害されることなく、ニ
ッケルの回収・除去が可能であり、ニッケルと同時に錫
も回収可能であった。又、金属の回収・除去のための電
解中に金属イオンの減少に伴って、電解液が酸性側にシ
フトすることが確認された。特にニッケルのように中性
〜弱アルカリの条件で電解を継続することが望ましい場
合は、pH調整のため水酸化ナトリウムなどのアルカリ
を添加することが必要である。しかしながら、処理目的
が金属の回収・除去だけでなく排水の再利用でもある場
合は、新たな電解質の添加は好ましくない。そのため、
これを解決する方法を鋭意検討した結果、排水中に含ま
れる金属を流動床電解槽10で回収する方法において、
該電解槽10通過前或いは通過後の処理液の一部又は全
部を陰イオン交換樹脂27で処理し、処理液のpHが所
定の値となるようにして処理する水処理方法により効率
的に処理する方法を見いだした。これにより、電解によ
るpHの変動を制御するこが可能となり、電解効率が変
動したり、低下することを防止しつつ、水の再利用がし
易い水処理方法を提供することができたのである。
Also, at this time, in the electrolytic cell of the present invention, when the distance between the cathode of the electrode surface 11A which is the inner side surface of the box-shaped electrolytic cell and the anode which is the auxiliary electrode 13 is 4 cm or less, high treatment is performed. The nickel concentration could be reduced with efficiency. The nickel plating wastewater tested contained components such as tin ion, sulfate ion, tartaric acid, and ammonium sulfate. Was also recoverable. Further, it was confirmed that the electrolytic solution shifted to the acidic side as the metal ions decreased during electrolysis for collecting and removing the metal. In particular, when it is desired to continue electrolysis under conditions of neutral to weak alkali such as nickel, it is necessary to add an alkali such as sodium hydroxide for pH adjustment. However, when the purpose of the treatment is not only the recovery and removal of metals but also the reuse of wastewater, it is not preferable to add a new electrolyte. for that reason,
As a result of intensive studies on a method of solving this, in a method of recovering metal contained in wastewater in the fluidized bed electrolytic cell 10,
A part or all of the treatment liquid before or after passing through the electrolytic cell 10 is treated with the anion exchange resin 27, so that the treatment liquid is treated so that the pH of the treatment liquid becomes a predetermined value. I found a way to do it. This makes it possible to control the fluctuation of pH due to electrolysis, and to provide a water treatment method in which water can be easily reused while preventing fluctuation or reduction in electrolysis efficiency. .

【0056】次に本発明を実施例に基づき説明するが、
本発明の実施態様はこれに限定されない。
Next, the present invention will be described based on examples.
Embodiments of the present invention are not so limited.

【0057】実施例1 図7、図8に示したような本発明の箱形電解槽を高さH
が50cm,横Dが20cm,幅Wが4cmにして作成
した。陰極となる箱形電解槽には厚み2mmのチタン板
を使用した。陽極となる補助電極には厚み1mmの白金
被覆チタンメッシュ2枚(高さH50cm,幅Q16c
m)を0.5cmの間隔でP=0.7cmに保持したも
のを使用した。この隙間を電解ガスの排出通路とし、こ
れをガラス繊維布からなる隔膜で被覆した。主電解室に
は活性炭ビーズ(φ0.7〜0.8mm)、2リットル
を充填した。
Example 1 A box-shaped electrolytic cell of the present invention as shown in FIGS.
Was 50 cm, the width D was 20 cm, and the width W was 4 cm. A 2 mm thick titanium plate was used for the box-shaped electrolytic cell serving as the cathode. The auxiliary electrode serving as the anode has two 1 mm thick platinum-coated titanium meshes (height H50 cm, width Q16c).
m) held at P = 0.7 cm at intervals of 0.5 cm. This gap was used as an electrolytic gas discharge passage, which was covered with a diaphragm made of glass fiber cloth. The main electrolysis chamber was filled with 2 liters of activated carbon beads (φ 0.7 to 0.8 mm).

【0058】これを用いて図9に示した処理装置を用意
した。錫80ppmを含有し、他に硫酸やその他のイオ
ンを含むメッキ排水(pH6.0)を電解槽底部より送
液し、直流電源40により直流電圧を印加し20Aの定
電流で電解を行った。pH計23を有する貯水タンク2
1内の被処理水50リットルをポンプ25により循環で
1時間処理した。
Using this, the processing apparatus shown in FIG. 9 was prepared. Plating wastewater (pH 6.0) containing 80 ppm of tin and additionally containing sulfuric acid and other ions was fed from the bottom of the electrolytic tank, and a DC voltage was applied by a DC power supply 40 to perform electrolysis at a constant current of 20 A. Water storage tank 2 having pH meter 23
50 liters of the water to be treated in 1 was treated by the pump 25 by circulation for 1 hour.

【0059】その結果を表1に示す。Table 1 shows the results.

【0060】本発明の電解槽を使用することにより、排
水中の錫が効率的に回収されることが確認された。又、
処理後の電解水はpH4程度まで酸性側にシフトしてい
た。
It was confirmed that the use of the electrolytic cell of the present invention efficiently recovered tin in wastewater. or,
The electrolyzed water after the treatment was shifted to the acidic side up to about pH 4.

【0061】本発明の電解槽は処理量の増加に対して、
図6に示したように電解槽の2つ以上増設することが可
能であり、処理液量を100リットルとしても同様の結
果が得られ、スケールアップが容易に行えることを確認
できた。
The electrolytic cell of the present invention can be used for increasing the processing amount.
As shown in FIG. 6, two or more electrolytic cells can be added, and the same result was obtained even when the treatment liquid volume was set to 100 liters. It was confirmed that scale-up could be easily performed.

【0062】[0062]

【表1】 [Table 1]

【0063】実施例2 図7、図8に示したような本発明の箱形電解槽を高さH
が50cm,横Dが30cm,幅Wが5cmに作成し
た。陰極となる箱形電解槽には厚み2mmのチタン板を
使用した。陽極となる補助電極には厚み1mmの白金被
覆チタンメッシュ2枚(高さHが50cm,幅Qが26
cm)を1cmの間隔で保持した(P=1.2cm)の
ものを使用した。この隙間を電解ガスの排出通路とし、
これを隔膜で被覆したものを用いた。主電解室には活性
炭ビーズ(φ0.7〜0.8mm)、3リットルを充填
した。
Example 2 A box-shaped electrolytic cell according to the present invention as shown in FIGS.
Was 50 cm, the width D was 30 cm, and the width W was 5 cm. A 2 mm thick titanium plate was used for the box-shaped electrolytic cell serving as the cathode. An auxiliary electrode serving as an anode has two platinum-coated titanium meshes having a thickness of 1 mm (height H is 50 cm and width Q is 26).
cm) at 1 cm intervals (P = 1.2 cm). This gap serves as an electrolytic gas discharge passage,
This was coated with a diaphragm. The main electrolytic chamber was filled with activated carbon beads (φ0.7 to 0.8 mm) and 3 liters.

【0064】図9に示した試験装置を用意した。ニッケ
ル30ppmを含有し、他に硫酸やその他のイオンを含
むメッキ排水(pH6.0)を電解槽底部より送液し、
直流電源40により直流電圧を印加し30Aの定電流で
電解を行った。pH計23を有する貯水タンク21内の
被処理水100リットルをポンプ25により循環で処理
した。処理中はpHを所定の範囲に維持するため貯水タ
ンク21内の被処理水にNaOH溶液を適宜添加した。
比較例としてpHを制御せずに電解を行った。
A test device shown in FIG. 9 was prepared. A plating wastewater (pH 6.0) containing 30 ppm of nickel and further containing sulfuric acid and other ions is sent from the bottom of the electrolytic cell,
DC voltage was applied by the DC power supply 40, and electrolysis was performed at a constant current of 30A. 100 L of water to be treated in a water storage tank 21 having a pH meter 23 was circulated by a pump 25. During the treatment, a NaOH solution was appropriately added to the water to be treated in the water storage tank 21 in order to maintain the pH within a predetermined range.
As a comparative example, electrolysis was performed without controlling the pH.

【0065】その結果を表2に示す。Table 2 shows the results.

【0066】本発明の電解槽を使用して、pHを制御す
れば、排水中のニッケルが効率的に回収されることが確
認された。pHが6以下では低濃度のニッケルを回収す
ることは困難であった。
It was confirmed that nickel was efficiently recovered from the wastewater by controlling the pH using the electrolytic cell of the present invention. When the pH is 6 or less, it is difficult to recover a low concentration of nickel.

【0067】[0067]

【表2】 [Table 2]

【0068】実施例3 実施例1で使用した本発明の電解槽を使用し、図10に
示したように電解槽通過後の被処理水の一部もしくは全
部が陰イオン交換樹脂27を通過できるように配置し
た。ニッケル30ppm、錫40ppmを含有し、他に
硫酸やその他のイオンを含むメッキ排水(pH6.
0)、電気伝導度60mS/mを電解槽底部より送液
し、直流電源40により直流電圧を印加し20Aの定電
流で電解を行ない、pH計23を有する貯水タンク21
内の被処理水50リットルをポンプ25により循環で1
時間処理した。貯水タンク21内の被処理液のpHをモ
ニターしながら、電解槽通過後の被処理液の一部を陰イ
オン交換樹脂に送液し、pH7.7〜8.3となるよう
に維持した。
Example 3 Using the electrolytic cell of the present invention used in Example 1, some or all of the water to be treated after passing through the electrolytic cell can pass through the anion exchange resin 27 as shown in FIG. It was arranged as follows. A plating wastewater containing 30 ppm of nickel and 40 ppm of tin and further containing sulfuric acid and other ions (pH 6.
0), an electric conductivity of 60 mS / m is fed from the bottom of the electrolytic cell, a DC voltage is applied by a DC power supply 40, electrolysis is performed at a constant current of 20 A, and a water storage tank 21 having a pH meter 23 is provided.
50 liters of water to be treated in the
Time processed. While monitoring the pH of the liquid to be treated in the water storage tank 21, a part of the liquid to be treated after passing through the electrolytic tank was sent to an anion exchange resin and maintained at pH 7.7 to 8.3.

【0069】その結果を表3に示す。Table 3 shows the results.

【0070】[0070]

【表3】 [Table 3]

【0071】本発明の電解槽と陰イオン交換樹脂27を
組み合わせて使用することにより、排水中のニッケルを
効率的に処理できることが確認され、排水の再生処理方
法として優れていることが確認された。
It was confirmed that by using the electrolytic cell of the present invention and the anion exchange resin 27 in combination, it was possible to efficiently treat nickel in wastewater, and it was confirmed that the method was excellent as a method for regenerating wastewater. .

【0072】[0072]

【発明の効果】本発明により、処理効率が優れた流動床
電解槽及びそれを用いた水処理方法が提供され、特に排
水中の低濃度の金属の効率的な回収・除去が可能となっ
た。
According to the present invention, a fluidized-bed electrolytic cell having excellent treatment efficiency and a water treatment method using the same are provided. In particular, efficient collection and removal of low-concentration metals in wastewater has become possible. .

【0073】又、特に排水中に低濃度で含まれるニッケ
ルの効率的な回収・除去方法を提供することができた。
In addition, it was possible to provide a method for efficiently recovering and removing nickel particularly contained in wastewater at a low concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流動床電解槽の水平断面図。FIG. 1 is a horizontal sectional view of a fluidized-bed electrolytic cell of the present invention.

【図2】本発明の流動床電解槽の側面断面図。FIG. 2 is a side sectional view of the fluidized bed electrolytic cell of the present invention.

【図3】本発明の流動床電解槽の正面断面図。FIG. 3 is a front sectional view of the fluidized bed electrolytic cell of the present invention.

【図4】本発明の流動床電解槽の斜視図。FIG. 4 is a perspective view of a fluidized bed electrolytic cell of the present invention.

【図5】本発明の流動床電解槽を用いた水処理方法の一
例を示す説明図。
FIG. 5 is an explanatory view showing one example of a water treatment method using the fluidized bed electrolytic cell of the present invention.

【図6】本発明の流動床電解槽を2連にした場合の側面
断面図。
FIG. 6 is a side cross-sectional view when the fluidized-bed electrolytic cell of the present invention is provided in two rows.

【図7】本発明の流動床電解槽の別の態様を示す側面断
面図。
FIG. 7 is a side sectional view showing another embodiment of the fluidized bed electrolytic cell of the present invention.

【図8】図7のAーA断面図。FIG. 8 is a sectional view taken along line AA of FIG. 7;

【図9】本発明の流動床電解槽の他の態様を示す側面断
面図。
FIG. 9 is a side sectional view showing another embodiment of the fluidized bed electrolytic cell of the present invention.

【図10】本発明の流動床電解槽の更に他の態様を示す
側面断面図。
FIG. 10 is a side sectional view showing still another embodiment of the fluidized bed electrolytic cell of the present invention.

【符号の説明】 10 流動床電解槽 11 主電極 13 補助電極 14 流動床 14A 導電性粒子(粒子,ビーズ) 15 隔膜 17 支持板 18 障壁板 19 ガス排出路 26 フィルター 27 イオン交換樹脂 31 処理液排出部 33 粒子取り出し口 34 バルブDESCRIPTION OF SYMBOLS 10 Fluidized bed electrolysis cell 11 Main electrode 13 Auxiliary electrode 14 Fluidized bed 14A Conductive particles (particles, beads) 15 Diaphragm 17 Support plate 18 Barrier plate 19 Gas discharge path 26 Filter 27 Ion exchange resin 31 Discharge of treatment liquid Part 33 Particle outlet 34 Valve

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 主電極が箱形電解槽の内側側面部からな
り、補助電極が隔膜で覆われた板状もしくは網状電極か
らなり、補助電極は前記主電極である箱形電解槽内に対
向配置され、該箱形電解槽内に主電極に接触できる状態
で、導電性粒子が充填されており、箱形電解槽の底面が
実質的に被処理水は通過できるが、導電性粒子は通過で
きない支持体からなり、下部より被処理水を送液して、
導電性粒子を流動状態とし、前記主電極と補助電極間に
直流電圧を印加する流動床電解槽であって、該電解槽が
1以上並列に配置したことを特徴とする流動床電解槽。
1. A main electrode comprises the inner side surface of a box-shaped electrolytic cell, an auxiliary electrode comprises a plate-like or mesh-like electrode covered with a diaphragm, and the auxiliary electrode faces the inside of the box-shaped electrolytic cell as the main electrode. It is arranged, and the conductive particles are filled in such a state that the box-shaped electrolytic cell can come into contact with the main electrode, and the bottom surface of the box-shaped electrolytic cell can substantially pass through the water to be treated, but the conductive particles do. It consists of a support that cannot be processed,
A fluidized bed electrolytic cell for applying a DC voltage between the main electrode and the auxiliary electrode by making the conductive particles in a fluidized state, wherein one or more electrolytic cells are arranged in parallel.
【請求項2】 主電極が箱形電解槽の内側側面部からな
り、補助電極が隔膜で覆われた少なくとも2枚の有孔板
状電極もしくは網状電極からなり、該少なくとも2枚の
電極によって形成された隙間を有し、この隙間に補助電
極上で発生したガスが通過できるように配置されてお
り、該補助電極は前記主電極である箱形電解槽内に対向
配置され、該箱形電解槽内に主電極に接触できる状態
で、導電性粒子が充填されており、箱形電解槽の底面が
実質的に被処理水は通過できるが、導電性粒子は通過で
きない支持体からなり、下部より被処理水を送液して、
導電性粒子を流動状態とし、前記主電極と補助電極間に
直流電圧を印加する流動床電解槽であって、該電解槽が
1以上並列に配置したことを特徴とする流動床電解槽。
2. The main electrode comprises an inner side surface portion of a box-shaped electrolytic cell, and the auxiliary electrode comprises at least two perforated plate electrodes or mesh electrodes covered with a diaphragm, formed by the at least two electrodes. The auxiliary electrode is disposed so as to allow gas generated on the auxiliary electrode to pass through the gap, and the auxiliary electrode is disposed to face the inside of the box-shaped electrolytic cell as the main electrode, The tank is filled with conductive particles in a state where it can contact the main electrode, and the bottom surface of the box-shaped electrolytic tank is made of a support that can substantially pass water to be treated but cannot pass conductive particles. Send more water to be treated,
A fluidized bed electrolytic cell for applying a DC voltage between the main electrode and the auxiliary electrode by making the conductive particles in a fluidized state, wherein one or more electrolytic cells are arranged in parallel.
【請求項3】 請求項1又は2に記載の流動床電解槽に
おいて、該電解槽が、下記の式(1)で求められるFB
E値が0.2以上となるように構成されていることを特
徴とする流動床電解槽。 FBE=2(D+W)/(DW−PQ)・・・式(1) P:内部空間も含む補助電極部分の厚み(cm) Q:補助電極の幅(cm) W:箱形主電極室の短辺の長さ(cm) D:箱形主電極室の長辺の長さ(cm)
3. The fluidized-bed electrolytic cell according to claim 1, wherein the electrolytic cell is an FB obtained by the following equation (1).
A fluidized-bed electrolytic cell characterized by having an E value of 0.2 or more. FBE = 2 (D + W) / (DW-PQ) Equation (1) P: Thickness of auxiliary electrode part including internal space (cm) Q: Width of auxiliary electrode (cm) W: Box-shaped main electrode chamber Length of short side (cm) D: Length of long side of box-shaped main electrode chamber (cm)
【請求項4】 請求項1〜3の何れか1項に記載の流動
床電解槽を用いて、排水からの金属の回収又は除去を行
わせる金属回収除去方法であって、陰極となる主電極で
ある箱形電解槽側面部の電流密度が1.5A/dm2
上であり、かつ主電極に接触している流動床の電流濃度
が3A/L以上で運転することを特徴とする流動床電解
槽を用いた金属回収除去方法。
4. A metal recovery and removal method for recovering or removing metal from wastewater using the fluidized bed electrolytic cell according to claim 1, wherein the main electrode is a cathode. Wherein the current density at the side of the box-shaped electrolytic cell is 1.5 A / dm 2 or more, and the fluidized bed in contact with the main electrode is operated at a current concentration of 3 A / L or more. Metal recovery and removal method using an electrolytic cell.
【請求項5】 請求項1〜3の何れか1項に記載の流動
床電解槽を用いて、金属の回収又は除去を行わせる水処
理方法であって、金属濃度が500ppm以下でかつ電
気伝導度が100mS/m以下の排水を処理することを
特徴とする流動床電解槽を用いた水処理方法。
5. A water treatment method for recovering or removing a metal using the fluidized bed electrolytic cell according to any one of claims 1 to 3, wherein the metal concentration is 500 ppm or less and the electric conductivity is less. A water treatment method using a fluidized bed electrolytic cell, wherein wastewater having a degree of 100 mS / m or less is treated.
【請求項6】 金属イオンを含む被処理水を流動床電解
槽で処理して、含まれる金属成分を回収又は除去する方
法であって、電解による被処理水のpH変動を制御する
ため、流動床電解槽通過前もしくは通過後の液の一部又
は全部を陰イオン交換樹脂で処理することを特徴とする
流動床電解槽を用いた金属の回収除去方法。
6. A method for recovering or removing contained metal components by treating treated water containing metal ions in a fluidized-bed electrolytic cell. A method for recovering and removing metals using a fluidized bed electrolytic cell, wherein a part or all of the liquid before or after passing through the bed electrolytic cell is treated with an anion exchange resin.
【請求項7】 ニッケル含有濃度が500ppm以下の
濃度で排水中に含まれるニッケルを10ppm以下とな
るように流動床電解槽で回収又は除去する方法であっ
て、電解槽内の処理液のpHを6〜10に維持すること
を特徴とするニッケルの回収除去方法。
7. A method for recovering or removing nickel contained in waste water at a nickel content of 500 ppm or less in a fluidized bed electrolytic cell so as to have a concentration of 10 ppm or less. A method for recovering and removing nickel, wherein the method is maintained at 6 to 10.
【請求項8】 ニッケル含有濃度が500ppm以下の
濃度で排水中に含まれるニッケルを5ppm以下となる
ように流動床電解槽で回収又は除去する方法であって、
処理液のpHを7.7〜9.2に維持することを特徴と
するニッケルの回収除去方法。
8. A method for recovering or removing nickel contained in waste water at a nickel content of 500 ppm or less in a fluidized bed electrolytic cell so as to be 5 ppm or less,
A method for recovering and removing nickel, wherein the pH of the treatment liquid is maintained at 7.7 to 9.2.
【請求項9】 流動床電解槽を用いて、ニッケル含有濃
度が100ppm以下、電気伝導度が100mS/m以
下の排水中に含まれるニッケルを回収又は除去する方法
であって、処理液のpHを7.7〜9.2に維持して処
理することを特徴とする流動床を用いた排水中のニッケ
ルの回収除去方法。
9. A method for recovering or removing nickel contained in wastewater having a nickel content of 100 ppm or less and an electric conductivity of 100 mS / m or less, using a fluidized bed electrolytic cell, wherein the pH of the treatment liquid is adjusted. A method for recovering and removing nickel from wastewater using a fluidized bed, wherein the treatment is performed while maintaining the pH at 7.7 to 9.2.
【請求項10】 主電極が筒状もしくは箱状電解槽の内
側側面部からなり、隔膜で覆われた補助電極が主電極内
に対向配置され、該主電極に接触できる状態で、導電性
粒子が充填されており、前記電解槽の底面が実質的に被
処理水は通過できるが、導電性粒子は通過できない支持
体からなり、下部より被処理水を送液して、導電性粒子
を流動状態とし、前記主電極と補助電極間に直流電圧を
印加する流動床電解槽であって、流動状態の粒子よりも
上部に被処理水と電解ガスは通過できるが、粒子は通過
できない障壁板が設けられていることを特徴とする流動
床電解槽。
10. A method in which a main electrode comprises an inner side surface portion of a cylindrical or box-shaped electrolytic cell, and an auxiliary electrode covered with a diaphragm is disposed facing the inside of the main electrode so that the conductive particles can be brought into contact with the main electrode. Is filled, and the bottom surface of the electrolytic cell is made of a support that can substantially pass through the water to be treated, but cannot pass through the conductive particles. A fluidized bed electrolytic cell for applying a DC voltage between the main electrode and the auxiliary electrode, wherein a barrier plate through which the water to be treated and the electrolytic gas can pass but the particles cannot pass above the particles in the fluid state. A fluidized-bed electrolytic cell, which is provided.
JP9336898A 1998-04-06 1998-04-06 Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell Pending JPH11286796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9336898A JPH11286796A (en) 1998-04-06 1998-04-06 Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9336898A JPH11286796A (en) 1998-04-06 1998-04-06 Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell

Publications (1)

Publication Number Publication Date
JPH11286796A true JPH11286796A (en) 1999-10-19

Family

ID=14080363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9336898A Pending JPH11286796A (en) 1998-04-06 1998-04-06 Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell

Country Status (1)

Country Link
JP (1) JPH11286796A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098763A (en) * 2000-04-19 2001-11-08 나가라 쿠니타케 A wastewater disposal plant
JP2013504691A (en) * 2009-09-14 2013-02-07 スク,サンヨプ Electrolyzer for recovering valuable metals with increased contact specific surface area
JP2013505367A (en) * 2009-10-13 2013-02-14 ソク,サンヨプ Electrolyzer for recovering valuable metals with increased contact specific surface area
KR101366050B1 (en) * 2012-05-17 2014-02-24 (주)케이알피 Gold recovering apparatus using electrolysis and resin adsorption for continuous flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098763A (en) * 2000-04-19 2001-11-08 나가라 쿠니타케 A wastewater disposal plant
JP2013504691A (en) * 2009-09-14 2013-02-07 スク,サンヨプ Electrolyzer for recovering valuable metals with increased contact specific surface area
JP2013505367A (en) * 2009-10-13 2013-02-14 ソク,サンヨプ Electrolyzer for recovering valuable metals with increased contact specific surface area
KR101366050B1 (en) * 2012-05-17 2014-02-24 (주)케이알피 Gold recovering apparatus using electrolysis and resin adsorption for continuous flow

Similar Documents

Publication Publication Date Title
US5558755A (en) Method for removing contaminants from an aqueous medium
US6274028B1 (en) Electrolytic wastewater treatment method and apparatus
EP0171478B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
EP0309389A2 (en) Electrolytic precious metal recovery system
KR20070004819A (en) Cell for electrochemical processes
WO1997000830A1 (en) Electrolysis of electroactive species using pulsed current
AU621543B2 (en) Electrochemical reactor for copper removal from barren solutions
US20060076297A1 (en) Method and device for electrolytically removing and recovering metal ions from waste water
Simonsson A flow-by packed-bed electrode for removal of metal ions from waste waters
KR100874684B1 (en) Method and apparatus for high rated jewerly recovering
US5454917A (en) Apparatus and process for recovering metal from an aqueous solution
JPS6338435B2 (en)
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JP2520674B2 (en) Method and device for recovering metal supported on carrier
KR870000111B1 (en) Method for electrolyzing dilute caustic alkali aqueous solution and apparatus thereof
KR100367709B1 (en) Recovery method of platinum group metals from waste water
JP3321163B2 (en) Electrolysis apparatus and method having porous stirring electrode
JPH10174975A (en) Fixed bed type porous electrode-containing electrolytic bath and method and apparatus for treating water using the same
JPH1085754A (en) Electrolytic cell and process for fine oil droplet separation
JPH0413432B2 (en)
CN110818148A (en) Device for recovering nickel ions in wastewater
CN220579105U (en) Processing equipment for electrolytic degreasing of nonferrous metal extract
JP2005270779A (en) Separation method for heavy metal and separation apparatus therefor
KR20140095829A (en) Equipment for electrolytic withdrawal of metal
CN114920398B (en) High-salt ammonia nitrogen wastewater treatment device and treatment method