JP2594802B2 - Electrolytic reduction method - Google Patents

Electrolytic reduction method

Info

Publication number
JP2594802B2
JP2594802B2 JP62319891A JP31989187A JP2594802B2 JP 2594802 B2 JP2594802 B2 JP 2594802B2 JP 62319891 A JP62319891 A JP 62319891A JP 31989187 A JP31989187 A JP 31989187A JP 2594802 B2 JP2594802 B2 JP 2594802B2
Authority
JP
Japan
Prior art keywords
metal
cathode
electrolysis
solution
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62319891A
Other languages
Japanese (ja)
Other versions
JPH01162790A (en
Inventor
善之 蒔田
宏之 島村
Original Assignee
神岡鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神岡鉱業株式会社 filed Critical 神岡鉱業株式会社
Priority to JP62319891A priority Critical patent/JP2594802B2/en
Publication of JPH01162790A publication Critical patent/JPH01162790A/en
Application granted granted Critical
Publication of JP2594802B2 publication Critical patent/JP2594802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、貴金属を主とする金属イオン含有溶液から
該金属イオンを還元して金属粒子として陰極室内に連続
的に析出させる方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for reducing a metal ion from a solution containing a metal ion mainly composed of a noble metal and continuously depositing the same as metal particles in a cathode chamber.

(従来技術とその問題点) メッキ廃液等の貴金属を含有する廃液や、パラジウ
ム、白金及びロジウムを主とする貴金属から成る自動車
触媒から該金属を回収するためには、大別して次の3種
類の方法が使用されている。
(Prior art and its problems) In order to recover metals from waste liquids containing noble metals such as plating waste liquids and automobile catalysts composed of precious metals mainly including palladium, platinum and rhodium, there are roughly three types of metals as follows. The method has been used.

i)薬剤還元法 この方法は、回収すべき金属イオンを含有する溶液
に、ギ酸、シュウ酸、ヒドラジン、水素化ホウ素ナトリ
ウム(SBH)等の還元剤を加えて前記金属イオンを還元
して金属とし、これを回収する方法である。この反応は
次式で表すことができる。
i) Drug reduction method In this method, a reducing agent such as formic acid, oxalic acid, hydrazine, sodium borohydride (SBH) is added to a solution containing a metal ion to be recovered, and the metal ion is reduced to a metal. This is a method of collecting this. This reaction can be represented by the following equation.

Mn+ +n RH →M+n R+ +n/2 H2 ii)金属置換還元法 この方法は、貴金属等が溶解している溶液に該貴金属
よりも酸化還元電位が卑な金属(例えば亜鉛、アルミニ
ウム)を紛状又は粒状又は粒状の状態で添加して、溶解
している前記基金属イオンを貴金属の状態に還元する方
法である。この反応は次式で表すことができる。
M n + + n RH → M + n R + + n / 2 H 2 ii) Metal substitution reduction method This method uses a solution in which a noble metal or the like is dissolved by adding a metal (for example, zinc or aluminum) having a lower oxidation-reduction potential than the noble metal. This is a method in which the base metal ions dissolved in a powdery, granular or granular state are reduced to a noble metal state. This reaction can be represented by the following equation.

M1 n+ +n M2→ M1 + n M2 + iii)電解回収法 この方法は、溶解している金属イオンを電解により陰
極上へ電析させて該陰極上から剥離し回収するか、又は
溶液中に電気伝導性の粒子を加え三次元電極構造として
該粒子上に金属を電析させる方法である。この反応は次
式で表すことができる。
Or M 1 n + + n M 2 → M 1 + n M 2 + iii) The method electrolytic recovery method, dissolving the metal ion is made to electrodeposition onto a cathode by electrolysis detached from said cathode finest recovered, or This is a method in which electrically conductive particles are added to a solution to deposit a metal on the particles as a three-dimensional electrode structure. This reaction can be represented by the following equation.

Mn+ +n e → M 上記三法のうち、薬剤還元法はギ酸、水素化ホウ素ナ
トリウム等の高価な還元剤を使用するためコストが上昇
して、回収される貴金属のコストが割高になる、又該還
元剤を添加するため、金属回収後の溶液に各種処理(例
えばpH調整、COD除去等)を行って再生しなければなら
ず、更に析出金属への付着物の薬剤洗浄処理を必要とす
るという欠点がある。
M n + + ne → M Of the above three methods, the chemical reduction method uses an expensive reducing agent such as formic acid and sodium borohydride, so the cost increases, and the cost of the recovered precious metal becomes higher. In order to add the reducing agent, the solution after recovery of the metal must be regenerated by performing various treatments (for example, pH adjustment, COD removal, etc.), and further requires a chemical cleaning treatment of deposits on the deposited metal. There is a disadvantage that.

又金属置換還元法においては、他種金属を添加するた
め同様の欠点が指摘されている。
In the metal substitution reduction method, the same drawbacks have been pointed out because other metals are added.

上記電解回収法では、還元される金属が陰極上に析出
するため、該金属を回収するためには電解作業を停止
し、前記陰極上に電析した金属を剥離する必要があり、
操作効率が大幅に低下するという欠点がある。又金属の
種類によっては針状結晶を生成し、陽陰極の短絡という
ような事故が発生することがある。更に電気伝導性粒子
を使用する三次元電極電解法では、使用する電解槽を該
電気伝導性粒子の使用に適した複雑な構造に改造する必
要があり、該改造費用が嵩むという欠点がある。更に複
極式三次元電極を使用すると陽極及び陰極間が電析した
金属により短絡し、該電析金属が再溶解してしまうとい
う欠点がある。又単極式三次元電極を使用する場合に溶
液の電気伝導度が高いと、目的とする三次元電極上で電
解反応が起こらずに電極反応が電気集電体面上で起こ
り、わざわざ溶液を希釈しなければならないという欠点
がある。
In the electrolytic recovery method, since the metal to be reduced is deposited on the cathode, it is necessary to stop the electrolysis operation to recover the metal, and to peel off the metal deposited on the cathode,
There is a disadvantage that the operation efficiency is greatly reduced. Also, depending on the type of metal, needle-like crystals may be formed and an accident such as a short circuit of the positive electrode may occur. Furthermore, in the three-dimensional electrode electrolysis method using the electrically conductive particles, it is necessary to remodel the electrolytic cell to be used into a complicated structure suitable for using the electroconductive particles, and there is a disadvantage that the remodeling cost is increased. Further, when a bipolar three-dimensional electrode is used, there is a disadvantage that the electrodeposited metal causes a short circuit between the anode and the cathode, and the electrodeposited metal is redissolved. Also, when using a monopolar three-dimensional electrode, if the electrical conductivity of the solution is high, the electrolytic reaction does not occur on the target three-dimensional electrode, the electrode reaction occurs on the surface of the current collector, and the solution is bothersomely diluted. The disadvantage is that you have to do it.

廃液や廃触媒からの金属回収操作では、如何にして安
価かつ簡便に金属を得るかが最も重要な課題の一つであ
り、使用する薬剤の種類の検討や操業条件の検討が続け
られているが、未だ充分とは言い難く、回収金属のコス
トの低減に繋がっていないのが現状である。
In the operation of recovering metals from waste liquids and waste catalysts, how to obtain metals easily and cheaply is one of the most important issues, and the types of chemicals used and the operating conditions are being studied. However, it is difficult to say that it is still sufficient, and at present it has not led to a reduction in the cost of the recovered metal.

(発明の目的) 本発明は、上記従来技術の欠点に鑑み、比較的操作が
容易である電解反応を利用して電解反応を停止させるこ
となく溶液中の金属イオンを還元するための方法を提供
することを目的とする。
(Object of the Invention) In view of the above-mentioned disadvantages of the prior art, the present invention provides a method for reducing metal ions in a solution without stopping the electrolytic reaction using an electrolytic reaction that is relatively easy to operate. The purpose is to do.

(問題点を解決するための手段) 本発明は、隔膜により陽極室と陰極室に区画された電
解槽の陰極室に金属イオン含有溶液を加え、かつ陰極と
して触媒を添加してもよい低水素過電圧の炭素電極を使
用して電解を行って前記溶液中の金属イオンを溶液中で
還元し、金属として陰極液内で析出させることを特徴と
する還元電解方法である。本発明によると、金属は電解
液中に粉状で析出するので、電解液を濾過することによ
り連続的に金属回収を行うことが可能になる。
(Means for Solving the Problems) The present invention relates to a low-hydrogen solution to which a metal ion-containing solution is added to a cathode chamber of an electrolytic cell divided into an anode chamber and a cathode chamber by a diaphragm, and a catalyst is added as a cathode. A reduction electrolysis method comprising performing electrolysis using an overvoltage carbon electrode to reduce metal ions in the solution in the solution and depositing the metal ions in the catholyte as a metal. According to the present invention, the metal precipitates in the electrolyte in the form of powder, so that the metal can be continuously recovered by filtering the electrolyte.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明は、電解反応を利用して金属イオンを還元して
金属として析出させるに際し、通常の電解条件下では陰
極上に析出してしまう金属を陰極板鵜上に全くあるいは
殆ど析出させることなく、陰極室中で金属粒子として析
出させ沈澱させるようにしたことを最大の特徴とする。
The present invention, when reducing metal ions using an electrolytic reaction and depositing as a metal, under normal electrolytic conditions, without depositing any or almost no metal on the cathode plate, which would be deposited on the cathode, The greatest feature is that the metal particles are precipitated and precipitated in the cathode chamber.

次に本発明に係わる電解における電解槽を構成する各
要素につき説明する。
Next, each element constituting the electrolytic cell in the electrolysis according to the present invention will be described.

本発明に使用する陰極の材料は、水素発生に対して過
電圧の低い材料を選択する必要がある。金属イオンを含
有する溶液の電解還元における陰極表面での反応は、金
属電析と水素発生との競争反応であり、陰極表面への金
属の析出を防止するためには当然に金属で電析が起こり
難く、水素発生の起こり易い(水素発生に対する過電圧
が低い)材料を選択すること、更にpH、温度及び濃度等
の他の電解条件を調整することにより水素発生のみをほ
ぼ選択的に生じさせる必要があるからである。
As the material of the cathode used in the present invention, it is necessary to select a material having a low overvoltage for hydrogen generation. The reaction on the cathode surface in the electrolytic reduction of a solution containing metal ions is a competitive reaction between metal deposition and hydrogen generation. It is necessary to select a material that is unlikely to cause hydrogen generation (low overvoltage against hydrogen generation), and to selectively generate only hydrogen by adjusting other electrolysis conditions such as pH, temperature and concentration. Because there is.

通常の陰極材料としては、ニッケル、鉄、ステンレス
等、及び鉛、銀等を主成分とする材料が使用されている
が、前者は金属電析、水素発生の両者に対する過電圧が
共に低いため適当ではなく、後者は金属電析、水素発生
の両者に対する過電圧が共に高いため適当ではない。
As a normal cathode material, nickel, iron, stainless steel, etc., and a material mainly containing lead, silver, etc. are used, but the former is not suitable because both metal electrodeposition and overvoltage for both hydrogen generation are low. However, the latter is not suitable because the overvoltages for both metal deposition and hydrogen generation are high.

本発明で使用するグラファイト、活性炭等の炭素材料
は、水素発生に対する過電圧が低く、陰極表面での反応
を水素発生にのみ限定し、金属電析を防止するのに効果
的である。
The carbon material such as graphite and activated carbon used in the present invention has a low overvoltage against hydrogen generation, and is effective in limiting the reaction on the cathode surface to only hydrogen generation and preventing metal deposition.

更に該炭素電極に、白金、パラジウム、ルテニウム及
びニッケル等の触媒金属を含有させると、効果がより顕
著になる。これは前記水素過電圧が電解電圧により接近
するためであると推測される。
Further, when the carbon electrode contains a catalytic metal such as platinum, palladium, ruthenium and nickel, the effect becomes more remarkable. This is presumed to be because the hydrogen overvoltage approaches the electrolysis voltage.

又陰極表面での金属電析を効果的に阻害するために
は、電流密度を大きくして水素発生速度を増大させて、
電析しようとする金属の陰極への析出を防止することが
好ましい。好ましくは電流密度は10A/dm2以上、より好
ましくは15A/dm2以上、最も好ましくは20A/dm2以上とす
る。他の電解条件にも依存するが、例えば塩化パラジウ
ムの陰極液内還元においては第3図に示すように、電流
密度10A/dm2では全析出量の60%が金属粒子として陰極
室内に粉状に析出し、15A/dm2では80%が、又20A/dm2
はほぼ100%がそれぞれ陰極室内に析出する。
In order to effectively inhibit metal deposition on the cathode surface, the current density is increased to increase the rate of hydrogen generation,
It is preferable to prevent the deposition of the metal to be deposited on the cathode. Preferably, the current density is at least 10 A / dm 2 , more preferably at least 15 A / dm 2 , most preferably at least 20 A / dm 2 . Depending on other electrolysis conditions, for example, in the catholyte reduction of palladium chloride, as shown in FIG. 3, at a current density of 10 A / dm 2 , 60% of the total deposition amount is powdery as metal particles in the cathode chamber. 80% at 15 A / dm 2 and almost 100% at 20 A / dm 2 , respectively.

一方陽極の材料は何等限定されず、従来から使用され
ている例えば寸法安定性電極(DSE)等を使用すること
ができる。
On the other hand, the material of the anode is not limited at all. For example, a conventionally used dimensionally stable electrode (DSE) can be used.

上記陰極及び陽極を使用して電解槽を構成するには、
電解槽を隔膜を使用して陰極室と陽極室に区画する必要
がある。これは陽極で発生したガスの陰極室への流入と
陰極室で還元された目的とする金属が陽極室へ進入して
酸化されることを防止するためである。該隔膜の材料は
該流入を防止できるものであれば制限されず、イオン交
換膜、素焼板、アスベストシート等を使用することがで
きる。
To configure an electrolytic cell using the above cathode and anode,
It is necessary to divide the electrolytic cell into a cathode chamber and an anode chamber using a diaphragm. This is to prevent the gas generated at the anode from flowing into the cathode chamber and the target metal reduced at the cathode chamber from entering the anode chamber and being oxidized. The material of the diaphragm is not limited as long as it can prevent the inflow, and an ion exchange membrane, a calcined plate, an asbestos sheet and the like can be used.

電解槽の構造は、箱型の電解槽を前記隔膜を使用して
左右に2分したものでも、筒状の電解槽を円筒形の隔膜
を使用して外側の陰極室と内側の陽極室に区画したもの
でも、あるいは箱型の電解槽を複数の隔膜を使用して複
数の電解室に区画し、各電解室用の電極を複極式又は単
極式に接続して複数の陰極室で還元を行うようにしたも
のでもよい。
The structure of the electrolytic cell is such that the box-type electrolytic cell is divided into two parts to the left and right using the above-mentioned diaphragm, and the cylindrical electrolytic cell is formed into the outer cathode chamber and the inner anode chamber using the cylindrical diaphragm. Even if it is partitioned, or a box-shaped electrolytic cell is divided into a plurality of electrolytic chambers using a plurality of diaphragms, and the electrodes for each electrolytic chamber are connected in a bipolar or monopolar manner to form a plurality of cathode chambers. The reduction may be performed.

本発明方法に従って還元される貴金属イオンは、水素
よりイオン化傾向の低い貴金属、例えばパラジウム、ロ
ジウム、白金、金、銀、ルテニウム等であり、特にこれ
ら例示した貴金属イオンにおいて本発明の効果が顕著に
現れる。
The noble metal ion reduced according to the method of the present invention is a noble metal having a lower ionization tendency than hydrogen, for example, palladium, rhodium, platinum, gold, silver, ruthenium, and the like. .

本発明では、廃液中に含まれる金属イオンだけでな
く、固体状の上記金属の塩や触媒担体上に担持された上
記金属塩も還元して金属粒子を得ることができるが、本
発明方法を使用して固体状又は担持された金属塩を還元
する場合には一度適当な溶媒に溶解して所望の金属イオ
ンを含む溶液を形成しなければならない。例えば触媒担
体に担持されたパラジウム等の貴金属を回収するには、
該担体を王水等の溶媒に溶解してパラジウムイオンを含
む溶液とした後、本発明方法に従って還元しパラジウム
金属粒子を得ることができる。
In the present invention, not only the metal ions contained in the waste liquid, but also the solid metal salt or the metal salt supported on the catalyst carrier can be reduced to obtain metal particles. When used to reduce a solid or supported metal salt, it must be dissolved once in a suitable solvent to form a solution containing the desired metal ion. For example, to recover precious metals such as palladium supported on a catalyst carrier,
The carrier is dissolved in a solvent such as aqua regia to form a solution containing palladium ions, and then reduced according to the method of the present invention to obtain palladium metal particles.

上述の構成から成る本発明方法により、例えばパラジ
ウムイオンを含む溶液の電解を行うと、陰極液中の水素
イオンが電解還元されて水素ガスが発生する。該水素ガ
スは一部がそのまま泡状になって陰極室から放散される
とともに、残りのガスがパラジウムイオンを次式に従っ
て還元して金属パラジウムとする。該パラジウムイオン
は陰極で Pd2+ + H2 → Pd + 2H+ ある炭素電極表面へ接近しようとするが、強い水素ガス
発生のため接近し難く、たとえ陰極に接触しても炭素電
極の金属電析に対する過電圧が高いため析出できず、そ
の殆どが金属粒子として陰極液中で上記化学反応により
還元され、粒径の成長に従って陰極室の底板上に沈澱す
る。電解に際しては陰極液を撹拌することが好ましく、
これにより金属粒子を分散させ金属粒子を陰極液中に浮
遊させて粒径の成長を行わせることができる。
When electrolysis of a solution containing, for example, palladium ions is performed by the method of the present invention having the above-described configuration, hydrogen ions in the catholyte are electrolytically reduced to generate hydrogen gas. The hydrogen gas is partly foamed as it is and is diffused from the cathode chamber, and the remaining gas reduces palladium ions to metal palladium according to the following formula. The palladium ion tries to approach the carbon electrode surface at Pd 2+ + H 2 → Pd + 2H + at the cathode, but it is difficult to access due to strong hydrogen gas generation. Most of them cannot be deposited due to a high overpotential against precipitation, and most of them are reduced as metal particles in the catholyte by the above-mentioned chemical reaction, and precipitate on the bottom plate of the cathode chamber as the particle size grows. During electrolysis, it is preferable to stir the catholyte,
As a result, the metal particles are dispersed and the metal particles are suspended in the catholyte so that the particle size can be grown.

沈澱したパラジウム等の金属粒子は、電解槽の底部又
は側部に設けた適宜の抜き出しコックを使用して電解液
とともに電解槽外に取り出すか、大量の沈澱が堆積した
後に電解を停止して取り出すこともできる。なお該金属
粒子は成長したとしても比較的その粒径が小さく、溶液
とともに搬送してもポンプや配管等の閉塞や摩耗といっ
た問題が生ずることが少ない。又金属が析出して金属濃
度の減少した電解液は適宜上澄みを抜き出し、新たな金
属の溶解液として再使用することができる。
Precipitated metal particles such as palladium are taken out of the electrolytic cell together with the electrolytic solution using an appropriate extraction cock provided at the bottom or side of the electrolytic cell, or after a large amount of precipitate is deposited, the electrolysis is stopped and taken out. You can also. Even if the metal particles grow, they have a relatively small particle size, and even if they are transported together with the solution, problems such as blockage and abrasion of pumps and pipes rarely occur. The electrolytic solution in which the metal has been deposited and the metal concentration has been reduced can be appropriately drained from the supernatant and reused as a new metal solution.

上記した本発明方法によると、溶液中の金属イオンを
ほぼ定量的に還元析出させることができ、しかも陰極電
流密度を調節すると、陰極上に析出させることなく、全
てあるいは殆どの金属粒子を陰極室内に析出させ沈澱さ
せることが可能になる。
According to the above-described method of the present invention, metal ions in a solution can be reduced and deposited almost quantitatively. Further, when the cathode current density is adjusted, all or most of the metal particles can be deposited without being deposited on the cathode. And precipitate it.

このように本発明では電解反応を使用して金属の回収
を行うために好都合であるが、本発明の用途は該金属回
収には限定されず、金属含有溶液の脱金属処理、低純度
金属の高純度化等にも適用することができる。
As described above, in the present invention, it is convenient to perform the recovery of a metal by using an electrolytic reaction.However, the application of the present invention is not limited to the recovery of the metal, and the metal-containing solution is subjected to demetallization treatment and low-purity metal. It can be applied to high purification and the like.

以下本発明の実施例を記載するが、本発明は該実施例
に限定されるものではない。
Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.

(実施例1) 縦12cm、横15cm、深さ15cmの箱型電解槽の中央に、上
面が開口する内径10cm、深さ15cmの筒状隔膜(陽イオン
交換膜、デュポン社製ナフィオン324)を、配設して該
隔膜内に陽極室を隔膜外に陰極室をそれぞれ形成した。
(Example 1) In the center of a box-shaped electrolytic cell having a length of 12 cm, a width of 15 cm and a depth of 15 cm, a cylindrical diaphragm (cation exchange membrane, Nafion 324 manufactured by DuPont) with an inner diameter of 10 cm and a depth of 15 cm having an open upper surface. And an anode chamber was formed inside the membrane, and a cathode chamber was formed outside the membrane.

陽極室に10重量%の塩酸を、陰極室に下記する試料溶
液1を加え、電解液温度を45℃に維持し、 電解電流を15A、陰極電流密度を15A/dm2、陰極電流濃度
を10A/l、液量を1.5とし、陽極として10cm×10cm×5m
mの寸法安定性電極(DSE)を、又陰極として同サイズの
グラファイト電極の片面を使用し、マグネットスターラ
で撹拌しながら電解を行った。
10% by weight hydrochloric acid was added to the anode compartment, and the following sample solution 1 was added to the cathode compartment, and the temperature of the electrolyte was maintained at 45 ° C. Electrolysis current 15A, cathode current density of 15A / dm 2, a cathode current density 10A / l, the liquid volume of 1.5, 10cm × 10cm × 5m as an anode
Using a dimensionally stable electrode (DSE) having a diameter of m and a graphite electrode of the same size as a cathode, electrolysis was performed while stirring with a magnetic stirrer.

電解開始後陰極液をサンプリングして該陰極液中の各
金属イオン濃度を測定した。各金属イオン濃度の経時変
化は、第1図に示す通りであり、各金属イオン還元のた
めの電流効率(0〜1時間及び0〜4時間)と8時間経
過後の各金属の回収率は表2に示す通りであり、本発明
の貴金属に含まれるパラジウム、白金及び銀では8時間
経過後の回収率は100%であったのに対し、本発明の基
金属に含有されない銅では96.5%であった。
After the start of electrolysis, the catholyte was sampled to measure the concentration of each metal ion in the catholyte. The change with time of each metal ion concentration is as shown in FIG. 1. The current efficiency (0 to 1 hour and 0 to 4 hours) for reduction of each metal ion and the recovery rate of each metal after 8 hours have passed. As shown in Table 2, the recovery rate after 8 hours of palladium, platinum and silver contained in the noble metal of the present invention was 100%, whereas that of copper not contained in the base metal of the present invention was 96.5%. Met.

(実施例2) 陰極液として上記試料溶液2を使用し、実施例1と同
様にして金属の回収を行った。
(Example 2) The metal was recovered in the same manner as in Example 1, except that the sample solution 2 was used as the catholyte.

電解開始後陰極液をサンプリングして該陰極液中の各
金属イオン濃度を測定した。各金属イオン濃度の経時変
化は、第2図に示す通りであり、各金属イオン還元のた
めの電流効率(0〜2時間及び0〜8時間)と16時間経
過後の各金属の回収率は表3に示す通りであり、本発明
の貴金属に含まれるパラジウム、白金及び銀では8時間
経過後の回収率は99.8%以上であったのに対し、本発明
の貴金属に含有されない銅では79.7%であった。
After the start of electrolysis, the catholyte was sampled to measure the concentration of each metal ion in the catholyte. The change with time of each metal ion concentration is as shown in FIG. 2. The current efficiency (0 to 2 hours and 0 to 8 hours) for reduction of each metal ion and the recovery rate of each metal after 16 hours have passed. As shown in Table 3, the recovery rate after 8 hours was 99.8% or more for palladium, platinum, and silver contained in the noble metal of the present invention, while 79.7% for copper not contained in the noble metal of the present invention. Met.

(実施例3) 実施例1と同一の条件で、陰極電流密度を変化させて
該変化の沈澱割合(陰極室内に沈澱した金属粒子量/
(陰極室内に沈澱した金属粒子量+陰極上に電析した金
属量))への影響を調べた。
(Example 3) Under the same conditions as in Example 1, the cathode current density was changed to change the precipitation rate (the amount of metal particles precipitated in the cathode chamber /
(The amount of metal particles precipitated in the cathode chamber + the amount of metal deposited on the cathode) was examined.

結果は第3図の通りであり、15A/dm2未満の陰極電流
密度では該電流密度の上昇に伴って前記電析割合が上昇
して20A/dm2付近で、1.0に達し(陰極上に電析する金属
が無くなる)、以後一定になることが分かる。
The results are as shown in FIG. 3. At a cathode current density of less than 15 A / dm 2 , the electrodeposition ratio increased with an increase in the current density and reached about 20 A / dm 2 , reaching 1.0 (on the cathode). (Electrodeposition metal disappears), and it turns out that it becomes constant thereafter.

(発明の効果) 本発明は、金属イオンを還元して金属として電析させ
るにあたり、陰極として水素発生に対する過電圧が低い
炭素電極を使用している。従って陰極室内で電解により
還元された金属粒子は、陰極上に析出し難く、しかも該
炭素陰極では水素発生が活発に起こり前記金属粒子の陰
極への接近を阻害している。そのため、還元された金属
粒子は陰極板上には殆ど析出せずに陰極室内に析出し沈
澱する。
(Effects of the Invention) In the present invention, in reducing metal ions and depositing them as a metal, a carbon electrode having a low overvoltage against hydrogen generation is used as a cathode. Therefore, the metal particles reduced by electrolysis in the cathode chamber are unlikely to precipitate on the cathode, and hydrogen is actively generated at the carbon cathode to hinder the approach of the metal particles to the cathode. Therefore, the reduced metal particles hardly precipitate on the cathode plate, but precipitate and precipitate in the cathode chamber.

更に前記炭素陰極に触媒金属を含有させることもで
き、これにより電解性能を向上させることができる。
Further, a catalyst metal can be contained in the carbon cathode, whereby the electrolytic performance can be improved.

従って従来の還元析出と異なり陰極からの析出金属の
剥離を必要としないため、電解操作を停止する必要がな
く、操業の効率が大幅に上昇する。しかも電気伝導性粒
子等を加えずに電解を行い複雑な構造の電解槽を必要と
しないため、従来の電解槽をそのまま使用することも可
能である。更に陰極上に金属が殆ど析出しないため、電
極間の短絡の問題が生ずることがなく、又溶液の電気伝
導度による悪影響がない。又溶液の濃度に関係なくその
まま電解に使用することができ、溶液の希釈あるいは濃
縮等の余分な手間が不要である。
Therefore, unlike the conventional reductive deposition, there is no need to separate the deposited metal from the cathode, so there is no need to stop the electrolysis operation, and the operation efficiency is greatly increased. Moreover, since electrolysis is performed without adding electrically conductive particles and the like, and an electrolytic cell having a complicated structure is not required, a conventional electrolytic cell can be used as it is. Further, since almost no metal is deposited on the cathode, there is no problem of short circuit between the electrodes, and there is no adverse effect due to the electric conductivity of the solution. Further, it can be used for electrolysis as it is regardless of the concentration of the solution, and no extra work such as dilution or concentration of the solution is required.

更に本発明方法では、還元剤をはじめとする薬剤を添
加しないため、電解前後の溶液の組成に変化がなく、例
えば王水を使用して触媒担体等を溶解させ該溶解液を本
発明方法により還元する場合には、還元後の溶解液を触
媒担体の溶解に繰り返し使用することができ、手間の掛
かる処理を省略することができる。
Furthermore, in the method of the present invention, since no chemical such as a reducing agent is added, there is no change in the composition of the solution before and after the electrolysis, for example, the catalyst carrier and the like are dissolved using aqua regia, and the solution is subjected to the method of the present invention. In the case of reduction, the solution after reduction can be repeatedly used for dissolving the catalyst carrier, and a troublesome process can be omitted.

又電解を使用するため、金属イオンが低濃度になって
も還元反応が継続し、ほぼ定量的に金属イオンを金属粒
子として析出させることができる。
In addition, since electrolysis is used, the reduction reaction continues even when the concentration of metal ions becomes low, and metal ions can be deposited almost quantitatively as metal particles.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1における電解時間と陰極液中の金属
濃度の関係を示すグラフ、第2図は、実施例2における
電解時間と陰極液中の金属濃度の関係を示すグラフ、第
3図は、実施例3における陰極電流密度と電析割合の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the electrolysis time and the metal concentration in the catholyte in Example 1, FIG. 2 is a graph showing the relationship between the electrolysis time and the metal concentration in the catholyte in Example 2, and FIG. FIG. 9 is a graph showing the relationship between the cathode current density and the electrodeposition ratio in Example 3.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】隔膜により陽極室と陰極室に区画された電
解槽の陰極室に貴金属イオン含有溶液を加え、かつ陰極
として水素過電圧の低い炭素電極を使用して電解を行っ
て該炭素電極により発生するガスを水素ガスに限定し該
水素により前記溶液中の貴金属イオンを還元し、貴金属
粉として陰極室内で析出させることを特徴とする電解還
元方法。
1. A solution containing a noble metal ion is added to a cathode compartment of an electrolytic cell partitioned by a diaphragm into an anode compartment and a cathode compartment, and electrolysis is carried out using a carbon electrode having a low hydrogen overvoltage as a cathode. An electrolytic reduction method characterized in that the generated gas is limited to hydrogen gas, and the noble metal ions in the solution are reduced by the hydrogen and deposited as noble metal powder in a cathode chamber.
【請求項2】陰極電流密度を5A/dm2以上として電解を行
なうようにした特許請求の範囲第1項に記載の方法。
2. The method according to claim 1, wherein the electrolysis is performed at a cathode current density of 5 A / dm 2 or more.
【請求項3】炭素電極が、グラファイト又は活性炭であ
る特許請求の範囲第1項又は第2項に記載の方法。
3. The method according to claim 1, wherein the carbon electrode is graphite or activated carbon.
【請求項4】炭素電極に、触媒金属が添加されている特
許請求の範囲第1項から第3項までのいずれかに記載の
方法。
4. The method according to claim 1, wherein a catalyst metal is added to the carbon electrode.
JP62319891A 1987-12-17 1987-12-17 Electrolytic reduction method Expired - Lifetime JP2594802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319891A JP2594802B2 (en) 1987-12-17 1987-12-17 Electrolytic reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319891A JP2594802B2 (en) 1987-12-17 1987-12-17 Electrolytic reduction method

Publications (2)

Publication Number Publication Date
JPH01162790A JPH01162790A (en) 1989-06-27
JP2594802B2 true JP2594802B2 (en) 1997-03-26

Family

ID=18115386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319891A Expired - Lifetime JP2594802B2 (en) 1987-12-17 1987-12-17 Electrolytic reduction method

Country Status (1)

Country Link
JP (1) JP2594802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532028B1 (en) * 2013-05-31 2015-06-29 삼성중공업 주식회사 Hydrogen byproduct treatment device and ship ballast water treatment device having hydrogen byproduct treatment device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676644B2 (en) * 1990-04-27 1997-11-17 富士写真フイルム株式会社 Method and device for silver recovery of photographic processing liquid
JP5507502B2 (en) * 2011-07-15 2014-05-28 松田産業株式会社 Gold electrolysis recovery method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145175A (en) * 1979-04-28 1980-11-12 Kagaku Gijutsu Shinkoukai Recovering method of copper by electrolysis of copper chloride etching solution and its apparatus
JPS6160148A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Image data memory system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532028B1 (en) * 2013-05-31 2015-06-29 삼성중공업 주식회사 Hydrogen byproduct treatment device and ship ballast water treatment device having hydrogen byproduct treatment device

Also Published As

Publication number Publication date
JPH01162790A (en) 1989-06-27

Similar Documents

Publication Publication Date Title
EP0040243B1 (en) Process and apparatus for producing metals at porous hydrophobic catalytic barriers
JP4916040B1 (en) Electrolytic sampling anode and electrolytic sampling method using the anode
CN101534948B (en) Method of extracting platinum group metals from waste catalysts through electrochemical process
EP0309389A2 (en) Electrolytic precious metal recovery system
JP2013060621A (en) Anode for chlorine generation
JPH0713310B2 (en) Cathode used in an electrochemical process, in particular in an electrolytic cell for the electrolysis of alkali metal chlorides, and a process for its production
CN1938453B (en) Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it
US4560453A (en) Efficient, safe method for decoppering copper refinery electrolyte
JP2010001556A (en) Anode for use in electrowinning cobalt, and method for electrowinning cobalt
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
EP0043854B1 (en) Aqueous electrowinning of metals
JP2005330575A (en) Electrode for generating hydrogen, manufacturing method therefor and electrolysis method using it
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JP2594802B2 (en) Electrolytic reduction method
JP6438744B2 (en) Method for activating electrolysis cathode
GB1312681A (en) Electrolytic recovery of metals from solution
JPS6220891A (en) Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
US5865881A (en) Electroless plating bath of iridium
JP2571591B2 (en) Precious metal recovery method
JP2014185366A (en) Method and apparatus for platinum recovery
JP3294678B2 (en) Regeneration method of copper etchant
JPH1136099A (en) Plating device and plating method thereby
JPH08225979A (en) Method for recovering platinum group metals
JP2543026B2 (en) Electrode processing method
JPH0770769A (en) Regenerating method of iron chloride based waste liquid containing nickel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term