JPS6412084B2 - - Google Patents

Info

Publication number
JPS6412084B2
JPS6412084B2 JP1721381A JP1721381A JPS6412084B2 JP S6412084 B2 JPS6412084 B2 JP S6412084B2 JP 1721381 A JP1721381 A JP 1721381A JP 1721381 A JP1721381 A JP 1721381A JP S6412084 B2 JPS6412084 B2 JP S6412084B2
Authority
JP
Japan
Prior art keywords
mol
component
oxide
composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1721381A
Other languages
Japanese (ja)
Other versions
JPS57132316A (en
Inventor
Gen Itakura
Yoshihiro Matsuo
Tatsuya Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1721381A priority Critical patent/JPS57132316A/en
Publication of JPS57132316A publication Critical patent/JPS57132316A/en
Publication of JPS6412084B2 publication Critical patent/JPS6412084B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン酸ストロンチウム(SrTiO3
またはチタン酸ストロンチウムカルシウム
(Sr1-xCaxTiO3)を主体とする半導体磁器の粒界
に酸化ビスマス(Bi2O3)、酸化銅(Cu2O)、酸化
マンガン(MnO2)、酸化硼素(B2O3)、酸化リチ
ウム(Li2O)、酸化ランタン(La2O3)および酸
化チタン(TiO2)とを主体とする拡散剤を熱拡
散させて、その粒界領域に誘電体層を設けること
により得られるコンデンサ材料、すなわち粒界誘
電体層型半導体磁器の組成物に関する。 コンデンサ材料として粒界誘電体層型半導体磁
器の組成物とその半導体磁器の組成物とその半導
体磁器の粒界領域を高抵抗化し、結晶粒界に誘電
体層を設けるための粒界拡散剤の組成物との両者
からなる。この両者の選択によつてコンデンサの
諸特性が決まる。 本発明にかかる半導体磁器の組成物は酸化ネオ
ジウム(Nd2O3)を含有したチタン酸ストロンチ
ウム(SrTiO3)またはチタン酸ストロンチウム
カルシウム(Sr1-xCaxTiO3)固溶体を主体とし
たものである。 従来、酸化ニオブ(Nb2O5)や酸化デイスプロ
シウム(Dy2O3)等希土類酸化物をチタン酸スト
ロンチウム(SrTiO3)に添加した粒界層型半導
体磁器誘電体は知られている。これらの粒界層形
成については、Bi2O3,PbO,B2O3からなる拡散
剤の用いられる例、あるいはBi2O3とCu2Oおよび
MnO2とを含んだ拡散剤の用いられる例等が知ら
れている。他は一般的に一種類の酸化物を拡散さ
せる例が多い。 本発明はSrTiO3またはSr1-xCaxTiO3にNd2O3
を添加してなる半導体磁器に、Bi2O3,Cu2O,
MnO2,B2O3,Li2O,La2O3,TiO2からなる組
成を拡散することにより得られる粒界層型半導体
磁器誘電体である。したがつて、前述従来例とは
実質的に異なつた磁器組成物である。 実用上、粒界誘電体層型半導体磁器コンデンサ
素子は静電容量の温度変化率の観点から次の3種
類の規格に分けられる。すなわち、YR規格、
YB規格およびYA規格である。20℃の容量を基
準として+85℃から−25℃の温度範囲において容
量温度変化率が±15%以内のコンデンサがYR規
格、その容量温度変化率が±10%以内のコンデン
サがYB規格、また容量温度変化率が±5%以内
のコンデンサがYA規格である。いずれの規格の
コンデンサ素子においてもそのみかけ誘電率εa
大きく、直流破壊電圧Vbは大きく、誘電損失
tanδは小さいことが望ましい。しかし、実用上要
求される各特性はYR規格ではεaは35000以上、
Vbは500V/mm以上、tanδは0.01以下であり、YB
規格ではεaは20000以上、Vbは700V/mm以上、
tanδは0.01以下であり、YA規格ではεaは5000以
上、Vbは700V/mm以上、tanδは0.01以下である。 本発明にかかる粒界誘電体層型半導体磁器コン
デンサはこのような実用上要求される各特性を満
足するものである。特にYR規格用として推奨さ
れる半導体磁器組成物はSrO成分が50.23〜49.00
モル%,TiO2成分が49.72〜50.00モル%,Nd2O3
成分が0.05〜1.0モル%からなる組成物、あるい
はこれらを主成分とし、主成分100モル部に対し
て0.2モル部以下のSiO2成分を含有する組成物で
ある。またYB規格用として推奨される半導体磁
器組成物はSrO成分が50.23〜34.00モル%,CaO
成分が15モル%以下であり、かつSrO成分とCaO
成分との含量が50.23〜48.80モル%の範囲内であ
り、TiO2成分が49.72〜50.20モル%,および
Nd2O3成分が0.05〜1.0モル%からなる組成物、あ
るいはこれらを主成分100モル部に対して0.5モル
部以下のSiO2成分を含有する組成物である。さ
らにまた、YA規格の半導体磁器組成物としては
SrO成分が35.23〜26.40モル%,CaO成分が15〜
22.6モル%であり、かつSrO成分とCaO成分との
含量が50.23〜49.47モル%の範囲内であり、TiO2
成分が49.72〜50.23モル%,およびNd2O3成分が
0.05〜1.0モル%からなる組成物、あるいはこれ
らを主成分とし、主成分100モル部に対して2モ
ル部以下のSiO2成分を含有する組成物が望まし
い。 上記いずれの規格の半導体磁器組成物において
も本発明にかかるNd2O3成分量の範囲は0.05〜1.0
モル%である。Nd2O3はSrO成分とTiO2成分そ
から構成されるSrTiO3、あるいはSrO成分,
CaO成分,およびTiO2成分から構成される
(Sr1-xCax)TiO3固溶体を原子価制御の原理によ
り半導体化させるのに必要な成分で、そのNd2O3
成分量が0.05モル%(SrTiO3あるいはSr1-xCax
TiO3に対してほぼ0.1モル%)未満では半導体化
の効果がなく、一方その成分量が1.0モル%
(SrTiO3あるいはSr1-xCaxTiO3に対してはほぼ
2.0モル%)を超えるとSrTiO3磁器あるいはSr1-x
CaxTiO3磁器の粒成長が抑制されると同時に半導
体磁器の比抵抗が大きくなるので望ましくない。
また半導体磁器の主成分であるSrTiO3において
SrO成分をCaO成分で置換すると、そのCaO成分
量の増加に伴ない容量温度変化率を小さくする効
果を持つが、一方焼結粒径が一般に小さくなる傾
向にあり、そのCaO成分量が22.6モル%(ほぼ
Sr0.55Ca0.45TiO3の組成に対応する)を超えると
磁器の焼結粒径が5μm以下となり、実用上要求
される最低のみかけ誘電率(εa)5000が確保でき
なくなるので望ましくない。さらに、SrO成分と
CaO成分との含量が50.23モル%を超えてもまた
TiO2成分が49.72モル%未満でも半導体磁器の焼
結粒径は小さくなり、みかけ誘電率(εa)を5000
を確保できない。また、SrO成分とCaO成分との
合量が48.80モル%未満でもまたTiO2成分が50.23
%を超えても半導体磁器の焼結粒径は同様に小さ
くなり、εa=5000を確保できない。これは
SrTiO3やSr1-xCaxTiO3に対してある限度を超え
た過剰添加のSrO成分,CaO成分,あるいは
TiO2成分が混在すると、焼結中のSrTiO3粒子や
Sr1-xCaxTiO3粒子の粒成長が抑制されるためで
ある。次に、SiO2成分含有の効果はSrTiO3ある
いはSr1-xCaxTiO3系の半導体磁器の焼結を促進
し(結果として本焼成温度を低くすることができ
る。)、誘電損失(tanδ)をわずかに小さくするこ
とである。しかし、SiO2成分の含有量が、SrO,
CaO,TiO2,およびNd2O3の3〜4成分からな
る主成分100モル部に対して2モル部を超えると、
粒成長抑制作用が大きく、5μm以上の平均粒径
が得られない(すなわち、誘電率(εa)が5000以
上の特性が得られない)ので望ましくない。 次に、本発明における粒界拡散剤の組成物は
93.5〜8.5モル%のBi2O3成分,4.5〜45モル%の
Cu2O成分,0.5〜4モル%のMnO2成分,1〜8.5
モル%のB2O3成分,17モル%以下のLa2O3成分
および17モル%以下のTiO2,Li2O成分20モル%
以下の組成によつて構成される5成分系から7成
分系混合物であることに特徴がある。本発明にか
かる研究の結果、熱拡散後の粒界拡散成分におい
てBi2O3成分が増えるとεaは大きくなるが、Vb
小さくなり、容量温度変化率(85℃〜−25℃)は
大きくなる。逆にCu2O成分が増えると容量温度
変化率は小さくなり、Vbは大きくなるが、εa
小さくなる。Bi2O3成分が93.5モル%を超えても、
あるいはCu2O成分が4.5モル%未満であつても、
Vbが実用上要求される最低の値500V/mm以上の
特性が得られないので望ましくない。またBi2O3
成分が8.5モル%未満であつても、あるいはCu2O
成分が45モル%を超えても、εaが5000以上の特性
が得られないので望ましくない(たとえ平均粒径
の比較的大きい約20μmの半導体磁器を用いても
得られない)。 次に、拡散剤成分としてMnO2を添加するとVb
の値が大きくなるという効果があるが、一方εa
わずかに減少し、tanδが増大する傾向を持つ。
MnO2成分量が4モル%を超えるとtanδが0.01以
下の特性が得られなくなるため、含有MnO2量は
4モル%以下であることが望ましい。なお、
MnO2量が0.5モル%未満ではVbを大きくする効
果はほとんどみられない。また、拡散剤成分とし
てB2O3を添加すると、tanδを減少させる効果が
あるが、一方Vbを減少させる傾向を持つ。B2O3
成分が8.5モル%を超えるとVbが500V/mm以上の
特性が得られなくなるので、含有B2O3成分量は
8.5モル%以下であることが望ましい。なお、
B2O3量が1モル%未満ではtanδを減少させる効
果はほとんどみられない。 次に、本発明にかかる拡散剤の特徴の一つであ
るLa2O3成分はコンデンサ素子の容量温度変化率
を小さくする効果を持つ。しかし、La2O3成分量
が多くなるとεaが著しく減少し、Vbも減少する
傾向がある。La2O3成分量が17モル%を超えると
YR規格のεa35000以上,Vb500V/mm以上の特性、
あるいはYB規格のεa20000以上,Vb700V/mm以
上の特性を満足しないので望ましくない。ない、
La2O3成分量が0.5モル%未満では容量温度変化
率を小さくする効果はほとんどみられない。次
に、La2O3成分の存在下でTiO2成分を添加する
と、容量温度変化率がさらに小さくなる効果がみ
られる。しかし、含有TiO2成分量が17モル%を
超えるとεaおよびVbが共に減少するので、TiO2
成分17モル%を超える添加は無用である。 このように、本発明にかかる粒界誘電体層型半
導体磁器組成物は実用コンデンサ素子に要求され
るYR規格,YB規格,YA規格のそれぞれの特性
を満足するものであつて、たとえばYR規格すな
わち容量温度変化率が±15%以内ではεaが40000
〜60000,Vbが600〜1300V/mm,tanδが0.003〜
0.005,YB規格すなわち容量温度変化率が±10%
以内ではεaが20000〜35000,Vbが1000〜2000V/
mm,tanδが0.003〜0.005,およびYA規格すなわ
ち容量温度変化率が±5%以内ではεaが7000〜
20000,Vbが2000〜4000V/mm,tanδが0.003〜
0.005の優れたコンデンサ特性を提供するもので
ある。 以下本発明の詳細につき実施例を挙げて説明す
る。 実施例 1 市販の工業用原料SrCO3粉末(純度97.5%以
上),CaCO3粉末(純度98%以上),TiO2(アナタ
ーゼ型,純度98.5%以上),およびNd2O3粉末
(純度98%以上)を用い、第1表に示す半導体磁
器組成物の組成比になるように配合し、湿式混
合,乾燥,1200℃の温度で仮焼成した後、平均
2.5μmの粉末に粉砕した後、ポリビニルアルコー
ル水溶液をバインダーとして添加混合し、32メツ
シユパスに整粒し、その整粒粉を直径15mm,厚さ
0.5mmの円板形に約1トン/cm2の加圧力で成形し、
これらの成形体を空気中において1000℃で加熱処
理した後、95%N2−5%H2の混合ガス気流中に
おいて1390℃の温度で4時間の本焼成して、直径
約12.5mm,厚さ約0.4mmの円板形の半導体磁器を
得た。これらの半導体磁器の破断面を研磨,エツ
チングして、顕微鏡観察し、平均粒径を測定した
結果を第1表に示す。なお焼結体の平均粒径は本
焼成温度を1380℃〜1400℃の範囲内で変えても変
化しなかつた。
The present invention uses strontium titanate (SrTiO 3 )
Or bismuth oxide (Bi 2 O 3 ) , copper oxide (Cu 2 O ) , manganese oxide (MnO 2 ), A dielectric is created in the grain boundary region by thermally diffusing a diffusing agent mainly consisting of boron (B 2 O 3 ), lithium oxide (Li 2 O), lanthanum oxide (La 2 O 3 ), and titanium oxide (TiO 2 ). The present invention relates to a composition of a capacitor material obtained by providing a body layer, that is, a grain boundary dielectric layer type semiconductor ceramic. A composition of a grain boundary dielectric layer type semiconductor porcelain as a capacitor material, a composition of the semiconductor porcelain, and a grain boundary diffusion agent for increasing the resistance of the grain boundary region of the semiconductor porcelain and providing a dielectric layer at the grain boundary. It consists of both a composition and a composition. The various characteristics of the capacitor are determined by the selection of these two. The composition of the semiconductor ceramic according to the present invention is mainly composed of strontium titanate (SrTiO 3 ) or strontium calcium titanate (Sr 1-x Ca x TiO 3 ) solid solution containing neodymium oxide (Nd 2 O 3 ). be. BACKGROUND ART Grain boundary layer type semiconductor ceramic dielectric materials in which rare earth oxides such as niobium oxide (Nb 2 O 5 ) and dysprosium oxide (Dy 2 O 3 ) are added to strontium titanate (SrTiO 3 ) have been known. Regarding the formation of these grain boundary layers, examples include the use of a diffusing agent consisting of Bi 2 O 3 , PbO, and B 2 O 3 , or the use of a diffusion agent consisting of Bi 2 O 3 and Cu 2 O and
Examples are known in which a diffusing agent containing MnO 2 is used. In other cases, there are many cases in which one type of oxide is generally diffused. The present invention combines Nd 2 O 3 in SrTiO 3 or Sr 1-x Ca x TiO 3
Bi 2 O 3 , Cu 2 O,
This is a grain boundary layer type semiconductor ceramic dielectric material obtained by diffusing a composition consisting of MnO 2 , B 2 O 3 , Li 2 O, La 2 O 3 , and TiO 2 . Therefore, this is a porcelain composition that is substantially different from that of the conventional example described above. In practice, grain boundary dielectric layer type semiconductor ceramic capacitor elements are classified into the following three types of standards from the viewpoint of the rate of change of capacitance with temperature. i.e. YR standard,
YB standard and YA standard. Capacitors whose capacitance temperature change rate is within ±15% in the temperature range of +85°C to -25°C based on the capacitance at 20°C are YR standard, and capacitors whose capacitance temperature change rate is within ±10% are YB standard. YA standard capacitors have a temperature change rate within ±5%. Capacitor elements of any standard have a large apparent permittivity ε a , a large DC breakdown voltage V b , and a large dielectric loss.
It is desirable that tanδ is small. However, in the YR standard, each characteristic required in practice is ε a of 35,000 or more.
V b is 500V/mm or more, tanδ is 0.01 or less, and YB
According to the standard, ε a is 20000 or more, V b is 700V/mm or more,
tan δ is 0.01 or less, and according to the YA standard, ε a is 5000 or more, V b is 700 V/mm or more, and tan δ is 0.01 or less. The grain boundary dielectric layer type semiconductor ceramic capacitor according to the present invention satisfies each of these practically required characteristics. In particular, the semiconductor ceramic composition recommended for YR standard has an SrO content of 50.23 to 49.00.
Mol%, TiO2 component is 49.72 ~50.00mol%, Nd2O3
It is a composition consisting of 0.05 to 1.0 mol% of the components, or a composition having these as the main components and containing 0.2 parts by mole or less of the SiO 2 component per 100 parts by mole of the main component. In addition, the semiconductor ceramic composition recommended for YB standard has a SrO component of 50.23 to 34.00 mol%, CaO
component is 15 mol% or less, and contains SrO component and CaO
The content of the TiO components is within the range of 50.23 to 48.80 mol%, and the TiO 2 component is 49.72 to 50.20 mol%, and
This is a composition containing 0.05 to 1.0 mol % of the Nd 2 O 3 component, or a composition containing 0.5 mol parts or less of the SiO 2 component based on 100 mol parts of the main component. Furthermore, as a YA standard semiconductor porcelain composition,
SrO component is 35.23-26.40 mol%, CaO component is 15-26.40 mol%
22.6 mol%, and the content of SrO component and CaO component is within the range of 50.23 to 49.47 mol%, and TiO 2
component is 49.72-50.23 mol%, and Nd 2 O 3 component is
A composition consisting of 0.05 to 1.0 mol %, or a composition having these as main components and containing 2 mole parts or less of the SiO 2 component per 100 mole parts of the main component is desirable. In the semiconductor ceramic composition of any of the above standards, the range of the Nd 2 O 3 component amount according to the present invention is 0.05 to 1.0.
It is mole%. Nd 2 O 3 is SrTiO 3 composed of SrO component and TiO 2 component, or SrO component,
A necessary component for converting a (Sr 1-x Ca x ) TiO 3 solid solution consisting of a CaO component and a TiO 2 component into a semiconductor based on the principle of valence control, and its Nd 2 O 3
The component amount is 0.05 mol% (SrTiO 3 or Sr 1-x Ca x
If the content is less than 0.1 mol% (relative to TiO 3 ), there is no effect on semiconductor formation, while if the amount of the component is 1.0 mol%
(approximately for SrTiO 3 or Sr 1-x Ca x TiO 3
2.0 mol%) exceeds SrTiO 3 porcelain or Sr 1-x
This is undesirable because the grain growth of Ca x TiO 3 porcelain is suppressed and at the same time the resistivity of semiconductor porcelain increases.
In addition, in SrTiO 3 , which is the main component of semiconductor porcelain,
Replacing the SrO component with CaO component has the effect of reducing the rate of change in capacitance with temperature as the amount of CaO component increases, but on the other hand, the sintered grain size generally tends to become smaller, and the amount of CaO component increases to 22.6 mol. % (almost
Sr 0.55 Ca 0.45 TiO 3 corresponding to the composition), the sintered grain size of the porcelain becomes 5 μm or less, making it impossible to secure the minimum apparent dielectric constant (ε a ) of 5000 required for practical use, which is not desirable. In addition, the SrO component and
Even if the content with CaO component exceeds 50.23 mol%,
Even if the TiO2 component is less than 49.72 mol%, the sintered grain size of the semiconductor porcelain becomes small, and the apparent permittivity (ε a ) decreases to 5000.
cannot be secured. Furthermore, even if the total amount of SrO component and CaO component is less than 48.80 mol%, the TiO 2 component is still 50.23 mol%.
%, the sintered grain size of the semiconductor porcelain similarly becomes smaller, and ε a =5000 cannot be ensured. this is
SrO component, CaO component added in excess of a certain limit to SrTiO 3 or Sr 1-x Ca x TiO 3 , or
If TiO 2 components are mixed, SrTiO 3 particles and
This is because grain growth of Sr 1-x Ca x TiO 3 particles is suppressed. Next, the effect of containing two SiO components promotes the sintering of SrTiO 3 or Sr 1-x Ca x TiO 3 -based semiconductor porcelain (as a result, the main firing temperature can be lowered), and the dielectric loss (tan δ ) is to be made slightly smaller. However, the content of the two SiO components is SrO,
If it exceeds 2 mol parts per 100 mol parts of the main component consisting of 3 to 4 components of CaO, TiO 2 and Nd 2 O 3 ,
It is undesirable because it has a large grain growth suppressing effect, and an average grain size of 5 μm or more cannot be obtained (that is, a property with a dielectric constant (ε a ) of 5000 or more cannot be obtained). Next, the composition of the grain boundary diffusing agent in the present invention is
93.5-8.5 mol% Bi 2 O 3 component, 4.5-45 mol%
Cu2O component, 0.5-4 mol% MnO2 component, 1-8.5
B 2 O 3 component of mol%, La 2 O 3 component of 17 mol% or less and TiO 2 , Li 2 O component of 20 mol% of 17 mol% or less
It is characterized by being a five-component to seven-component mixture composed of the following compositions. As a result of research related to the present invention, when the Bi 2 O 3 component increases in the grain boundary diffusion component after thermal diffusion, ε a increases, but V b decreases, and the capacitance temperature change rate (85℃ to -25℃) becomes larger. Conversely, as the Cu 2 O component increases, the capacitance temperature change rate decreases, V b increases, but ε a decreases. Even if the Bi 2 O 3 component exceeds 93.5 mol%,
Or even if the Cu 2 O component is less than 4.5 mol%,
This is undesirable because it is not possible to obtain characteristics with V b of 500 V/mm or more, which is the minimum value required for practical use. Also Bi 2 O 3
Even if the component is less than 8.5 mol% or Cu 2 O
Even if the component exceeds 45 mol %, it is not desirable because the property of ε a of 5000 or more cannot be obtained (even if semiconductor porcelain with a relatively large average grain size of about 20 μm is used). Next, when MnO 2 is added as a diffusing agent component, V b
This has the effect of increasing the value of , but on the other hand, ε a tends to decrease slightly and tan δ increases.
If the amount of MnO 2 component exceeds 4 mol %, the property of tan δ of 0.01 or less cannot be obtained, so it is desirable that the amount of MnO 2 contained is 4 mol % or less. In addition,
When the amount of MnO 2 is less than 0.5 mol %, there is almost no effect of increasing V b . Furthermore, when B 2 O 3 is added as a diffusing agent component, it has the effect of reducing tan δ, but on the other hand, it tends to reduce V b . B 2 O 3
If the content exceeds 8.5 mol%, it will not be possible to obtain a property with V b of 500 V/mm or more, so the amount of B 2 O 3 component contained should be
The content is preferably 8.5 mol% or less. In addition,
When the amount of B 2 O 3 is less than 1 mol %, there is almost no effect of reducing tan δ. Next, the La 2 O 3 component, which is one of the characteristics of the diffusing agent according to the present invention, has the effect of reducing the capacitance temperature change rate of the capacitor element. However, when the amount of La 2 O 3 component increases, ε a decreases significantly, and V b also tends to decrease. When the amount of La 2 O 3 component exceeds 17 mol%
YR standard ε a 35000 or more, V b 500V/mm or more characteristics,
Otherwise, it is not desirable because it does not satisfy the YB standard characteristics of ε a 20000 or more and V b 700V/mm or more. do not have,
When the amount of La 2 O 3 component is less than 0.5 mol %, there is almost no effect of reducing the rate of change in capacity with temperature. Next, when the TiO 2 component is added in the presence of the La 2 O 3 component, the effect of further reducing the capacitance temperature change rate is observed. However, if the content of TiO 2 component exceeds 17 mol%, both ε a and V b decrease, so TiO 2
Addition of more than 17 mol% of the component is unnecessary. As described above, the grain boundary dielectric layer type semiconductor ceramic composition according to the present invention satisfies the characteristics of the YR standard, YB standard, and YA standard required for practical capacitor elements. When the capacitance temperature change rate is within ±15%, ε a is 40000
~60000, V b is 600 ~ 1300V/mm, tanδ is 0.003 ~
0.005, YB standard, that is, capacitance temperature change rate is ±10%
Within ε a is 20000 to 35000, V b is 1000 to 2000V/
mm, tan δ is 0.003 to 0.005, and YA standard, that is, the capacitance temperature change rate is within ±5%, ε a is 7000 to 7000.
20000, V b is 2000 to 4000V/mm, tanδ is 0.003 to
It provides excellent capacitor characteristics of 0.005. The details of the present invention will be explained below by giving examples. Example 1 Commercially available industrial raw materials SrCO 3 powder (purity 97.5% or higher), CaCO 3 powder (purity 98% or higher), TiO 2 (anatase type, purity 98.5% or higher), and Nd 2 O 3 powder (purity 98% or higher) (above), were blended to the composition ratio of the semiconductor ceramic composition shown in Table 1, and after wet mixing, drying, and pre-firing at a temperature of 1200℃, the average
After grinding to 2.5 μm powder, add and mix polyvinyl alcohol aqueous solution as a binder, size the powder into 32 mesh passes, and make the sized powder 15 mm in diameter and thickness.
Formed into a 0.5mm disc shape with a pressure of approximately 1 ton/ cm2 ,
These molded bodies were heat-treated at 1000°C in air, and then fired for 4 hours at 1390°C in a mixed gas flow of 95% N 2 - 5% H 2 to give a diameter of about 12.5 mm and a thickness. A disk-shaped semiconductor porcelain with a diameter of about 0.4 mm was obtained. The fractured surfaces of these semiconductor ceramics were polished and etched, observed under a microscope, and the average grain size was measured. Table 1 shows the results. Note that the average grain size of the sintered body did not change even if the main firing temperature was changed within the range of 1380°C to 1400°C.

【表】【table】

【表】【table】

【表】 *印は比較試料
得られた半導体磁器の20℃における比抵抗(In
−Ga電極)は試料1および同32を除いてすべて
0.2〜0.5Ωcmの範囲にあつた。しかし、試料1は
5.1Ωcm,比較試料32は6.7Ωcmと高い比抵抗を示
し、原子価制御型半導体化が不十分であつた。一
方、Nd2O3成分量が1.0モル%を超えた比較試料
14,同27,および同37は粒成長が抑制され、平均
粒径で5μm未満と小さかつた。 また、SrO成分量が50.23モル%を超えた試料
2、SrO成分とCao成分の合量が49.00モル%未満
の試料13および同26あるいはTiO2成分量が49.72
モル%未満の試料2,同5および同18、TiO2
分量が50.20モル%を超えた試料10,同13,同23
および同26はいずれも粒成長が抑制され、平均粒
径で5μm未満と小さかつた。 また、CaO成分量が22.6モル%を超えた試料も
焼結粒径が5μm未満となるので望ましくない。
試料2,同5,同10,同13,同14,同18,同23,
同26,同27,同32,同37,および同39以外の試料
はすべて平均粒径が5μm以上であつた。 次に、第1表に示す試料のうち平均粒径が12μ
mを超える試料については、その半導体磁器にペ
ースト状の拡散剤を塗布し、1150℃の温度で2時
間の加熱処理を、また第1表に示す試料のうち平
均粒径が12μm以下の試料については、その半導
体磁器にペースト状の拡散剤を塗布し、1000℃の
温度で2時間の加熱処理をそれぞれ行なつて、粒
界に誘電体層を形成した。このときの拡散剤の組
成はすべての試料に対して、67.6モル%のBi2O3
12.0モル%のCu2O,2.4モル%のMnO2,6.0モル
%のB2O3,4.0モル%のLa2O3,および8.0モル%
のTiO2からなる6成分であつた。この拡散剤に
用いた各原料粉末はすべて市販の試薬特級であ
る。塗布量は半導体磁器素子1枚(250mg)当り
1.9mgであつた。また、熱拡散にあたつては、塗
布した拡散成分が試料外に蒸発あるいは拡散など
により逸散しないように留意した。このようにし
て得られた粒界誘電体層型半導体磁器の円板形素
子の両面にAg電極を焼付けてコンデンサ素子と
し、εa(1KHz),tanδ(1KHz),およびVbを測定し
た。これらの結果を第2表に示す。
[Table] *marked is comparative sample. Specific resistance (In
-Ga electrode) are all except Sample 1 and Sample 32.
It was in the range of 0.2 to 0.5 Ωcm. However, sample 1
Comparative sample 32 showed a high resistivity of 5.1 Ωcm and 6.7 Ωcm, indicating that valence-controlled semiconductor formation was insufficient. On the other hand, a comparative sample in which the amount of Nd 2 O 3 component exceeded 1.0 mol%
No. 14, No. 27, and No. 37 had grain growth suppressed and the average grain size was small, less than 5 μm. In addition, Sample 2 with an SrO component amount exceeding 50.23 mol%, Sample 13 with a total amount of SrO component and Cao component of less than 49.00 mol%, and Sample 26 with a TiO 2 component amount of 49.72 mol%.
Samples 2, 5 and 18 with less than mol% TiO, samples 10, 13 and 23 with TiO2 component amount exceeding 50.20 mol%
and No. 26, grain growth was suppressed and the average grain size was small, less than 5 μm. Further, a sample in which the amount of CaO component exceeds 22.6 mol % is also undesirable because the sintered grain size becomes less than 5 μm.
Sample 2, 5, 10, 13, 14, 18, 23,
All samples other than Sample No. 26, No. 27, No. 32, No. 37, and No. 39 had an average particle size of 5 μm or more. Next, among the samples shown in Table 1, the average particle size is 12μ
For samples with a particle diameter of more than m, apply a paste-like diffusing agent to the semiconductor porcelain and heat treat it at a temperature of 1150°C for 2 hours, and for samples shown in Table 1 with an average particle size of 12 μm or less. applied a paste-like diffusing agent to the semiconductor porcelain and subjected each to a heat treatment at a temperature of 1000°C for 2 hours to form a dielectric layer at the grain boundaries. The composition of the diffusing agent at this time was 67.6 mol% Bi 2 O 3 ,
12.0 mol% Cu2O , 2.4 mol% MnO2 , 6.0 mol% B2O3 , 4.0 mol% La2O3 , and 8.0 mol%
There were six components consisting of TiO2 . All of the raw material powders used for this diffusing agent were commercially available special grade reagents. Coating amount is per semiconductor porcelain element (250mg)
It was 1.9 mg. Furthermore, during thermal diffusion, care was taken to prevent the applied diffusion component from evaporating or diffusing out of the sample. Ag electrodes were baked on both sides of the disc-shaped element of the grain-boundary dielectric layer semiconductor porcelain obtained in this way to form a capacitor element, and ε a (1 KHz), tan δ (1 KHz), and V b were measured. These results are shown in Table 2.

【表】【table】

【表】 *印は比較試料
試料101,同116および同132はtanδが0.01を超
えているため、実用的価値に乏しく、本発明の範
囲外とした。また、試料102,同105,同110,同
113,同114,同118,同123,同126,同127,同
132,同137および同139はεaが5000未満であり大
容量コンデンサとしての実用的価値に乏しく、本
発明の範囲外とした。 第2表に示す本発明の試料のうち試料104,同
107,同108,同111,同115,同117,同120,同
124および同128はいずれもεaが35000以上、tanδ
が0.01以下,Vbが500V/mm以上,容量温度変化
率が±15%以内(YR規格)の実用特性を有して
いる。また試料121,同129,同130および同131は
εaが20000以上,tanδが0.01以下,Vbが700V/mm
以上,容量温度変化率が±10%以内(YB規格)
の実用特性を有している。また、試料103,同
106,同109,同112,同119,同122,同125,同
133,同134,同135,同136および同138はいずれ
もεaが5000以上,tanδが0.01以下,Vbが700V/
mm以上,容量温度変化率が±5%以内(YA規
格)の実用特性を有している。 実施例 2 市販の試薬特級Bi2O3,Cu2O,MnO2,B2O3
Li2O,La2O3およびTiO2の各粉末を第3表に示
す拡散剤組成物の組成比になるように配合し、乾
式混合し、さらに松やに,テレピン油等を適量加
えて混合して、ペースト状拡散剤を作製した。こ
のペースト状拡散剤を実施例1の第1表に示した
試料8の半導体磁器素子(平均粒径20μm)に塗
布した。拡散剤の塗布量は酸化物粉末に換算して
素子1枚(250mg)当り1.9mgである。このペース
ト状拡散剤を塗布した半導体磁器素子を1150℃の
温度で2時間加熱処理を行なつた。この熱拡散処
理にあたつては塗布した拡散成分が蒸発,溶融流
失,試料外への拡散などにより試料外に失なわれ
ないように留意した。このようにして得られた粒
界誘電体層型半導体磁器の円板形素子の両面に
Ag電極を焼付けてコンデンサ素子とし、εa(1K
Hz),tanδ(1KHz),Vbおよび容量温度変化率
(+85℃〜−25℃の温度範囲で20℃を基準とする)
を測定した。これらの結果を第3表に示す。
[Table] Comparative samples marked with * Samples 101, 116, and 132 had tan δ exceeding 0.01, so they lacked practical value and were excluded from the scope of the present invention. In addition, samples 102, 105, 110, and
113, 114, 118, 123, 126, 127,
Samples No. 132, No. 137, and No. 139 had an ε a of less than 5000 and lacked practical value as large-capacity capacitors, and were therefore excluded from the scope of the present invention. Among the samples of the present invention shown in Table 2, sample 104
107, 108, 111, 115, 117, 120,
Both 124 and 128 have ε a of 35000 or more and tan δ
It has practical characteristics such as V b of 0.01 or less, V b of 500 V/mm or more, and capacitance temperature change rate of within ±15% (YR standard). In addition, samples 121, 129, 130, and 131 have ε a of 20000 or more, tan δ of 0.01 or less, and V b of 700 V/mm.
Above, the capacitance temperature change rate is within ±10% (YB standard)
It has practical characteristics. In addition, sample 103,
106, 109, 112, 119, 122, 125,
133, 134, 135, 136, and 138 all have ε a of 5000 or more, tan δ of 0.01 or less, and V b of 700V/
mm or more, and has practical characteristics with a capacitance temperature change rate of within ±5% (YA standard). Example 2 Commercially available reagent special grade Bi 2 O 3 , Cu 2 O, MnO 2 , B 2 O 3 ,
Li 2 O, La 2 O 3 , and TiO 2 powders were blended to the composition ratio of the dispersant composition shown in Table 3, dry mixed, and an appropriate amount of pine tar, turpentine oil, etc. was added and mixed. A paste-like diffusing agent was prepared. This paste-like diffusing agent was applied to a semiconductor ceramic element (average particle size: 20 μm) of Sample 8 shown in Table 1 of Example 1. The amount of the diffusing agent applied was 1.9 mg per element (250 mg) in terms of oxide powder. The semiconductor ceramic element coated with this paste-like diffusing agent was heat-treated at a temperature of 1150° C. for 2 hours. In this thermal diffusion treatment, care was taken to ensure that the applied diffusion component was not lost to the outside of the sample due to evaporation, melting, or diffusion to the outside of the sample. On both sides of the disk-shaped element of the grain boundary dielectric layer type semiconductor porcelain obtained in this way,
The Ag electrode is baked to form a capacitor element, and ε a (1K
Hz), tanδ (1KHz), V b and capacitance temperature change rate (with reference to 20°C in the temperature range of +85°C to -25°C)
was measured. These results are shown in Table 3.

【表】【table】

【表】 *印は比較試料
試料1111,同1116,同1121,同1126,同1127,
同1128,同1135,同1139,同1143,および同1148
以外の本発明にかかる試料はεaが35000以上,
tanδが0.01以下,Vbが500V/mm以上,容量変化
率が±15%以内のYR規格の実用特性、あるいは
εaが20000以上,tanδが0.01以下,Vbが700V/mm
以上,容量変化率が±10%以内のYB規格の実用
特性のいずれかを満足している。 実施例 3 第4表に示す拡散剤組成物の組成からなるペー
スト状拡散剤を実施例2と同様に作製した。この
ペースト状拡散剤を実施例1の第1表に示した試
料36(平均粒径8.5μm)の半導体磁器素子に塗布
した。拡散剤の塗布量は酸化物粉末に換算して素
子1枚(250mg)当り1.9mgである。このペースト
状拡散剤を塗布した半導体磁器素子を1000℃の温
度で2時間加熱処理を行なつた。このとき実施例
2と同様に、拡散成分が試料外に逸散しないよう
に留意した。このようにして得られた粒界誘電体
層型半導体磁器の円板形素子にAg電極を付与し、
実施例2と同様に各特性を測定した。これらの結
果を第4表に示す。
[Table] *marked is comparative sample Sample 1111, Sample 1116, Sample 1121, Sample 1126, Sample 1127,
1128, 1135, 1139, 1143, and 1148
Other samples according to the present invention have ε a of 35000 or more,
Practical characteristics of YR standard with tan δ 0.01 or less, V b 500 V/mm or more, and capacitance change rate within ±15%, or ε a 20000 or more, tan δ 0.01 or less, and V b 700 V/mm.
As described above, the capacitance change rate satisfies one of the practical characteristics of the YB standard, which is within ±10%. Example 3 A paste-like diffusing agent having the composition of the diffusing agent composition shown in Table 4 was prepared in the same manner as in Example 2. This paste-like diffusing agent was applied to a semiconductor ceramic element of Sample 36 (average particle size: 8.5 μm) shown in Table 1 of Example 1. The amount of the diffusing agent applied was 1.9 mg per element (250 mg) in terms of oxide powder. The semiconductor ceramic element coated with this paste-like diffusing agent was heat-treated at a temperature of 1000° C. for 2 hours. At this time, as in Example 2, care was taken to prevent the diffused components from escaping to the outside of the sample. Ag electrodes were added to the disk-shaped element of the grain boundary dielectric layer type semiconductor porcelain obtained in this way,
Each characteristic was measured in the same manner as in Example 2. These results are shown in Table 4.

【表】 *印は比較試料
試料1149,同1150,同1155,同1159,同1161以
外の本発明にかかる試料はεaが5000以上,tanδが
0.01以下,Vbが700V/mm以上,容量温度変化率
が±5%以内のYA規格の実用特性を有してい
る。 実施例 4 実施例1に示す市販の工業用各原料および市販
の試薬特級SiO2粉末を用い、第5表に示す半導
体磁器組成物の組成比になるように配合し、実施
例1と同様に混合,乾燥,仮焼成,粉砕,整粒,
および成形を行なつた。これらの成形体を空気中
において1000℃で加熱処理した後、95%N2−5
%H2の混合ガス気流中において1390℃〜1330℃
の範囲の一定温度で4時間の本焼成をして、直径
約12.5mm,厚さ約0.4mmの円板形の半導体磁器を
得た。実施例1と同様にして、これらの半導体磁
器焼結体の平均粒径を測定した結果を第5表に示
す。
[Table] Comparison samples are marked with *. Samples according to the present invention other than Samples 1149, 1150, 1155, 1159, and 1161 have an ε a of 5000 or more and a tan δ of
It has practical characteristics of YA standard: 0.01 or less, V b of 700V/mm or more, and capacitance temperature change rate within ±5%. Example 4 Using the commercially available industrial raw materials shown in Example 1 and the commercially available reagent grade SiO 2 powder, they were mixed to have the composition ratio of the semiconductor ceramic composition shown in Table 5, and the same procedure as in Example 1 was carried out. Mixing, drying, calcining, crushing, sizing,
and molding. After heat-treating these molded bodies at 1000℃ in air, 95%N 2 -5
1390℃~1330℃ in mixed gas stream of % H2
The final firing was carried out for 4 hours at a constant temperature in the range of 1.5 to 2.5 mm to obtain a disk-shaped semiconductor porcelain with a diameter of about 12.5 mm and a thickness of about 0.4 mm. Table 5 shows the results of measuring the average grain size of these semiconductor ceramic sintered bodies in the same manner as in Example 1.

【表】 *印は比較試料
SiO2成分量が主成分(SrO,CaO,TiO2
Nb2O5からなる3〜4成分)100モル部に対して
2モル部を超えた試料2022,同2031はSiO2の粒
成長抑制作用のため半導体磁器焼結体の平均粒径
は5μm未満であつた。次に、SiO2の焼結促進効
果は試料2013,同2014,および同2015の三者の比
較から明らかである。すなわち、本焼成温度を
1390℃から1350℃まで下げても平均粒径はほとん
ど変らない。同様な効果はSiO2を1モル部含有
した試料2017,同2018,同2019あるいはSiO2
0.5モル部含有した試料2026,同2027においても
明らかである。 次に第5表に示す試料のうち平均粒径が12μm
を超える試料についてはその半導体磁器に実施例
1と同様のペースト状拡散剤(拡散剤組成も実施
例1と同一である)を塗布し、1150℃の温度で2
時間の加熱処理を、また第5表に示す試料のうち
平均粒径が12μm以下の試料についてはその半導
体磁器に実施例1と同様のペースト状拡散剤を塗
布し、1000℃の温度で2時間の加熱処処理をそれ
ぞれ行なつて粒界に誘電体層を形成した。塗布量
およびその他の拡散処理条件も実施例1と同じで
ある。このようにして得られた粒界誘電体層型半
導体磁器の円板形素子にはAg電極を付与し、実
施例1と同様に各特性を測定した。これらの結果
を第5表に示す。試料2022,同2031以外の本発明
にかかる試料はεa35000以上,tanδ0.01以下,Vb
500V/mm以上,容量変化率±15%以内のYR規格
の実用特性(試料2011,同2012,同2013,同
2014,同2015,同2023,同2024),あるいはεa
20000以上,tanδ0.01以下,Vb700V/mm以上,容
量変化率±10%以内のYB規格の実用特性(試料
2016,同2025,同2026,同2027),あるいはεa
5000以上,tanδ0.01以下,Vb700V/mm以上,容
量変化率±5%以内のYA規格の実用特性(試料
2017,同2018,同2019,同2020,同2021,同
2028,同2029,同2030)のいずれかを満足してい
る。 なお、以上の実施例においては酸化ネオジウム
(Nd2O3)の高純度の試薬を用いたが、工業用の
低純度の原料で、 Nd2O3 60重量%以上 Pr6O11 40重量%以下 La2O3 Sm2O3 CeO2 合量5重量%以下 からなる組成物を使用してもそれによる大きな影
響はほとんどなかつた。
[Table] *marked is comparative sample
The amount of SiO 2 components is the main components (SrO, CaO, TiO 2 ,
In samples 2022 and 2031, in which the amount of 3 to 4 components consisting of Nb 2 O 5 exceeded 2 mol parts per 100 mol parts, the average grain size of the semiconductor porcelain sintered body was less than 5 μm due to the grain growth suppressing effect of SiO 2 It was hot. Next, the sintering promoting effect of SiO 2 is clear from the comparison of samples 2013, 2014, and 2015. In other words, the main firing temperature is
Even when the temperature is lowered from 1390℃ to 1350℃, the average particle size hardly changes. A similar effect was obtained for samples 2017, 2018, and 2019 containing 1 mol part of SiO 2 or samples containing 1 mole of SiO 2 .
This is also evident in samples 2026 and 2027, which contained 0.5 mole part. Next, among the samples shown in Table 5, the average particle size is 12 μm.
For samples exceeding 1,150°C, the same paste-like diffusing agent as in Example 1 (the diffusing agent composition is also the same as in Example 1) was applied to the semiconductor porcelain, and the sample was heated at a temperature of 1150°C.
For the samples shown in Table 5 with an average particle size of 12 μm or less, the same paste-like diffusing agent as in Example 1 was applied to the semiconductor porcelain, and the sample was heated at a temperature of 1000°C for 2 hours. A dielectric layer was formed at the grain boundaries by performing heat treatment. The coating amount and other diffusion treatment conditions were also the same as in Example 1. Ag electrodes were applied to the disk-shaped element of the grain boundary dielectric layer type semiconductor ceramic thus obtained, and each characteristic was measured in the same manner as in Example 1. These results are shown in Table 5. Samples according to the present invention other than samples 2022 and 2031 have ε a of 35000 or more, tan δ of 0.01 or less, and V b
Practical characteristics of YR standard of 500V/mm or more, capacitance change rate within ±15% (sample 2011, 2012, 2013,
2014, 2015, 2023, 2024), or ε a
Practical characteristics of YB standard (sample
2016, 2025, 2026, 2027), or ε a
5000 or more, tan δ 0.01 or less, V b 700V/mm or more, capacity change rate within ±5% (sample
2017, 2018, 2019, 2020, 2021,
2028, 2029, 2030). In addition, in the above examples, a highly purified reagent of neodymium oxide (Nd 2 O 3 ) was used, but with low-purity industrial raw materials, Nd 2 O 3 60% by weight or more and Pr 6 O 11 40% by weight. Hereinafter, even if a composition containing 5% by weight or less of La 2 O 3 Sm 2 O 3 CeO 2 was used, there was almost no significant effect.

Claims (1)

【特許請求の範囲】 1 酸化ストロンチウム(SrO)成分が50.23〜
48.80モル%、酸化チタン(TiO2)成分が49.72〜
50.20モル%、ならびに酸化ネオジウム(Nd2O3
成分が0.05〜1.0モル%なる組成比率の半導体磁
器、または、酸化ストロンチウム(SrO)成分と
酸化カルシウム(CaO)との合量が50.23〜48.80
モル%であつて、前記酸化カルシウム(CaO)成
分が22.60モル%以下、酸化チタン(TiO2)成分
が49.72〜50.20モル%、ならびに酸化ネオジウム
(Nd2O3)成分が0.05〜1.0モル%なる組成比率の
半導体磁器の結晶粒界に、酸化ビスマス
(Bi2O3)成分が93.5〜8.5モル%、酸化銅(Cu2O)
成分が4.5〜45モル%、酸化マンガン(MnO2)成
分が0.5〜4モル%、ならびに酸化硼素(B2O3
成分が1.0〜8.0モル%なる組成比率の組成物、ま
たは、酸化ビスマス(Bi2O3)成分が93.5〜8.5モ
ル%、酸化銅(Cu2O)成分が4.5〜45モル%、酸
化マンガン(MnO2)成分が0.5〜4モル%、酸化
硼素(B2O3)成分が1〜8.5モル%、酸化リチウ
ム(Li2O)成分が20.0モル%以下、酸化ランタン
(La2O3)成分が17.0モル%以下、ならびに酸化
チタン(TiO2)成分が17モル%以下なる組成比
率の組成物を拡散させて、誘電体層を形成してな
ることを特徴とする粒界誘電体層型半導体磁器組
成物。 2 酸化ストロンチウム(SrO)成分が50.23〜
48.80モル%、酸化チタン(TiO2)成分が49.72〜
50.20モル%、ならびに酸化ネオジウム(Nd2O3
成分が0.05〜1.0モル%なる組成物100部に2モル
部を超えない量の酸化珪素(SiO2)成分が含有
されている半導体磁器、または、酸化ストロンチ
ウム(SrO)成分と酸化カルシウム(CaO)との
合量が50.23〜48.80モル%であつて、前記酸化カ
ルシウム(CaO)成分が22.60モル%以下、酸化
チタン(TiO2)成分が49.72〜50.20モル%、なら
びに酸化ネオジウム(Nd2O3)成分が0.05〜1.0モ
ル%なる組成物100モル%に2モル部を超えない
量の酸化珪素(SiO2)成分が含有されている半
導体磁器の結晶粒界に、酸化ビスマン(Bi2O3
成分が93.5〜8.5モル%、酸化銅(Cu2O)成分が
4.5〜45モル%、酸化マンガン(MnO2)成分が
0.5〜4モル%、ならびに酸化硼素(B2O3)成分
が1.0〜8.5モル%なる組成比率の組成物、また
は、酸化ビスマス(Bi2O3)成分が93.5〜8.5モル
%、酸化銅(Cu2O)成分が4.5〜45モル%、酸化
マンガン(MnO2)成分が0.5〜4モル%、酸化硼
素(B2O3)成分が1〜8.5モル%、酸化リチウム
(Li2O)成分が20.0モル%以下、酸化ランタン
(La2O3)成分が17.0モル%以下、ならびに酸化
チタン(TiO2)成分が17モル%以下なる組成比
率の組成物を拡散させて、誘電体層を形成してな
ることを特徴とする粒界誘電体層型半導体磁器組
成物。
[Claims] 1. Strontium oxide (SrO) component is 50.23~
48.80 mol%, titanium oxide (TiO 2 ) component is 49.72 ~
50.20 mol%, as well as neodymium oxide (Nd 2 O 3 )
Semiconductor porcelain with a composition ratio of 0.05 to 1.0 mol%, or a total amount of strontium oxide (SrO) and calcium oxide (CaO) of 50.23 to 48.80
The calcium oxide (CaO) component is 22.60 mol% or less, the titanium oxide (TiO 2 ) component is 49.72 to 50.20 mol%, and the neodymium oxide (Nd 2 O 3 ) component is 0.05 to 1.0 mol%. The grain boundaries of semiconductor porcelain have a composition ratio of 93.5 to 8.5 mol% bismuth oxide (Bi 2 O 3 ) and copper oxide (Cu 2 O).
The component is 4.5 to 45 mol%, the manganese oxide (MnO 2 ) component is 0.5 to 4 mol %, and boron oxide (B 2 O 3 ).
A composition with a composition ratio of 1.0 to 8.0 mol%, or a composition containing 93.5 to 8.5 mol% of bismuth oxide (Bi 2 O 3 ) component, 4.5 to 45 mol% of copper oxide (Cu 2 O) component, and manganese oxide ( MnO 2 ) component is 0.5 to 4 mol %, boron oxide (B 2 O 3 ) component is 1 to 8.5 mol %, lithium oxide (Li 2 O) component is 20.0 mol % or less, lanthanum oxide (La 2 O 3 ) component A grain boundary dielectric layer type semiconductor, characterized in that a dielectric layer is formed by diffusing a composition having a composition ratio of 17.0 mol % or less and a titanium oxide (TiO 2 ) component of 17 mol % or less. Porcelain composition. 2 Strontium oxide (SrO) component is 50.23~
48.80 mol%, titanium oxide (TiO 2 ) component is 49.72 ~
50.20 mol%, as well as neodymium oxide (Nd 2 O 3 )
Semiconductor porcelain containing silicon oxide (SiO 2 ) component in an amount not exceeding 2 mole parts per 100 parts of a composition containing 0.05 to 1.0 mole %, or strontium oxide (SrO) component and calcium oxide (CaO) 50.23 to 48.80 mol%, the calcium oxide (CaO) component is 22.60 mol% or less, the titanium oxide (TiO 2 ) component is 49.72 to 50.20 mol%, and neodymium oxide (Nd 2 O 3 ). Bisman oxide (Bi 2 O 3 ) is added to the grain boundaries of semiconductor porcelain, which contains silicon oxide (SiO 2 ) in an amount not exceeding 2 mol parts per 100 mol % of a composition containing 0.05 to 1.0 mol %.
Ingredients are 93.5-8.5 mol%, copper oxide (Cu 2 O) component
4.5 to 45 mol%, manganese oxide (MnO 2 ) component
A composition with a composition ratio of 0.5 to 4 mol% and a boron oxide ( B2O3 ) component of 1.0 to 8.5 mol%, or a composition with a composition ratio of 93.5 to 8.5 mol% of a bismuth oxide ( Bi2O3 ) component and a boron oxide ( B2O3 ) component of 93.5 to 8.5 mol%. Cu 2 O) component: 4.5 to 45 mol%, manganese oxide (MnO 2 ) component: 0.5 to 4 mol%, boron oxide (B 2 O 3 ) component: 1 to 8.5 mol%, lithium oxide (Li 2 O) component A dielectric layer is formed by diffusing a composition having a composition ratio of 20.0 mol% or less, a lanthanum oxide (La 2 O 3 ) component of 17.0 mol% or less, and a titanium oxide (TiO 2 ) component of 17 mol% or less. A grain boundary dielectric layer type semiconductor ceramic composition characterized by comprising:
JP1721381A 1981-02-06 1981-02-06 Grain boundary dielectric layer type semiconductor porcelain composition Granted JPS57132316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1721381A JPS57132316A (en) 1981-02-06 1981-02-06 Grain boundary dielectric layer type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1721381A JPS57132316A (en) 1981-02-06 1981-02-06 Grain boundary dielectric layer type semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS57132316A JPS57132316A (en) 1982-08-16
JPS6412084B2 true JPS6412084B2 (en) 1989-02-28

Family

ID=11937660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1721381A Granted JPS57132316A (en) 1981-02-06 1981-02-06 Grain boundary dielectric layer type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS57132316A (en)

Also Published As

Publication number Publication date
JPS57132316A (en) 1982-08-16

Similar Documents

Publication Publication Date Title
JPS634339B2 (en)
US4861736A (en) Semiconductive ceramic composition
GB2096128A (en) Intergranular insulation type dielectric body
EP0128956B1 (en) Low firing ceramic dielectric for temperature compensating capacitors
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS6412084B2 (en)
JPH0676627A (en) Dielectric ceramic composition
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH01236514A (en) Dielectric porcelain material
EP0047815B1 (en) Grain boundary layer dielectric ceramic compositions
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JP2645815B2 (en) Grain boundary insulated semiconductor porcelain
JPS6351992B2 (en)
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPH0361287B2 (en)
JPS63289706A (en) Ceramic forming constituent and both semiconductor and dielectric ceramic substrates as well as condenser therewith
JP2666262B2 (en) Sintering aid used in dielectric ceramics containing TiO2 as a main component
JP2531548B2 (en) Porcelain composition for temperature compensation
JPH0551127B2 (en)
JPH0571538B2 (en)
JPS6150371B2 (en)
JPH0828128B2 (en) Dielectric porcelain composition
JP2666263B2 (en) Sintering aid used in dielectric ceramics containing TiO2 as a main component
JPS637013B2 (en)
JPS6328491B2 (en)