JPH0474435B2 - - Google Patents

Info

Publication number
JPH0474435B2
JPH0474435B2 JP59054537A JP5453784A JPH0474435B2 JP H0474435 B2 JPH0474435 B2 JP H0474435B2 JP 59054537 A JP59054537 A JP 59054537A JP 5453784 A JP5453784 A JP 5453784A JP H0474435 B2 JPH0474435 B2 JP H0474435B2
Authority
JP
Japan
Prior art keywords
cathode
metal
electrolytic cell
solution
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59054537A
Other languages
Japanese (ja)
Other versions
JPS60200994A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5453784A priority Critical patent/JPS60200994A/en
Publication of JPS60200994A publication Critical patent/JPS60200994A/en
Publication of JPH0474435B2 publication Critical patent/JPH0474435B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、金属メツキ廃液、金属エツチング廃
液、あるいは金属を溶解させた溶液等、金属イオ
ン、金属シアン錯イオン等を含有する溶液から、
流動床電解法により高収率及び低電力にて金属を
回収する方法およびその方法の実施に使用する電
解槽に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for removing metal plating waste liquids, metal etching waste liquids, solutions containing metal ions, metal cyanide complex ions, etc. from solutions containing metal ions, metal cyanide complex ions, etc.
The present invention relates to a method for recovering metals with high yield and low power by fluidized bed electrolysis, and an electrolytic cell used to carry out the method.

金属を含有する溶液は工業用及び装飾用さまざ
まな分野で利用され、その溶液から有価金属を回
収することが一般に行われている。たとえば、貴
金属の一種である金は、貨幣価値の基準用はじ
め、各種装飾用、歯科用及び万年筆のペン先用等
として広く使用され、装飾用として使用する際に
は、金が高価であることから装飾品の表面にメツ
キを施こし、金の使用量を節約することが行われ
ている。これらの金メツキの廃液中には、比較的
高濃度の金が残存し、この残存金を次に挙げる方
法等を用いて回収し、再利用することが試みられ
ている。
Solutions containing metals are used in various industrial and decorative fields, and valuable metals are generally recovered from the solutions. For example, gold, a type of precious metal, is widely used as a standard for monetary value, various decorative purposes, dental purposes, and fountain pen nibs.When used for decorative purposes, gold is expensive. Since then, plating has been applied to the surface of ornaments to save on the amount of gold used. Relatively high concentrations of gold remain in these gold plating waste liquids, and attempts have been made to recover and reuse the remaining gold using the following methods.

(a) 溶液中に還元剤を加え、溶液中で直接金を析
出させる。
(a) Add a reducing agent to the solution and deposit gold directly in the solution.

(b) 金イオン及び又は金シアン錯イオンを含む溶
液をイオン交換樹脂塔に導入して金イオン及び
又は金シアン錯イオンをイオン交換樹脂に固定
する。
(b) A solution containing gold ions and/or gold cyanide complex ions is introduced into an ion exchange resin tower to fix the gold ions and/or gold cyanide complex ions to the ion exchange resin.

(c) 溶液を低電流密度の電解層で電解して、金を
陰極上に析出させる。
(c) The solution is electrolyzed with a low current density electrolyte layer to deposit gold onto the cathode.

これらの方法を使用すると、廃液中から金を回
収できるが各方法には次のような欠点がある。つ
まり(a)法は、処理液量が増加し、反応時間が長
く、さらに運転費が高騰するという欠点があり、
(b)法では、運転は容易であるが、装置建設費、再
生薬剤費等の運転費が高くなるという欠点があ
り、さらに(c)法は高濃度の金含有廃液には適して
いるが、低濃度の廃液の場合には、更に電流密度
を下げないと経済的な電流効率を得ることができ
ず、電解層が大型化して建設費が高くなり、低電
流密度運転を行うため、析出状態が極めて良好な
メツキ状となり、陰極からの剥離作業が困難であ
り、実際には金の剥離剤を使用して再溶解する必
要があるという欠点がある。
Although gold can be recovered from wastewater using these methods, each method has the following drawbacks. In other words, method (a) has the disadvantages of increased processing liquid volume, long reaction time, and increased operating costs.
Although method (b) is easy to operate, it has the disadvantage of high operating costs such as equipment construction costs and regeneration chemical costs, and method (c) is suitable for waste liquid containing high concentrations of gold. In the case of low-concentration waste liquid, economical current efficiency cannot be obtained unless the current density is further lowered, and the electrolyte layer becomes larger and construction costs increase. The disadvantage is that the condition is very good, making it difficult to remove it from the cathode, and that it is actually necessary to redissolve it using a gold remover.

又、廃液中からの金の回収だけでなく、少量の
不純物を含む金の高純度の金に精製する際にも同
様の方法が採用され、同様の欠点が指摘されてい
る。このような欠点は金、白金、銀等の貴金属の
回収だけに限らず、銅、ニツケル、鉄等の重金属
やカドミウム、クロムなどの公害金属、亜鉛、ガ
リウム、ビスマス、アルミニウム等のその他の金
属など、有価金属の場合にも同様に生じる問題で
ある。
In addition, similar methods are used not only to recover gold from waste liquids, but also to purify gold containing small amounts of impurities into high-purity gold, and similar drawbacks have been pointed out. These drawbacks are not limited to the recovery of precious metals such as gold, platinum, and silver, but also include heavy metals such as copper, nickel, and iron, polluting metals such as cadmium and chromium, and other metals such as zinc, gallium, bismuth, and aluminum. This problem also occurs in the case of valuable metals.

本発明者らは、上記各欠点を解消し、溶液中の
金属を高電流効率、低電解電圧に陰極上に析出さ
せるための手段を種々検討した結果、陰極を微粒
子として、その表面積を極大としてその粒子間に
溶液を通過させて金属を回収する本発明の方法及
び流動床型電解槽を使用する本発明の電解槽に到
達したものである。
The inventors of the present invention have investigated various means for eliminating the above-mentioned drawbacks and depositing the metal in solution on the cathode with high current efficiency and low electrolytic voltage. The method of the present invention for recovering metal by passing a solution between the particles and the electrolytic cell of the present invention using a fluidized bed type electrolytic cell have been achieved.

すなわち本発明は、第1に金属を含有する溶液
から金属を回収する方法において、電解槽の陰極
室の底部から供給される金属含有溶液の上昇流に
よつて流動状態とした陰極粒子を有する流動床電
解槽に金属含有溶液を供給して電解するととも
に、陰極室の上部において上昇流の流速を低下さ
せて上昇流に随伴する陰極粒子を上昇流から分離
して陰極室からの流出を防止した金属を含有する
溶液から陰極粒子上に析出させた金属を回収する
方法であり、第2に、隔膜で陽極室と陰極室に区
画した電解槽の陰極室に隔膜の細孔よりも径が大
きな粒径の陰極粒子を収容し、陰極室の底部に金
属含有溶液供給口を有し、陰極室の上部には断面
積が上部ほど漸増する流動粒子逸散防止塔が取り
付けられており、流動粒子逸散防止塔の壁面には
溶液の流出口を設けた金属回収用電解槽である。
That is, the present invention first provides a method for recovering metal from a metal-containing solution, in which a liquid containing cathode particles brought into a fluidized state by an upward flow of a metal-containing solution supplied from the bottom of a cathode chamber of an electrolytic cell is provided. In addition to supplying a metal-containing solution to the bed electrolytic tank and electrolyzing it, the flow rate of the upward flow was reduced in the upper part of the cathode chamber to separate the cathode particles accompanying the upward flow from the upward flow and prevent them from flowing out from the cathode chamber. This is a method of recovering metals precipitated on cathode particles from a metal-containing solution.Secondly, the cathode chamber of an electrolytic cell is divided into an anode chamber and a cathode chamber by a diaphragm. A fluidized particle dispersion prevention tower is installed at the top of the cathode chamber. This is an electrolytic cell for metal recovery with a solution outlet provided on the wall of the dispersion prevention tower.

以下、図面に示す実施例に基いて本発明を詳細
に説明する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第1図は、本発明に係る金属回収用電解槽の第
1実施例を示す縦断面図、第2図は、第1図の
−線横断面図である。
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of an electrolytic cell for metal recovery according to the present invention, and FIG. 2 is a cross-sectional view taken along the line -- in FIG.

電解槽本体1は、上面が開口し、上端に外向き
フランジ2が連設された円筒体から成り、該本体
1の下面中央には、下向きに溶液供給口3が設け
られている。本体1内壁の下端近傍には、陽極支
持用円筒4が内設され、該円筒4上には、Oリン
グ5を介して、格子状の支持片6が内設されたド
ーナツ状の陽極下部フレーム7が載置されてい
る。陽極下部フレーム7の上縁には、多孔性円筒
状の陽極8が溶接等により立設されている。
The electrolytic cell main body 1 consists of a cylindrical body with an open upper surface and an outward flange 2 connected to the upper end, and a solution supply port 3 is provided downward in the center of the lower surface of the main body 1. An anode supporting cylinder 4 is disposed near the lower end of the inner wall of the main body 1, and a donut-shaped anode lower frame with a lattice-shaped support piece 6 disposed on the cylinder 4 is attached via an O-ring 5. 7 is placed. A porous cylindrical anode 8 is erected on the upper edge of the anode lower frame 7 by welding or the like.

陽極の材質としては、グラフアイト、ステンレ
ス、白金あるいは貴金属酸化物をコーテイングし
たチタン及びフエライト等の一般に使用されてい
るものを使用することができる。陽極8の上端に
は、上端に外向き析曲部9が連設された短寸円筒
状の陽極上部フレーム10の下端部が溶接等によ
り連結され、外向き折曲部9の外端部は、前記外
向きフランジ2の外端部と整合し、外向き折曲部
9と外向きフランジ2の間には、ガスケツト11
が介在されている。陽極8及び陽極上部フレーム
10の内面及び格子状の支持片6上には、ナイロ
ン、ポリエチレン、ポリプロピレン等の非電導性
有機化合物あるいは非電導性無機化合物から成
り、約10〜100μm程度の多数の細孔を有する袋
状の隔膜12が内接状態で収容され、該隔膜12
の上端部は外方に折曲され、かつ1対のガスケツ
ト13,14に挾持されて陽極上部フレーム10
の外向き折曲部9上に載置されている。袋状隔膜
12の内下部の、該隔膜12を介して陽極下部フ
レーム7に当接する部分には、中央上面に凹部1
5が設けられ、上下方向の多数の流通孔16が穿
設された塩化ビニル樹脂等から成る溶液分散板1
7が載置されている。
As the material of the anode, commonly used materials such as graphite, stainless steel, platinum, titanium coated with a noble metal oxide, and ferrite can be used. The lower end of a short cylindrical anode upper frame 10 with an outward bent part 9 connected to the upper end of the anode 8 is connected by welding or the like, and the outer end of the outward bent part 9 is connected to the upper end of the anode 8 by welding or the like. , a gasket 11 aligned with the outer end of the outward flange 2 and between the outward bent portion 9 and the outward flange 2.
is mediated. On the inner surfaces of the anode 8 and the anode upper frame 10 and on the lattice-like support piece 6, there are many fine particles of about 10 to 100 μm made of a non-conductive organic compound or a non-conductive inorganic compound such as nylon, polyethylene, polypropylene, etc. A bag-shaped diaphragm 12 having holes is accommodated in an inscribed state, and the diaphragm 12
The upper end is bent outward and held between a pair of gaskets 13 and 14 to form an anode upper frame 10.
It is placed on the outwardly bent portion 9 of. A recess 1 is provided in the center upper surface of the inner lower part of the bag-like diaphragm 12 at the portion that comes into contact with the anode lower frame 7 via the diaphragm 12.
5, and a solution dispersion plate 1 made of vinyl chloride resin or the like and having a large number of vertically perforated communication holes 16.
7 is placed.

袋状の隔膜12の上端部上にはガスケツト14
を介して、流動粒子逸散防止塔18の下端部外向
きフランジ19が載置され、ボルト20により締
着されている。流動粒子逸散防止塔18は下から
順に前記下端部外向きフランジ19、小径部2
1、テーパー部22、大径部23、上端部外向き
フランジ24から構成され、該外向きフランジ2
4上には、円盤状の蓋体25がボルト26により
締着されている。蓋体25中央下面には、下端が
前記凹部15近傍に達する陰極集電体27が垂設
され、該集電体27は、上端からほぼ中央までの
棒状部28と、棒状部28に続くテーパー部29
と、中空円筒状の本体30とから成り、本体30
の外周には、集電体の表面積を増すための翼体3
1が放射状に連設されている。袋状隔膜12の内
部には、粒径が0.05〜3.0mm程度、好ましくは0.1
〜0.5mm程度の多数の陰極粒子32が収容されて
いる。この陰極粒子の材質としては、金、銀、
銅、ニツケル、鉛等の金属、それらの酸化物、硫
化物、あるいはそれらの合金、グラフアイト、活
性炭等の導電性非金属を使用することができ、さ
らにグラフアイト、ガラス、セラミツク等の粒子
上に金、銀、銅、ニツケル、鉛等の金属をコーテ
イングしたものも使用することができる。33
は、電解槽本体1の上部側面に連設された陽極ガ
ス及び陽極液取出口、34は流動粒子逸散防止塔
18の大径部23側面に連設された陰極液抜出
口、35は蓋体25上面に連設された陰極ガス取
出口である。
A gasket 14 is placed on the upper end of the bag-shaped diaphragm 12.
An outward facing flange 19 at the lower end of the fluidized particle diffusion prevention tower 18 is mounted through the flange 19 and fastened with bolts 20 . The fluidized particle diffusion prevention tower 18 includes, in order from the bottom, the lower end outward flange 19, the small diameter part 2
1. Consists of a tapered part 22, a large diameter part 23, and an upper end outward flange 24, and the outward flange 2
A disk-shaped lid 25 is fastened onto the top of the housing 4 with bolts 26. A cathode current collector 27 is vertically disposed on the lower center surface of the lid 25, and the lower end reaches near the recess 15. Part 29
and a hollow cylindrical main body 30, the main body 30
On the outer periphery of the blade body 3 is provided to increase the surface area of the current collector.
1 are arranged radially. Inside the bag-like diaphragm 12, particles having a particle size of about 0.05 to 3.0 mm, preferably 0.1
A large number of cathode particles 32 of about 0.5 mm are accommodated. The material of this cathode particle is gold, silver,
Metals such as copper, nickel, and lead, their oxides, sulfides, or alloys thereof, and conductive nonmetals such as graphite and activated carbon can be used, as well as particles of graphite, glass, ceramic, etc. It is also possible to use materials coated with metals such as gold, silver, copper, nickel, and lead. 33
34 is an anode gas and anolyte outlet connected to the upper side of the electrolytic cell main body 1, a catholyte outlet connected to the side of the large diameter part 23 of the fluidized particle diffusion prevention tower 18, and 35 is a lid. This is a cathode gas outlet connected to the upper surface of the body 25.

上記構成から成る電解槽本体1に、金属含有廃
液などの金属含有溶液を溶液供給口3から供給す
る。この溶液は一般に水溶液が用いられるが、溶
媒抽出で利用されるアルコール等の有機溶液の場
合もある。供給された溶液は、袋状隔膜12の細
孔と溶液分散板17の流通孔16を通つて、陰極
室内に加圧されて導入する。この場合、溶液は陰
極粒子32を流動状態に維持する役割を果たす。
ここで、「流動状態」とは、陰極粒子相互が溶液
中でくつついたり離れたりする間に溶液が通過し
ていく状態をいう。通過した溶液はテーパー部2
2で減速されるため陰極粒子と溶液とが分離さ
れ、陰極粒子中で均一な層流がえられる。溶液中
の金属イオンは、陰極粒子32上で電解還元さ
れ、金属原子となつて、陰極粒子32上に析出す
るとともに副反応として水が分解されて水素が発
生し、この水素は陰極ガス取出口35から取出さ
れる。溶液の一部は、袋状隔膜12を通つて陽極
室に流入し、陽極8上で水が分解されて、酸素が
発生し、この酸素は陽極ガス取出口33又は陰極
ガス取出口35から電解槽外へ取出される。また
金属含有廃液中には、通常シアンイオンや塩素イ
オン、ヨウ素酸イオン、窒素酸化物イオン等が含
まれており、この化合物イオンが分解されて生ず
る窒素、アンモニア、塩素等のガスも同様に取出
される。さらに溶液の一部も系外に取出される
が、これは溶液中に含まれている有機物が分解さ
れて生ずる不純物を分離する役割も果たす。電解
されて、金属イオン濃度が減少した溶液は、溶液
抜出口34からオーバーフローして電解槽外に取
出される。
A metal-containing solution such as metal-containing waste liquid is supplied from the solution supply port 3 to the electrolytic cell body 1 having the above-mentioned configuration. This solution is generally an aqueous solution, but may also be an organic solution such as alcohol used in solvent extraction. The supplied solution passes through the pores of the bag-like diaphragm 12 and the communication holes 16 of the solution distribution plate 17, and is introduced into the cathode chamber under pressure. In this case, the solution serves to maintain the cathode particles 32 in a fluid state.
Here, the term "fluid state" refers to a state in which the solution passes through the solution while the cathode particles stick together or separate from each other in the solution. The solution passed through taper part 2
2, the cathode particles and the solution are separated, and a uniform laminar flow is obtained in the cathode particles. The metal ions in the solution are electrolytically reduced on the cathode particles 32, become metal atoms, and precipitate on the cathode particles 32. At the same time, as a side reaction, water is decomposed and hydrogen is generated, and this hydrogen is passed through the cathode gas outlet. 35. A part of the solution flows into the anode chamber through the bag-like diaphragm 12, and water is decomposed on the anode 8 to generate oxygen. This oxygen is electrolyzed from the anode gas outlet 33 or the cathode gas outlet 35. It is taken out of the tank. In addition, metal-containing waste liquid usually contains cyanide ions, chloride ions, iodate ions, nitrogen oxide ions, etc., and gases such as nitrogen, ammonia, and chlorine that are generated when these compound ions are decomposed can also be extracted. be done. Further, a portion of the solution is also taken out of the system, which also serves to separate impurities generated by decomposition of organic substances contained in the solution. The electrolyzed solution whose metal ion concentration has been reduced overflows from the solution outlet 34 and is taken out of the electrolytic cell.

この電解操作において、流動層内の微粒子に効
率よく陰極電位をもたせて金属を高電流効率、低
電解電圧で陰極上に析出させるためには、次に挙
げる電解条件下で電解を行うことが望ましい。
In this electrolytic operation, in order to efficiently impart a cathode potential to the fine particles in the fluidized bed and deposit the metal on the cathode with high current efficiency and low electrolytic voltage, it is desirable to perform electrolysis under the following electrolytic conditions. .

陰極集電体電流密度:30A/dm2以下(好ましく
は10A/dm2以下) 陽極電流密度:20A/dm2以下(好ましくは
5A/dm2以下) 流動層内電流濃度:30A/l−流動層以下(好ま
しくは10A/−流動層以下) 流動層空間率:40〜90%(好ましくは60〜75%) ここで、陰極集電体密度が30A/dm2を越える
と、不必要に電圧が高くなり、陽極電流密度が
20A/dm2を越えると電圧が高くなるとともに、
陽極反応が、シアン又は有機物分解等の好ましい
反応から、好ましくない反応である水電解に移行
する。さらに、流動層内電流濃度が30A/l−流
動層を越えると電圧が上がるだけでなく、プラツ
キングが発生し、流動層空間率が90%を越えると
電圧が上がり、40%より下がると、溶液供給口付
近でプラツギングが生ずるので、上記範囲内とす
るのがよい。
Cathode current density: 30A/ dm2 or less (preferably 10A/ dm2 or less) Anode current density: 20A/ dm2 or less (preferably
5A/dm 2 or less) Current concentration in fluidized bed: 30A/l-fluidized bed or less (preferably 10A/- fluidized bed or less) Fluidized bed void ratio: 40 to 90% (preferably 60 to 75%) Here, cathode If the current collector density exceeds 30A/ dm2 , the voltage will become unnecessarily high and the anode current density will decrease.
When it exceeds 20A/ dm2 , the voltage increases and
The anodic reaction shifts from a preferred reaction such as cyanide or organic matter decomposition to an undesirable reaction, water electrolysis. Furthermore, when the current concentration in the fluidized bed exceeds 30A/l-fluidized bed, not only does the voltage increase, but also plucking occurs, and when the fluidized bed void ratio exceeds 90%, the voltage increases, and when it falls below 40%, the voltage increases. Since plugging occurs near the supply port, it is preferable to keep it within the above range.

又、この電解操作を引き続いて行うと、金属の
析出に伴つて陰極粒子の径が大きくなつて、流動
条件(流動層高、流動層空間率、流動層圧力損
失)が変化するので、本電解槽の流動床部分は次
のように設計することが好ましい。すなわち、流
動層の高さは、初期流動層の1.2倍以上、好まし
くは1.4倍以上とし、流動粒子逸散防止塔の断面
積を電解槽本体の断面積の1.5倍以上、好ましく
は2倍以上として、陰極粒子が流動状態に維持で
きるようにし、かつ粒子の逸散を防止する。この
ようにすれば陰極粒子のもとの径の倍以上まで金
属を析出することができる。
In addition, if this electrolytic operation is continued, the diameter of the cathode particles will increase as the metal is deposited, and the fluidization conditions (fluidized bed height, fluidized bed void ratio, fluidized bed pressure loss) will change, so this electrolysis will The fluidized bed section of the tank is preferably designed as follows. That is, the height of the fluidized bed is at least 1.2 times, preferably at least 1.4 times, the height of the initial fluidized bed, and the cross-sectional area of the fluidized particle scattering prevention tower is at least 1.5 times, preferably at least twice, the cross-sectional area of the electrolytic cell body. As a result, the cathode particles can be maintained in a fluid state and the particles can be prevented from escaping. In this way, metal can be deposited to a size that is more than twice the original diameter of the cathode particles.

又、陰極として流動状態の陰極粒子を使用して
いるため、陰極表面積が非常に大きくなつて電流
密度を下げると共に、陰極粒子が相互に衝突して
電気二重層を不安定としているので、電解電圧が
低く電流高効率の高い状態で電解を行うことがで
きる。特に、本電解槽又は本方法により溶液中に
異種金属の析出電位差を利用すれば特定の金属の
みを選択的に析出させることができるので精製に
は好都合である。たとえば、金シアン溶液に銀や
銅などの他の不純物が存在している場合は、電流
密度を十分に低くすると金のみを析出させ、回収
することができる。
In addition, since cathode particles in a fluid state are used as the cathode, the surface area of the cathode becomes extremely large, lowering the current density, and the cathode particles collide with each other, making the electric double layer unstable, so the electrolytic voltage decreases. Electrolysis can be performed in a state where the current is low and the current is high and efficiency is high. In particular, it is advantageous for purification because only a specific metal can be selectively deposited by utilizing the deposition potential difference of different metals in a solution using the present electrolytic cell or this method. For example, if other impurities such as silver and copper are present in the gold-cyanide solution, only the gold can be precipitated and recovered by lowering the current density sufficiently.

上記電解操作により、表面に金属がコーテイン
グされた陰極粒子を電解槽外に取り出して金属を
回収する。析出金属と陰極粒子との比重差が小さ
い場合は同一成分のものを用いれば以後の回収が
楽になる。析出金属と陰極粒子とが異なる成分を
用いた場合は分離する必要がある。分離には従来
の分離手段、たとえば乾式分離法や湿式分離法を
そのまま使用すればよい。金属を陰極粒子から乾
式分離法により分離するには、たとえば、金や白
金の場合には次のように行えばよい。金がコーテ
イングされた陰極粒子を溶融し、この溶融物に酸
素ガスや塩素ガスなどを吹き込むと、金、白金以
外の金属は酸化物、塩化物等となつて大気中に飛
散し、陰極粒子としてのガラス等はスラグとなつ
て、溶融金属上に浮遊し、分離される。その後、
冷却固化すると、ほとんど不純物を含まない金又
は白金を得ることができる。また、貴金属と卑金
属とを含む希薄溶液から合金として析出させた場
合には、通常の湿式分離法で再溶解して分離する
ことができる。この再溶解した液は金属元素以外
の有機物等が含まれず、また高濃度の少量の液が
えられるので経済的に回収できる。金属回収に関
する電流効率は10%以上、溶液からの金属の回収
率は、金属含有量及び電解時間により異なるが、
1回の操作で、金属の含有量が低い場合には低電
力でほぼ100%、比較的高い場合には65%以上と
なる。後者の場合にも溶液を循環させればほぼ定
量的に金属を回収することができる。
Through the above electrolytic operation, the cathode particles whose surfaces are coated with metal are taken out of the electrolytic cell and the metal is recovered. If the difference in specific gravity between the precipitated metal and the cathode particles is small, subsequent recovery will be easier if the particles have the same composition. If the precipitated metal and cathode particles have different components, they must be separated. For separation, conventional separation means such as dry separation method or wet separation method may be used as is. In order to separate metal from cathode particles by a dry separation method, for example, in the case of gold or platinum, the following procedure may be performed. When cathode particles coated with gold are melted and oxygen gas, chlorine gas, etc. The glass, etc. becomes slag and floats on the molten metal and is separated. after that,
When cooled and solidified, gold or platinum containing almost no impurities can be obtained. Furthermore, when an alloy is precipitated from a dilute solution containing a noble metal and a base metal, it can be redissolved and separated using a normal wet separation method. This redissolved liquid does not contain any organic substances other than metal elements, and since a small amount of highly concentrated liquid can be obtained, it can be recovered economically. The current efficiency for metal recovery is over 10%, and the recovery rate of metals from the solution varies depending on the metal content and electrolysis time, but
In a single operation, the power is almost 100% at low power when the metal content is low, and more than 65% when the metal content is relatively high. Even in the latter case, metals can be recovered almost quantitatively by circulating the solution.

第3図は、本発明に係わる流動床型電解槽の第
2実施例を示す縦断面図である。この電解槽は第
1実施例の電解槽の改良に係わるものであり、第
1実施例の部材と同一部材には同一符号を付して
説明を省略する。
FIG. 3 is a longitudinal sectional view showing a second embodiment of the fluidized bed electrolytic cell according to the present invention. This electrolytic cell is an improvement of the electrolytic cell of the first embodiment, and the same members as those of the first embodiment are given the same reference numerals and explanations thereof will be omitted.

電解槽本体1′は、溶液供給口3が連設された
皿状の下部枠体36と、円筒状の陽極8′とから
成り、陽極8′の上下両端は、それぞれ外方に向
けて折曲されている。多孔性の隔膜は、円筒状の
上部隔膜12′と平面状の下部隔膜12″から成
り、上部隔膜12′の上下両端は、それぞれ外方
に向けて折曲されている。溶液分散液17′の直
径は、下部隔膜12″の直径とほぼ同一であり、
中央部にのみ流通孔16′が穿設されている。
The electrolytic cell body 1' consists of a dish-shaped lower frame 36 in which a solution supply port 3 is connected, and a cylindrical anode 8'. Both upper and lower ends of the anode 8' are folded outward. It is curved. The porous diaphragm consists of a cylindrical upper diaphragm 12' and a planar lower diaphragm 12'', and both upper and lower ends of the upper diaphragm 12' are bent outward. Solution dispersion 17' is approximately the same as the diameter of the lower diaphragm 12'',
A communication hole 16' is provided only in the center.

上部隔膜12′の上端の折曲部は、ガスケツト
13,14を介して流動粒子逸散防止塔18の外
向きフランジ19と陽極8′上端の折曲部との間
に挾持され、ボルト20により締着されている。
溶液分散板17′の周縁部は、それぞれ1対のガ
スケツト37,38に挾持された上部隔膜12′
の下端折曲部と、下部隔膜12″との間に挾持さ
れ、ボルト39により締着されている。
The bent portion at the upper end of the upper diaphragm 12' is held between the outward flange 19 of the fluidized particle diffusion prevention tower 18 and the bent portion at the upper end of the anode 8' via gaskets 13 and 14, and is secured by bolts 20. It is fastened.
The peripheral edge of the solution distribution plate 17' is connected to the upper diaphragm 12' which is held between a pair of gaskets 37 and 38, respectively.
The lower diaphragm 12'' is held between the bent portion of the lower end and the lower diaphragm 12'', and is fastened with bolts 39.

この電解槽に溶液供給口3から金属含有溶液を
供給すると、第1実施例の場合と同様に金属が回
収される。
When a metal-containing solution is supplied to this electrolytic cell from the solution supply port 3, metals are recovered in the same manner as in the first embodiment.

本実施例の電解槽では、見かけ上陽極室の厚さ
が零であるが、隔膜が陽極に密着することはな
く、実質的には、隔膜と陽極との間に陽極室が存
在する。陽極表面で発生する電解ガスは、隔膜を
通つて陰極室に達し、陰極ガス取出口から、陰極
ガスとともに取り出される。
In the electrolytic cell of this example, although the apparent thickness of the anode chamber is zero, the diaphragm does not come into close contact with the anode, and the anode chamber substantially exists between the diaphragm and the anode. The electrolytic gas generated on the surface of the anode reaches the cathode chamber through the diaphragm and is taken out together with the cathode gas from the cathode gas outlet.

本実施例の電解槽は、陽極により電解槽本体を
構成し、溶液分散板を電解槽本体に連結してある
などのため、第1実施例の電解槽より部材数が少
なく、構造がコンパクトになる。又、陽極が大気
に露出しているが、印加電圧が小さいため感電等
の危険はない。
The electrolytic cell of this example has a smaller number of parts and a more compact structure than the electrolytic cell of the first example because the anode constitutes the electrolytic cell main body and the solution dispersion plate is connected to the electrolytic cell main body. Become. Also, although the anode is exposed to the atmosphere, there is no risk of electric shock because the applied voltage is small.

本発明は、溶液から金属を回収する際に、流動
床電解槽を用い、陰極表面積を非常に大きくして
あるため、低電流密度で効率よく陰極粒子上に金
属を析出させることができ、さらに陰極が流動状
態の粒子状であるため、電気二重層が薄く不安定
となつており、この傾向は析出される金属の電位
差によるため、特に、金溶液から有価価値の高い
金を精製する際に好都合である。さらに金属が粒
子状の陰極上に厚く析出できるため、陰極の電解
槽からの取出し、及び金属の陰極粒子からの分離
が極めて容易である。
The present invention uses a fluidized bed electrolytic cell when recovering metals from a solution, and the surface area of the cathode is extremely large, so that metals can be efficiently deposited on cathode particles at low current density. Since the cathode is in the form of particles in a fluidized state, the electric double layer is thin and unstable, and this tendency is due to the potential difference of the deposited metal, especially when refining highly valuable gold from a gold solution. It's convenient. Further, since the metal can be thickly deposited on the particulate cathode, it is extremely easy to take out the cathode from the electrolytic cell and to separate the metal from the cathode particles.

実施例 1 第1図に示す流動床型電解槽を用いて金メツキ
廃液からの金の回収を行つた。電解槽の各部の寸
法は、電解槽本体の高さ113.5cm、内径14.5cm、
メツシユ状陽極の高さ100cm、直径12.5cm、陰極
集電体の外径5cm、流動粒子逸散防止塔の高さ35
cm、大径部の外径113.5cmとした。各部材の材質
としては、電解槽本体及び流動粒子逸散防止塔が
アクリル樹脂、陽極が白金コーテイングチタン、
陰極粒子が粒径が0.1〜0.15mmの銅粒子、袋状隔
膜が細孔径が49μ程度であるナイロン網、溶液分
散板が塩化ビニル樹脂、陰極集電体が銅であるも
のを用いた。
Example 1 Gold was recovered from gold plating waste liquid using a fluidized bed electrolytic cell shown in FIG. The dimensions of each part of the electrolytic cell are: height of the electrolytic cell body: 113.5 cm, inner diameter: 14.5 cm,
The height of the mesh-shaped anode is 100 cm, the diameter is 12.5 cm, the outer diameter of the cathode current collector is 5 cm, and the height of the fluidized particle diffusion prevention tower is 35 cm.
cm, and the outer diameter of the large diameter part was 113.5 cm. The materials of each member include acrylic resin for the electrolytic cell body and fluidized particle diffusion prevention tower, platinum-coated titanium for the anode, and platinum-coated titanium for the anode.
The cathode particles used were copper particles with a particle size of 0.1 to 0.15 mm, the bag-like diaphragm was a nylon net with a pore size of about 49 μm, the solution dispersion plate was made of vinyl chloride resin, and the cathode current collector was made of copper.

試験用溶液としては、PH値4.1、全有機炭素量
(TOC)15.0g/、二酸化ケイ素量56mg/、
全リン量が1.6mg/であり、各イオン濃度が次
のものを用い、電解槽に供給する前に水で希釈し
て金濃度が1650ppmになるよう調整した。
The test solution had a pH value of 4.1, a total organic carbon content (TOC) of 15.0 g/, a silicon dioxide content of 56 mg/,
The total amount of phosphorus was 1.6 mg/, and the following ion concentrations were used, and the gold concentration was adjusted to 1650 ppm by diluting with water before being supplied to the electrolytic cell.

Au 2580ppm Na 51ppm CN- 1000ppm Cl- 530ppm Ni 25ppm K 13300ppm SO4 3- 43000ppm この調整した金廃液を約2.8/minの流速で
電解槽に供給し、陽極電流密度260A/dm2、陰
極集電体電流密度1.0A/dm2、流動層内電流濃
度10.7A/−流動層、銅粒子の流動層空間率70
%の条件となるよう電解したところ電解電圧2.1
〜2.5V、平均電流効率38%であり、電解槽出口
における金濃度は3ppmであつた。なお、ニツケ
ル濃度は減少していなかつた。
Au 2580ppm Na 51ppm CN - 1000ppm Cl - 530ppm Ni 25ppm K 13300ppm SO 4 3- 43000ppm This adjusted gold waste liquid was supplied to the electrolytic cell at a flow rate of about 2.8/min, and the anode current density was 260A/dm 2 and the cathode current collector Current density 1.0A/dm 2 , current concentration in fluidized bed 10.7A/- fluidized bed, fluidized bed void ratio of copper particles 70
When electrolyzed under the conditions of %, the electrolytic voltage was 2.1
~2.5V, average current efficiency 38%, and gold concentration at the electrolyzer outlet was 3ppm. Note that the nickel concentration did not decrease.

実施例 2 実施例1と同じ電解槽及び銀と銅を含む廃液を
用い、廃原液は金属濃度が各々53ppmとなるよう
調整した。この廃液を3.0minの流速で電解槽
に供給し、陽極電流密度1.0A/dm2、陰極集電
体電流密度1.4A/dm2、流動層内電流密度
4.1A/、流動層空間率75%の条件となるよう
電解したところ電解電圧3.2V、平均電流効率34
%であり、電解槽出口における金属濃度0.02ppm
以下であつた。
Example 2 Using the same electrolytic cell and waste solution containing silver and copper as in Example 1, the waste stock solution was adjusted to have a metal concentration of 53 ppm. This waste liquid was supplied to the electrolytic cell at a flow rate of 3.0 min, with an anode current density of 1.0 A/dm 2 , a cathode current density of 1.4 A/dm 2 , and a current density in the fluidized bed.
When electrolyzed under the conditions of 4.1A/, fluidized bed void ratio of 75%, the electrolysis voltage was 3.2V, and the average current efficiency was 34.
%, and the metal concentration at the electrolyzer outlet is 0.02ppm
It was below.

実施例 3 陰極粒子として0.3mm径のガラス球に1μの金メ
ツキを行つたものを使用した以外は実施例1と同
じ電解槽及び廃原液を用い、廃原液は金濃度が
1200ppmとなるよう調整した。この金廃液を5.0
/minの流速で電解槽に供給し、陽極電流密度
2.6A/dm2、陰極集電体密度3.6A/dm2、流動
層内電流濃度10.7A/、流動層空間率65%の条
件となるよう電解したところ、電解電圧2.6V、
平均電流効率49%であり、電解槽出口における金
濃度は2.4ppmであつた。
Example 3 The same electrolytic cell and waste stock solution as in Example 1 were used, except that 0.3 mm diameter glass bulbs plated with 1μ gold were used as cathode particles, and the waste stock solution had a lower gold concentration.
Adjusted to 1200ppm. This gold waste liquid 5.0
/min flow rate to the electrolytic cell, and the anode current density
When electrolysis was carried out under the following conditions: 2.6 A/dm 2 , cathode current collector density 3.6 A/dm 2 , current concentration in the fluidized bed 10.7 A/, and fluidized bed void ratio 65%, the electrolytic voltage was 2.6 V,
The average current efficiency was 49%, and the gold concentration at the electrolyzer outlet was 2.4 ppm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わる流動床型電解槽の第
1実施例を示す一部破断正面図、第2図は第1図
の−線で切断した横断面図、第3図は本発明
に係わる流動床型電解槽の第2実施例を示す一部
破断正面図である。 1,1′,……電解槽本体、3,……溶液供給
口、8,8′,……陽極、27,……陰極集電体、
32,……陰極粒子。
FIG. 1 is a partially cutaway front view showing a first embodiment of a fluidized bed electrolytic cell according to the present invention, FIG. 2 is a cross-sectional view taken along the - line in FIG. 1, and FIG. 3 is a cross-sectional view of the present invention. FIG. 2 is a partially cutaway front view showing a second embodiment of the fluidized bed electrolytic cell according to the present invention. 1, 1', ... electrolytic cell body, 3, ... solution supply port, 8, 8', ... anode, 27, ... cathode current collector,
32,... cathode particle.

Claims (1)

【特許請求の範囲】 1 金属を含有する溶液から金属を回収する方法
において、電解槽の陰極室の底部から供給される
金属含有溶液の上昇流によつて陰極室内の陰極粒
子を流動状態として電解するとともに、陰極室の
上部において上昇流の流速を低下させて上昇流に
随伴する陰極粒子を上昇流から分離し、陰極粒子
の外部への流出を防止することを特徴とする金属
含有溶液からの金属の回収方法。 2 金属回収用の電解槽において、隔膜によつて
陰極室と陽極室に区画した陰極室内には隔膜の細
孔径よりも径の大きな陰極粒子を収容し、陰極室
の底部には金属含有溶液の供給口を設け、陰極室
の上部には断面積が上部ほど漸増する流動粒子逸
散防止塔を設け、流動粒子逸散防止塔の壁面には
溶液の流出口を設けたことを特徴とする金属回収
用電解槽。
[Claims] 1. A method for recovering metals from a metal-containing solution, in which cathode particles in the cathode chamber are brought into a fluidized state by an upward flow of a metal-containing solution supplied from the bottom of the cathode chamber of an electrolytic cell, and electrolyzed. At the same time, the flow rate of the upward flow is reduced in the upper part of the cathode chamber to separate the cathode particles accompanying the upward flow from the upward flow, thereby preventing the cathode particles from flowing out. How to recover metals. 2 In an electrolytic cell for metal recovery, the cathode chamber is divided into a cathode chamber and an anode chamber by a diaphragm, and cathode particles with a diameter larger than the pore diameter of the diaphragm are stored in the cathode chamber, and a metal-containing solution is placed at the bottom of the cathode chamber. A metal characterized in that a supply port is provided, a fluidized particle dispersion prevention tower whose cross-sectional area gradually increases toward the upper part of the cathode chamber is provided, and a solution outlet is provided on the wall of the fluidized particle dispersion prevention tower. Electrolytic cell for recovery.
JP5453784A 1984-03-23 1984-03-23 Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal Granted JPS60200994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5453784A JPS60200994A (en) 1984-03-23 1984-03-23 Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5453784A JPS60200994A (en) 1984-03-23 1984-03-23 Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal

Publications (2)

Publication Number Publication Date
JPS60200994A JPS60200994A (en) 1985-10-11
JPH0474435B2 true JPH0474435B2 (en) 1992-11-26

Family

ID=12973411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5453784A Granted JPS60200994A (en) 1984-03-23 1984-03-23 Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal

Country Status (1)

Country Link
JP (1) JPS60200994A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130792A (en) * 1986-11-21 1988-06-02 Matsuda Metal Kogyo Kk Electrolytic device
KR101048790B1 (en) 2008-11-24 2011-07-15 진인수 Separation of Platinum Group Metals Using a Flow Electrolyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533961A (en) * 1976-06-30 1978-01-14 Osaka Gas Co Ltd Dry denitration apparatus for combustion exhaust gas
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS5834171A (en) * 1981-08-21 1983-02-28 Hitachi Ltd Vacuum vapor-depositing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535331Y2 (en) * 1976-02-29 1980-08-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533961A (en) * 1976-06-30 1978-01-14 Osaka Gas Co Ltd Dry denitration apparatus for combustion exhaust gas
JPS5392302A (en) * 1977-01-25 1978-08-14 Nat Res Inst Metals Electrolytic refining of metal
JPS5834171A (en) * 1981-08-21 1983-02-28 Hitachi Ltd Vacuum vapor-depositing device

Also Published As

Publication number Publication date
JPS60200994A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
KR890002751B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
US3974049A (en) Electrochemical process
EP0309389A2 (en) Electrolytic precious metal recovery system
US3650925A (en) Recovery of metals from solution
US4560453A (en) Efficient, safe method for decoppering copper refinery electrolyte
US4406752A (en) Electrowinning of noble metals
US5458745A (en) Method for removal of technetium from radio-contaminated metal
US4612093A (en) Method and apparatus for purification of gold
CA1087131A (en) Electrolytic removal of heavy metal ions from aqueous solutions
JPH0474435B2 (en)
SA520411661B1 (en) Method for Producing Metallic Silver by Electro-Deposition
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JPH0413432B2 (en)
JPS62125859A (en) Production of catalyst
JPS641961Y2 (en)
JPS6220891A (en) Method for electrolytically collecting metal from aqueous solution containing minor amount of metal
JPH059799A (en) Method and device for supplying metal ion in sulfuric acid-bath zn-ni plating
JPS60202786A (en) Electrolysis and electrolytic cell of nitrogen compound and/or carbon compound in solution containing the nitrogen and/or carbon compounds
JPH11286796A (en) Fluidized-bed electrolytic cell, method for recovering and removing metal such as nickel and treatment of water using the cell
JPH01162790A (en) Electrolytic reduction method
EP0043871A1 (en) Method for removing chlorate from caustic solutions with electrolytically deposited iron and process for recovering said iron from said purified solutions
JP2002327289A (en) Method for manufacturing copper fine powder
US736036A (en) Apparatus for the recovery of precious metals.
CN1114563C (en) Method for purifying aluminium-poly-chloride using aluminium-carbon microeletrolysis
US4670116A (en) Purifying mixed-cation electrolyte

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term