JPS63130792A - Electrolytic device - Google Patents

Electrolytic device

Info

Publication number
JPS63130792A
JPS63130792A JP61278180A JP27818086A JPS63130792A JP S63130792 A JPS63130792 A JP S63130792A JP 61278180 A JP61278180 A JP 61278180A JP 27818086 A JP27818086 A JP 27818086A JP S63130792 A JPS63130792 A JP S63130792A
Authority
JP
Japan
Prior art keywords
electrode
chamber
electrolyte
electrolytic
assistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61278180A
Other languages
Japanese (ja)
Inventor
Kashio Yamaguchi
山口 甲子男
Riyouichi Koushiba
向柴 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUDA METAL KOGYO KK
Original Assignee
MATSUDA METAL KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUDA METAL KOGYO KK filed Critical MATSUDA METAL KOGYO KK
Priority to JP61278180A priority Critical patent/JPS63130792A/en
Publication of JPS63130792A publication Critical patent/JPS63130792A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To carry out electrolysis with high efficiency by packing an electrode assistant in the form of grains, etc., in a vassel having a perforated part, inserting a first electrode into the material to form an electrode chamber, providing a second electrode on the outside of the electrode chamber to form an electrolytic cell, and bringing the electrode assistant into perfect contact with an electrolyte. CONSTITUTION:The electrolytic cell 10 is provided in a waste soln. storage tank 12 to form the electrolytic device. The electrolytic cell 10 is formed with the electrode chamber 9 and the second electrode 5 having a supporting plate 15. A bag 3 housing the first electrode 1 and the electrically conductive electrode assistant 2 in the form of grains, chips, wire, porous briquet, etc., is placed in the vessel 4 to form the electrode chamber 9. The wall surface of the vessel 4 is formed with a perforated part such as a perforated plate. The texture of the bag 3 is controlled so that the electrode assistant 2 is not leaked. The electrolyte supplied to the electrode chamber 9 is brought into contact with the electrode assistant 2, sent up into the electrode chamber 9, and electrolyzed. The electrolyte permeated through the perforated part of the vessel 4 flows into the space 6 between the vessel 4 and the second electrode 5, and overflows into the waste soln. storage tank 12. The component such as silver can be economically recovered from the electrolyte by this method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 、1 本発明は電解装置に関するものである。[Detailed description of the invention] [Industrial application field] ,1 The present invention relates to an electrolyzer.

〔発明の概要〕[Summary of the invention]

本発明は、電解装置において、 多孔部分を有する容器に表面積の大きい電極助材を収容
した電極室に電解液を供給し、電極室外の対極との間で
電解を行うようにしたことにより、電解液から目的とす
る成分を実質的に完全にかっ経済的に採取することがで
きるようにしたものである。
The present invention provides an electrolytic device in which an electrolytic solution is supplied to an electrode chamber containing an electrode auxiliary material with a large surface area in a container having a porous portion, and electrolysis is performed between the electrode and a counter electrode outside the electrode chamber. It is possible to economically extract the target component from the liquid substantially completely.

〔従来の技術〕[Conventional technology]

従来の電解そうには、陰極と陽極を単に電解液中に懸吊
した構造、陰極と陽極との間にのみ電解液を供給するよ
うにしたタンクレス構造、粒状物品で構成して表面積を
大きくした陰極を用い、この陰極と対極の陽極との間に
電解液を通すようにした構造、又は陰極と陽極との間に
隔壁を設けた隔膜式構造のものが用いられていた。
Conventional electrolyzers have a structure in which the cathode and anode are simply suspended in an electrolyte, a tankless structure in which the electrolyte is supplied only between the cathode and anode, and a structure made of granular materials to increase the surface area. A structure in which an electrolytic solution is passed between the cathode and a counter anode, or a diaphragm structure in which a partition is provided between the cathode and the anode have been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電解装置はいずれも電解採取率において必ずしも
満足できるものではなかった。従来の電解槽においても
、電解室のイオン泳動を機械的に助長したり、拡散浸透
を助長したりして電解効率の向上が試みられているが、
いまだに電気二重層を排除するには至っていない。例え
ば、従来のタンクレス電解装置では、ジェット流による
電流密度の向上は認められるとはいへ、電極界面におけ
る層流は避けられず、実操業において威力を発揮するま
でには至っていない。また、陰極室に粒状の電極助材を
充填し、電流密度を著減させて電解効率を向上させる方
法が実施されているが、陰極と陽極の間に電解液を供給
しているために、イオンの拡散による抵抗及び分極の妨
害作用により、所望の効果は得られていない。また、隔
膜電解装置においては、摺電圧の上昇、隔膜の目詰りな
どから電流効率及び経済性の点に問題がある。
All conventional electrolyzers have not always been satisfactory in terms of electrolytic winning rate. Even in conventional electrolytic cells, attempts have been made to improve electrolytic efficiency by mechanically promoting ion migration in the electrolytic chamber or promoting diffusion and osmosis.
The electric double layer has not yet been eliminated. For example, in conventional tankless electrolyzers, although it is recognized that the current density is improved by jet flow, laminar flow at the electrode interface is unavoidable, and it has not reached the point where it can demonstrate its power in actual operation. In addition, a method has been implemented in which the cathode chamber is filled with granular electrode auxiliary material to significantly reduce the current density and improve the electrolytic efficiency, but since the electrolyte is supplied between the cathode and the anode, The desired effect is not achieved due to the interfering effects of resistance and polarization due to ion diffusion. Further, in the diaphragm electrolyzer, there are problems in terms of current efficiency and economic efficiency due to an increase in sliding voltage, clogging of the diaphragm, and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記の問題点を解決するため鋭意研究の結
果、本発明を完成するに至った。
The present inventors have completed the present invention as a result of intensive research to solve the above-mentioned problems.

即ち、本発明は多孔部分を有する容器に、粒状、チップ
状、線状及び多孔質ブリケット状のうちの少なくとも1
種の形状を有する導電性電極助材が多数充填され、この
多数の電極助材から成る充填物中に第1電極が挿入され
、電解液供給手段を設けてなる電極室と、この電極室の
外部に設けた第2電極とから電解槽がなり、容器と第2
電極との間の空間に容器の多孔部分を透過した電解液が
流入するようにしたことを特徴とする電解装置に係るも
のである。
That is, the present invention provides a container having a porous portion with at least one of granules, chips, lines, and porous briquettes.
an electrode chamber filled with a large number of conductive electrode auxiliary materials having a seed shape, a first electrode inserted into the filling made of the large number of electrode auxiliary materials, and provided with an electrolyte supply means; An electrolytic cell is formed from the second electrode provided externally, and the container and the second
This relates to an electrolytic device characterized in that an electrolytic solution that has passed through a porous portion of a container flows into a space between the electrode and the electrode.

〔実施例〕〔Example〕

本発明の電解装置を図面に基づいて例示的に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The electrolysis device of the present invention will be exemplarily described based on the drawings.

図示の電解装置は、排液貯槽12内に電解槽10を設け
て形成されている。電解槽10は電解室9と、支持板1
5を有する第2電極5とから構成されている。電解室9
は、第1電極1とこれを囲む粒状電極助材2とを収容し
た袋3が容器4内に収容されて構成されている。
The illustrated electrolytic device is formed by providing an electrolytic cell 10 within a waste liquid storage tank 12. The electrolytic cell 10 includes an electrolytic chamber 9 and a support plate 1.
5 and a second electrode 5. Electrolysis chamber 9
A bag 3 containing a first electrode 1 and a granular electrode auxiliary material 2 surrounding the first electrode 1 is housed in a container 4.

容器4は図示の例では、一方の対向壁面に排液貯槽の壁
面を利用し、他方の対向壁面に有孔板を利用して形成さ
れている。この有孔板は電気絶縁性の構造材、例えば硬
質塩化ビニル樹脂で作られる。容器4の形状は円筒形で
あってもよく、その場合、第2電極5も円筒形に形成さ
れる。
In the illustrated example, the container 4 is formed by using the wall surface of a drain liquid storage tank on one opposing wall surface and using a perforated plate on the other opposing wall surface. This perforated plate is made of an electrically insulating structural material, such as hard vinyl chloride resin. The shape of the container 4 may be cylindrical, in which case the second electrode 5 is also formed cylindrical.

第1電極lはラス状物が用いられ、陰極として使用され
る場合はステンレス鋼、銅、アルミニウム又は導電性ゴ
ムなどの材質が用いられる。また、第1電極1が陽極と
して使用される場合は耐食性のチタン、ジルコン、白金
めっきチタン又は導電性ゴムなどの材質が用いられる。
The first electrode l is a lath-like material, and when used as a cathode, a material such as stainless steel, copper, aluminum, or conductive rubber is used. Further, when the first electrode 1 is used as an anode, a material such as corrosion-resistant titanium, zircon, platinum-plated titanium, or conductive rubber is used.

なお、図示の例では第1電極1は電極助材支持金具とし
て断面形状が逆Y字形をしているが、この形状は電極助
材2を支持するのに好都合であると共に、電極室9の底
部に電解液供給室14が形成されるので、電解液の均一
な供給にも好適である。しかし、一枚のラス状物であっ
てもよい。
In the illustrated example, the first electrode 1 has an inverted Y-shaped cross section as an electrode auxiliary material support metal fitting, but this shape is convenient for supporting the electrode auxiliary material 2, and also provides support for the electrode chamber 9. Since the electrolyte supply chamber 14 is formed at the bottom, it is also suitable for uniformly supplying the electrolyte. However, it may be a single lath-like material.

電極助材2としてはカーボン、グラファイト、ステンレ
スなどが使用され、陰極として金属の採取に使用する場
合には、それと同種の金属の粒体、切削屑又はブリケッ
ト状物を使用することもできる。
Carbon, graphite, stainless steel, etc. are used as the electrode auxiliary material 2, and when used as a cathode for collecting metal, particles, cuttings, or briquettes of the same kind of metal can also be used.

袋3は耐薬品性の電気絶縁材料、例えばポリ塩化ビニリ
デン、ポリプロピレン等からなる合成繊維を用いて作ら
れる。袋3の使用は電極助材2を電極形状に保持するの
に役立ち、また第1電極及び電極助材の容器への装入及
び取出を容易にするので好ましい。袋3の布目の大きさ
は電極助材が漏れない程度に大きいことが通電上好まし
い。
The bag 3 is made of a chemically resistant electrically insulating material, such as synthetic fibers made of polyvinylidene chloride, polypropylene, etc. The use of the bag 3 is preferred as it helps to hold the electrode aid 2 in the electrode shape and also facilitates the loading and unloading of the first electrode and the electrode aid into the container. It is preferable for the size of the cloth of the bag 3 to be large enough to prevent the electrode auxiliary material from leaking in terms of current conduction.

第2電極5は容器4の外部にあって第1電極1の対極と
なり、容器4の壁面から所定の間隔を置いて配置され、
ラス状の白金めっきチタン、導電性ゴム又はカーボンな
どから作られる。第2電極5は支持板15で裏打ちされ
ていて、電解液が電極面以外へ廻らないようにしである
The second electrode 5 is located outside the container 4 and serves as a counter electrode to the first electrode 1, and is arranged at a predetermined distance from the wall surface of the container 4.
Made from lath-shaped platinum-plated titanium, conductive rubber, or carbon. The second electrode 5 is lined with a support plate 15 to prevent the electrolyte from flowing to areas other than the electrode surface.

排液貯槽12の底部13には、電解液を電極室9へ供給
するための電解液供給ロア及び電解処理後排液の排出口
8を備えている。排液は必要に応じて循環径路(図示せ
ず)を経て電極室9へ再循環させることができる。この
実施例では排液貯槽12が電極室9と組合されているが
、排液貯槽は分離して設けてもよい。
The bottom portion 13 of the drained liquid storage tank 12 is provided with an electrolytic solution supply lower for supplying the electrolytic solution to the electrode chamber 9 and an outlet 8 for discharging the drained liquid after electrolytic treatment. The effluent can be recirculated to the electrode chamber 9 via a circulation path (not shown) if necessary. In this embodiment, the waste liquid storage tank 12 is combined with the electrode chamber 9, but the waste liquid storage tank may be provided separately.

直流電源から第1電極1と第2電極50間に電圧を加え
る。電解液供給ロアから電解液供給室14を介して電解
液を電極室9へ供給する。電解液は電極助材2と長時間
かつ完全に接触しながら電極室9を上昇し、電解される
。その際、容器4の多孔部分を透過した電解液は容器4
と第2電極5の間の空間6に流入し、第2電極5の上端
から溢流して排液貯槽12に入る。排液は排出口8から
系外に排出されるか、必要に応じて電極室9へ再循環さ
れる。
A voltage is applied between the first electrode 1 and the second electrode 50 from a DC power source. Electrolyte is supplied from the electrolyte supply lower to the electrode chamber 9 via the electrolyte supply chamber 14 . The electrolytic solution rises through the electrode chamber 9 while being in complete contact with the electrode auxiliary material 2 for a long time, and is electrolyzed. At this time, the electrolyte that has passed through the porous part of the container 4 is
and the second electrode 5 , overflows from the upper end of the second electrode 5 and enters the waste liquid storage tank 12 . The waste liquid is discharged to the outside of the system through the discharge port 8 or recirculated to the electrode chamber 9 as required.

以下、本発明の電解装置の具体的使用例を説明する。Hereinafter, specific usage examples of the electrolytic device of the present invention will be explained.

具体例1 銀濃度38 g / 1のシアン化ナトリウム水溶液3
00I!、を電解液として用い、以下の条件で電解を行
った。
Specific example 1 Sodium cyanide aqueous solution 3 with a silver concentration of 38 g/1
00I! , was used as an electrolytic solution, and electrolysis was performed under the following conditions.

電解室には、SUS製ラスの電極助材支持金具と、粒径
3〜5mmの人造黒鉛粒からなる電極助材とをサラン製
の網に包んで充填した。外部の対極は塩ビ板に支持され
たSUS製ラスを用いて形成した。電極室と対極との間
隔を5On+に設定し、電極助材支持金具を陰極とし、
対極を陽極として、陽極電流密度2A/dm”で前記電
解液の電解を行った。電解開始後、短時間のうちに黒鉛
粒は銀白色にめっきされ、−昼夜電解後の電解液中の銀
濃度は0.004g/7!であった。即ち、銀の採取率
は約99.99%であった。
The electrolytic chamber was filled with an electrode auxiliary material supporting metal made of SUS lath and an electrode auxiliary material made of artificial graphite particles with a grain size of 3 to 5 mm, wrapped in a Saran mesh. The external counter electrode was formed using a SUS lath supported on a PVC board. The distance between the electrode chamber and the counter electrode was set to 5On+, and the electrode auxiliary support metal fitting was used as the cathode.
Using the counter electrode as an anode, the electrolyte was electrolyzed at an anode current density of 2 A/dm. After the start of electrolysis, the graphite grains were plated silver-white within a short time, and the - silver in the electrolyte after day and night electrolysis was The concentration was 0.004 g/7!, that is, the silver collection rate was about 99.99%.

l生拠叢 実施例1で得られた恨めつき黒鉛粒から本発明の電解装
置により銀を剥離回収し、電極助材の再生を行った。
Silver was peeled off and recovered from the grained graphite grains obtained in Example 1 using the electrolytic apparatus of the present invention, and an electrode auxiliary material was recycled.

実施例1と同様にして銀めっき黒鉛粒を電極室に充填し
た。電極助材支持具を陽極とし、対極(SUS304)
を陰極板とし、濃度45g/nの遊離シアン化ナトリウ
ム水溶液3001を電解液として陰極電流密度IA/d
m”で3昼夜電解を行った。銀が陰極上へ、通電初期に
は銀白色板状に、また、通電2日日以降は灰色粗衣に電
着し、陰極板から容易に剥離回収することができた。こ
の結果、銀めっき黒鉛粒は元の黒色素地に再生された。
The electrode chamber was filled with silver-plated graphite particles in the same manner as in Example 1. The electrode auxiliary material support is used as an anode, and the counter electrode (SUS304)
is used as a cathode plate, and a free sodium cyanide aqueous solution 3001 with a concentration of 45 g/n is used as an electrolyte, and the cathode current density is IA/d.
Electrolysis was carried out for 3 days and nights at m''. Silver was electrodeposited on the cathode in the form of a silver-white plate at the beginning of energization, and on a gray coat after the 2nd day of energization, and was easily peeled off and recovered from the cathode plate. As a result, the silver-plated graphite grains were regenerated into their original black pigment background.

電解後の電解液中の濃度は0.076g/Aであり、銀
の回収率は約99.8%であった。
The concentration in the electrolytic solution after electrolysis was 0.076 g/A, and the recovery rate of silver was about 99.8%.

l生孤立 白黒写真の定着の際に生ずる定着廃液(銀濃度4.02
g / It )から銀を回収するため、陰極として実
施例1と同様に黒鉛粒電極助材を充填した電極室を用い
、対極の陽性として黒鉛板を用いて、定着廃液200I
lを電解した。陽極電流密度0.5A/dm2で4時間
通電を行ったところ、黒鉛粒は銀白色にめっきされ、定
着廃液中の銀濃度は0.015g/lに低下した(回収
率約99.6%)。
l Fixing waste liquid generated during fixing raw isolated black and white photographs (silver concentration 4.02
g/It), an electrode chamber filled with graphite particle electrode auxiliary material was used as the cathode in the same manner as in Example 1, a graphite plate was used as the positive counter electrode, and the fixing waste liquid 200I
1 was electrolyzed. When electricity was applied for 4 hours at an anode current density of 0.5 A/dm2, the graphite grains were plated silver-white, and the silver concentration in the fixing waste solution decreased to 0.015 g/l (recovery rate of about 99.6%). .

また、従来技術による電解装置の場合に比べて硫化水素
等の発生が著しく少なく、快適に操作できることがわか
った。これは、電極助材の比表面積が大きいために電流
密度が微小となり、電極界面における電気二重層の生成
が無視できる程に小さいためと思われる。
Furthermore, it was found that the generation of hydrogen sulfide, etc. was significantly less than in the case of electrolyzers according to the prior art, and the electrolyzer could be operated comfortably. This seems to be because the current density is minute due to the large specific surface area of the electrode auxiliary material, and the generation of an electric double layer at the electrode interface is negligibly small.

l生拠↓ P2と呼ばれる鉄キレート液を使用してカラー写真の定
着を行った際に生ずる定着排液(銀濃度2.0g/β)
を電解液として用い、銀の回収を行った。電極助材に黒
鉛粒を用いて陰極とし、カーボン板を陽極として陽極電
流密度0.5 A/dmzで4時間電解を行った。電解
終了時の排液中の残留銀濃度は0.01g/l以下であ
り、したがって銀回収率は約99.5%であった。この
値は、従来の電解装置による通常の回収率60〜65%
に比べて極めて高い。
↓ Fixing liquid produced when color photographs are fixed using an iron chelate liquid called P2 (silver concentration 2.0g/β)
was used as an electrolyte to recover silver. Electrolysis was performed for 4 hours at an anode current density of 0.5 A/dmz using graphite particles as an electrode auxiliary material as a cathode and a carbon plate as an anode. The residual silver concentration in the waste liquid at the end of electrolysis was 0.01 g/l or less, and therefore the silver recovery rate was about 99.5%. This value is higher than the normal recovery rate of 60-65% using conventional electrolyzers.
extremely high compared to

1体±エ ヒ素濃度12mg/71の弱酸性溶液を電解液として使
用した。電極助材に黒鉛粒を用いて陽極とし、SUS 
304板を陰極として陰極電流密度0.1 A/dl1
1!で電解を行った。ヒ素は亜ヒ酸となって複極し、陽
極の黒鉛粒に電着し、電解後の電解液からはヒ素が検出
されなかった。
A weakly acidic solution with a concentration of 1 body±Eherine of 12 mg/71 was used as the electrolyte. Graphite particles are used as an electrode auxiliary material to make the anode, and SUS
Cathode current density using 304 plate as cathode: 0.1 A/dl1
1! Electrolysis was performed. Arsenic turned into arsenite, became bipolar, and was electrodeposited on the graphite grains of the anode, and no arsenic was detected in the electrolyte after electrolysis.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の電解装置では表面積の大き
い電極助材と電解液とが長時間かつ完全に接触するので
、従来技術では達し得なかった高能率の電解採取が可能
である。
As described above, in the electrolysis device of the present invention, the electrode auxiliary material having a large surface area and the electrolyte are in complete contact for a long time, so that highly efficient electrolytic winning, which could not be achieved with the prior art, is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は第
1図の■−■線の断面図である。 なお、図面に用いた符号において、 1−−−−−−−−−−−−−−−−−一第1電極2−
−−−−−−−−−−一電極助材 4−−−−−−−−−−−−−−一容器5−−−−−−
−−−−−−−−−−一第2電極6−・−−−−−−−
−−一−−−−−空間9−−〜−−−−−−−−−一一
−−−−−電極室10−−−−−−−−−−一電解槽 である。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■--■ in FIG. In addition, in the symbols used in the drawings, 1--1 first electrode 2-
------------One electrode auxiliary material 4-----------One container 5----
−−−−−−−−−−−−−− Second electrode 6−・−−−−−−
--1 --- Space 9 -------11 --- Electrode chamber 10 ---1 Electrolytic cell.

Claims (1)

【特許請求の範囲】 1、多孔部分を有する容器に、粒状、チップ状、線状及
び多孔質ブリケット状のうちの少なくとも1種の形状を
有する導電性電極助材が多数充填され、この多数の電極
助材から成る充填物中に第1電極が挿入され、電解液供
給手段を設けてなる電極室と、 この電極室の外部に設けた第2電極とから電解槽がなり
、 容器と第2電極との間の空間に容器の多孔部分を透過し
た電解液が流入するようにしたことを特徴とする電解装
置。
[Claims] 1. A container having a porous portion is filled with a large number of conductive electrode auxiliary materials having at least one shape selected from granular, chip-like, linear, and porous briquette-like shapes. An electrolytic cell is made up of an electrode chamber in which a first electrode is inserted into a filling made of an electrode auxiliary material and an electrolyte supply means is provided, and a second electrode provided outside this electrode chamber, and a container and a second electrode are provided. An electrolytic device characterized in that an electrolytic solution that has passed through a porous portion of a container flows into a space between the electrode and the electrode.
JP61278180A 1986-11-21 1986-11-21 Electrolytic device Pending JPS63130792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61278180A JPS63130792A (en) 1986-11-21 1986-11-21 Electrolytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61278180A JPS63130792A (en) 1986-11-21 1986-11-21 Electrolytic device

Publications (1)

Publication Number Publication Date
JPS63130792A true JPS63130792A (en) 1988-06-02

Family

ID=17593701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61278180A Pending JPS63130792A (en) 1986-11-21 1986-11-21 Electrolytic device

Country Status (1)

Country Link
JP (1) JPS63130792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193761A (en) * 2016-04-21 2017-10-26 大成建設株式会社 Recovery method of arsenic and purification method and purification device of sewage containing arsenic
US10763419B2 (en) 2017-06-02 2020-09-01 Northrop Grumman Systems Corporation Deposition methodology for superconductor interconnects
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200994A (en) * 1984-03-23 1985-10-11 Chlorine Eng Corp Ltd Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal
JPS6126795A (en) * 1984-07-16 1986-02-06 Chlorine Eng Corp Ltd Electrolysis method using fluidized bed and electrolytic cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200994A (en) * 1984-03-23 1985-10-11 Chlorine Eng Corp Ltd Method for recovering metal from metal-containing solution and electrolytic cell for recovering metal
JPS6126795A (en) * 1984-07-16 1986-02-06 Chlorine Eng Corp Ltd Electrolysis method using fluidized bed and electrolytic cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193761A (en) * 2016-04-21 2017-10-26 大成建設株式会社 Recovery method of arsenic and purification method and purification device of sewage containing arsenic
US10763419B2 (en) 2017-06-02 2020-09-01 Northrop Grumman Systems Corporation Deposition methodology for superconductor interconnects
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication

Similar Documents

Publication Publication Date Title
US4585539A (en) Electrolytic reactor
CA1086254A (en) Divided electrochemical cell with electrode of circulating particles
US4004994A (en) Electrochemical removal of contaminants
JP2537525B2 (en) Electrolytic bath for metal electrolytic deposition
US3977951A (en) Electrolytic cells and process for treating dilute waste solutions
CA2468856A1 (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
CN107117690A (en) Electrocatalytic oxidation handles the device and method of Recalcitrant chemicals
JP2007536432A (en) Electrolytic cell with multilayer expanded metal electrode
US4141804A (en) Process for electrowinning metal from metal bearing solutions
US11408083B2 (en) Filter press device for electrodeposition of metal from solutions, which is made up of separating elements conformed by ion exchange membranes forming a plurality of anolyte and catholyte chambers, wherein the electrodes are connected in series with automatic detachment of the metal product
MXPA02008974A (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof.
US3682798A (en) Method and apparatus for electrorefining particulate metallic materials
CN105849318A (en) Metal recovery reactor and metal recovery system
GB1215804A (en) Improvements in or relating to effluent treatment
JPS63130792A (en) Electrolytic device
US588276A (en) Carl kellner
CN214299655U (en) Device for recycling nitrogen and phosphorus in rural sewage by electrochemical sacrificial anode
JPH0688275A (en) Method for regenerating aqueous solution containing metal ion and sulfuric acid and method and device for using the same
ES306422A1 (en) Method of producing pure nickel by electrolytic refining
GB1598306A (en) Electrolytic method and apparatus
JPH0210875B2 (en)
RU2003107048A (en) PREPARATION OF VANADIUM ELECTROLYTE BY USING ASYMMETRIC ELECTROLYZERS OF VANADIUM RESTORATION FOR REMOVAL OF VALENOE RESISTANCE
ATE144006T1 (en) DEVICE FOR THE ELECTROLYTICAL TREATMENT OF LIQUIDS HAVING AN ANODE AND A CATHODE CHAMBER
JPH06510332A (en) Electrolysis device and method with porous stirring electrode
JPH0413432B2 (en)