JPH01236514A - Dielectric porcelain material - Google Patents

Dielectric porcelain material

Info

Publication number
JPH01236514A
JPH01236514A JP63296584A JP29658488A JPH01236514A JP H01236514 A JPH01236514 A JP H01236514A JP 63296584 A JP63296584 A JP 63296584A JP 29658488 A JP29658488 A JP 29658488A JP H01236514 A JPH01236514 A JP H01236514A
Authority
JP
Japan
Prior art keywords
weight
parts
glass
added
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63296584A
Other languages
Japanese (ja)
Other versions
JP3030557B2 (en
Inventor
Masami Sasaki
正美 佐々木
Minoru Takatani
稔 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63296584A priority Critical patent/JP3030557B2/en
Publication of JPH01236514A publication Critical patent/JPH01236514A/en
Application granted granted Critical
Publication of JP3030557B2 publication Critical patent/JP3030557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a sintering temperature and the cost of an electrode by using, as a main gradient, a mixture composed of SrTiO3, and CuO and Mn oxide added with respect thereto, mixing glass therein, and sintering them. CONSTITUTION:The main gradient is obtained by adding 1-10wt. part of CuO and 0-5wt. part of Mn converted into MnO are added with respect to 100wt. part of SrTiO3 (SrO/TiO2mol ratio=0.950-1.055). 10-30wt. part of glass is mixed with respect to 100wt. part of the main gradient and they are sintered and used as a dielectric porcelain material. It is thus possible to have the baking temperature at 860 deg.C-900 deg.C, and to obtain dielectric porcelain material of high Q, high insulation resistance, and high breakdown voltage, without using an expensive Pt. or Pd. electrode, by the use of this material for e.g., a laminated chip condenser.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低温焼結型で高いQ、高い絶縁抵抗および高
い破壊電圧を有する誘電体磁器材料に係り、特に積層チ
ップコンデンサとして用いるに好適なものに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a low-temperature sintered dielectric ceramic material having high Q, high insulation resistance, and high breakdown voltage, and is particularly suitable for use as a multilayer chip capacitor. relating to things.

(従来の技術) 磁器コンデンサ用誘電体材料として、従来より、チタン
酸バリウム系あるいは酸化チタン系の磁器材料が汎用さ
れている。これらの材料を用い゛C第1図に示すような
セラミックコンデンサl(図中、2は誘電体、3は内部
電極、4は外部電極である。)を製造する場合は、誘電
体材料を−1、シ仮焼して粉砕した後、ペースト状にし
てからシート状の誘電体2aを形成し、該誘電体2a−
ヒに電極3を塗布し、これを図示のように積層して焼成
したり、あるいは仮焼して粉砕した後、ベースト状にし
てコンデンサの形に誘電体2aを印刷し、そのLに電極
3を印刷するという工程を繰返して積層化した後、焼成
することにより製造していた。
(Prior Art) Barium titanate-based or titanium oxide-based ceramic materials have been widely used as dielectric materials for ceramic capacitors. When manufacturing a ceramic capacitor l (in the figure, 2 is a dielectric, 3 is an internal electrode, and 4 is an external electrode) as shown in Figure 1 using these materials, the dielectric material is - 1. After calcining and pulverizing, form a paste into a sheet-like dielectric 2a, and form the dielectric 2a-
After coating the electrode 3 on the L, laminating and firing as shown in the figure, or calcining and pulverizing, form a base and print the dielectric 2a in the shape of a capacitor. It was manufactured by repeating the printing process to form layers and then firing them.

(発明か解決しようとする問題点) このように、従来は、誘電体2がチタン酸バリウム系あ
るいは酸化チタン系の磁器材料により構成されているが
、これらの材料は焼成温度か12000C〜1400°
Cといった高温であるため、内部型J4i3として、こ
のような高温でも安定なptやPdといった非常に高価
な材料を使用しなければならなかった。このため、焼成
のための電力費かかかり、また、コンデンサ等の素子1
個当たりの電極費かあまりにも大きすぎるという問題点
があった。
(Problem to be solved by the invention) As described above, conventionally, the dielectric body 2 is made of barium titanate-based or titanium oxide-based porcelain materials, but these materials have a firing temperature of 12,000C to 1,400°C.
Because of the high temperature such as C, very expensive materials such as PT and Pd, which are stable even at such high temperatures, had to be used for the internal mold J4i3. For this reason, electricity costs are required for firing, and elements such as capacitors
The problem was that the cost per electrode was too high.

(問題点を解決するための手段) 上記の問題点を解決するために本発明者等は研究を重ね
た結果、 SrTiO:+(SrO/ TiO2モル比
= 0.950−1.055)100重量部に対してC
uOを1〜lO重賃部、Mn酸化物を閘10に換算して
口〜5重量部添加したものを主成分とし、その主成分1
0(l改i部に対してガラスを10〜30重社部混合し
焼結して誘電体磁器材料として使用することにより、焼
成温度を860℃〜900℃にすることを5f能とした
ものである。その結果、この材料を例えば積層チップコ
ンデンサに使用すれば、高価なptや電極Pd電極を使
用することなく、しかも高いQ、高い絶縁抵抗、高い破
壊電圧の誘電体磁器材料か提供できることを見出したも
のである。
(Means for Solving the Problems) In order to solve the above problems, the present inventors conducted repeated research and found that SrTiO: + (SrO/TiO2 molar ratio = 0.950-1.055) 100 weight C for part
The main component is 1 to 10 weight parts of uO and 5 to 5 parts by weight of Mn oxide in terms of weight 10.
0 (1 modified I part with 10 to 30 pieces of glass mixed and sintered to use as a dielectric porcelain material, making it possible to raise the firing temperature to 860 ° C to 900 ° C. As a result, if this material is used, for example, in a multilayer chip capacitor, it is possible to provide a dielectric ceramic material with high Q, high insulation resistance, and high breakdown voltage without using expensive PT or Pd electrodes. This is what we discovered.

また、本発明は、SrTiO,(SrO/TiO,モル
比二〇。
Further, the present invention uses SrTiO, (SrO/TiO, molar ratio 20).

9511〜1.口55 ) 100重量部に対してCu
Oを口〜15重州部1Mn酸化物をMnOに換算して口
〜1.5重量部添加したものに,CaT2O3(CaO
/TiO。モル比=1.0)l口0重u部に対してCu
Oを0〜20i1i部、lAn酸化物なMnOに換算し
て0〜1.5重量部添加したものを、その混合率が2.
5〜50重量%となるように混合し、さらにその混合粉
100重量部に対してガラス粉末を5〜30重量部重量
部位結してなることを特徴とするもので、前述の低温で
焼結可能で、前述のように、誘電率およびQの値の面で
優れ、しかも焼結性の優れた誘電体磁器材料を得ること
を可能としたものである。
9511-1. 55) Cu per 100 parts by weight
CaT2O3 (CaO
/TiO. Molar ratio = 1.0) Cu to l mouth 0 weight u part
0 to 20 parts of O and 0 to 1.5 parts by weight of MnO, which is lAn oxide, were added at a mixing ratio of 2.
It is characterized by being mixed at a concentration of 5 to 50% by weight, and further sintering 5 to 30 parts by weight of glass powder to 100 parts by weight of the mixed powder, and sintering at the above-mentioned low temperature. As mentioned above, it is possible to obtain a dielectric ceramic material that is excellent in terms of dielectric constant and Q value, and also has excellent sinterability.

なお、本発明に用いるガラスとしては、ZnO系中融点
ガラス、中でもZn050%〜60%、820□20%
〜3i1%、 5i025%〜lO%(重量%)残部か
微縫成分からなるガラスか用いられる。その他。
Note that the glass used in the present invention is ZnO-based medium melting point glass, especially Zn0 50% to 60%, 820□20%
-3i1%, 5i025% -10% (wt%) The remainder is a glass consisting of a finely stitched component. others.

Pb0420:+系、PbO−820□−3i02系、
あるいはpbo、lnO、Bi2O3,BaO、H7(
1+、Sin□、ZrO2、TiO2゜Al2O,、C
aO、SrOの群から選択された2種以上の金属耐化物
からなる中融点のガラスか用いられる。
Pb0420: + series, PbO-820□-3i02 series,
Or pbo, lnO, Bi2O3, BaO, H7 (
1+, Sin□, ZrO2, TiO2゜Al2O,,C
A medium melting point glass made of two or more metal resistant materials selected from the group of aO and SrO is used.

(作用) 本発明において、誘電体磁器材料の組成を上記のように
設定した理由は次の通りである。
(Function) In the present invention, the reason why the composition of the dielectric ceramic material is set as described above is as follows.

SrOは、出発材料としてSrCO3か用いられ、焼結
によってSrOとなるものであり、SrO/Tie2モ
ル比が1.055以上になるとQ値が小さくなる傾向に
ある。また、SrO/Tie2モル比か0.950以下
になると、誘゛市率か小さくなる傾向にある。
SrO uses SrCO3 as a starting material and becomes SrO by sintering, and when the SrO/Tie2 molar ratio is 1.055 or more, the Q value tends to decrease. Furthermore, when the SrO/Tie2 molar ratio becomes 0.950 or less, the market attraction rate tends to decrease.

3r’riOi(各添加物も含む)の仮焼温度は850
°C以ドになると焼結性か悪くなり素地かポーラスな状
態になる傾向にあり、 1150°C以上でも回しよう
な傾向がみられるか、ttso℃以上の場合は粉砕が困
難となり微粒子か得られないためと考えられる。
The calcination temperature of 3r'riOi (including each additive) is 850
When the temperature is below 1150°C, the sinterability deteriorates and the material tends to become porous.If the temperature is above 1150°C, it is difficult to grind, and fine particles are obtained. This is thought to be due to the inability to do so.

CuOは低温焼結を助成するもので、その添加はMnO
かあれば必ずしも必要ではないが、その添加量が前記l
i1部より少ないと前記低温焼結が困難となり、かつ誘
電率が小さくなる傾向にあり。
CuO supports low-temperature sintering, and its addition is similar to MnO.
If there is, it is not necessary, but the amount added is above l.
If the amount is less than 1 part, the low-temperature sintering becomes difficult and the dielectric constant tends to decrease.

CaT、03を含まないものにおいて、CuOのSrT
iO,に対する添加量が前記15玉量部より大きくなる
とQ値が小さくなるという傾向がある。
In those not containing CaT, 03, SrT of CuO
When the amount added to iO is larger than the above-mentioned 15 ball parts, there is a tendency that the Q value becomes small.

Mn酸化物は、出発材料としてMnC0,が用いられ、
焼結によってMn酸化物となるものであり、CuOと同
じく低温焼成を助成する作用と還元防止材としての作用
をなすものであるか、CuOが混合されていればこれは
必ずしも必要ではなく、またこのMnm化物は上述のよ
うな焼成温度において。
Mn oxide uses MnC0 as a starting material,
It becomes Mn oxide by sintering, and like CuO, it has the effect of supporting low-temperature firing and acting as a reduction prevention material, or if CuO is mixed, this is not necessarily necessary. This Mnm compound is fired at the above-mentioned firing temperature.

MnOxの形態をなし、x=1〜2の範囲内あると考え
られるか、MnOに換算して1ifi部以下では効果か
薄く、前記CaT2O:+を含まないものにおいて。
It is in the form of MnOx, and is considered to be within the range of x=1 to 2, or is less effective if it is less than 1 ifi part in terms of MnO, and does not contain CaT2O:+.

5重量部以上の添加量になると、Q値および誘電率か小
さくなる傾向がある。
When the amount added is 5 parts by weight or more, the Q value and dielectric constant tend to decrease.

また、焼結助材としてのガラスの量については、前記主
成分100重量部に対して5重ji1部より少ないと焼
結助材としての働きか不十分である上、Q値か小さくな
り、また、30重量部より多くなると誘電率か小さくな
る傾向にある。
Regarding the amount of glass as a sintering aid, if it is less than 1 part of 5-fold ji per 100 parts by weight of the main component, it will not only function insufficiently as a sintering aid, but also have a small Q value. Moreover, when the amount exceeds 30 parts by weight, the dielectric constant tends to decrease.

CaT2O3を含むものにおいて、5rTi03(各添
加物を含む)とCaTi0. (各添加物を含む)の混
合率ではCaTiO3か2.5重量%より小になると混
合の効果がうすいが、 SrTiO,: CaTi0*
= 70:30に焼結性のピークがあり,CaTi0.
50重量%より多く混合すると焼結性か悪くなり誘電率
も小さくなる。
Among those containing CaT2O3, 5rTi03 (including each additive) and CaTi0. (Including each additive), the mixing effect is weak when CaTiO3 is less than 2.5% by weight, but SrTiO: CaTi0*
= 70:30 has a sinterability peak, and CaTi0.
If more than 50% by weight is mixed, the sinterability will deteriorate and the dielectric constant will decrease.

また、 CaT2O:+を含むものにおいても、CuO
の添加は必ずしも必要ではないか、5rT20zもしく
はCaT2O3に1重量部以上添加することにより、低
温焼結がより良好に行なわれ、誘電率も大きくなる傾向
にある。5rTz(h : (:aTzO+= 70 
: 30の混合で使用する場合は5rTi03側にその
100重量部に対してCu0ft15重量部より多く添
加するとQ値が小さくなる傾向にあり、(:aTiO3
側にその100重量部に対して20重量部より多く添加
するとQ値が小さくなる傾向にある。SrTiO+、 
CaTiO3の混合粉に対してCuOかトータル6屯に
%より多くなるとQ(fiか小さくなる傾向にある。
In addition, even in those containing CaT2O:+, CuO
The addition of is not necessarily necessary, but by adding 1 part by weight or more to 5rT20z or CaT2O3, low-temperature sintering tends to be better and the dielectric constant tends to increase. 5rTz(h: (:aTzO+=70
: When used in a mixture of 5rTiO3 and 100 parts by weight, the Q value tends to decrease if more than 15 parts by weight of Cu0ft is added to the 5rTiO3 side.
If more than 20 parts by weight is added per 100 parts by weight, the Q value tends to decrease. SrTiO+,
When the amount of CuO exceeds 6 tons of CaTiO3 mixed powder, Q(fi) tends to become smaller.

CaT、03を含むものにおいて、Mn酸化物は、Cu
Oが混合されていればこれは必ずしも必要ではなく、ま
たこのMn酸化物は上述のような焼成温度において、M
nO,の形jムをなし、x=1〜2の範囲内にあると考
えられるが、MnOに換算して0.5〜1.5重量部添
加することによりQ値の向上に効果がある。5rT20
z : CaT2O:l= 70 : 30の混合粉に
おいてMnOのトータル量か21量%より多くなると誘
′准率が小さくなる傾向かある。
In those containing CaT, 03, the Mn oxide is Cu
This is not necessarily necessary if O is mixed, and this Mn oxide can be mixed with Mn at the above firing temperature.
It has the form of nO, and is considered to be within the range of x = 1 to 2, but adding 0.5 to 1.5 parts by weight in terms of MnO is effective in improving the Q value. . 5rT20
In a mixed powder of z:CaT2O:l=70:30, if the total amount of MnO exceeds 21% by weight, the attractivity tends to decrease.

また、焼結助材としてのガラスの量については前記主成
分100重量部に対して5重陽部より少ないと焼結助材
としての働きか不十分である」二、Q値が小さくなり、
また、30重縫部より多くなると誘電率か小さくなる傾
向にある。
Furthermore, if the amount of glass as a sintering aid is less than 5 parts by weight based on 100 parts by weight of the main component, its function as a sintering aid will be insufficient.
Further, when the number of seams exceeds 30, the dielectric constant tends to decrease.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

[実施例1] まず市販の5rCO*とTiO2と、焼成により生成す
るSrTiO,におけるSrO/TiO□モル比かl二
lとなるように秤量し、その5rcO:+とTiO2の
5rTi03に換算した100重量部に対し、CuOを
1.0重量部。
[Example 1] First, commercially available 5rCO* and TiO2 and SrTiO produced by firing were weighed so that the molar ratio of SrO/TiO□ was 12l, and the 5rcO:+ and TiO2 were converted to 5rTi03 of 100 1.0 parts by weight of CuO.

MnC0,をMnOに換算して1.0重量部となるよう
に秤量し、これに純水200重量部、モノボール200
重量部加え、ボールミルに入れて16時間混合し、脱水
乾燥した。そしてこの乾燥粉末を50kg/cm2で仮
プレスし、850℃で仮焼し、ライカイ機で30分粗粉
砕した。
MnC0, was weighed to be 1.0 parts by weight in terms of MnO, and to this was added 200 parts by weight of pure water and 200 parts by weight of Monoball.
Parts by weight were added, placed in a ball mill, mixed for 16 hours, and dehydrated and dried. This dry powder was then temporarily pressed at 50 kg/cm2, calcined at 850°C, and coarsely pulverized for 30 minutes using a Raikai machine.

その粉末too、11部にガラス(Zn050%〜60
%、 B20□20%〜30%、 Si0□ 5%〜1
0% (重量%)、残部か微量成分からなるガラス)を
20重量部加え、ボールミルに入れて24時間混合粉砕
し。
The powder too, 11 parts glass (Zn050%~60
%, B20□20%~30%, Si0□5%~1
0% (weight %), the remainder (glass consisting of trace components) was added, and the mixture was placed in a ball mill and mixed and pulverized for 24 hours.

脱水乾燥した。Dehydrated and dried.

そして、乾燥粉末50gに、接着剤としてエチルセルロ
ース(N−100)を溶媒としてのターピネオールに8
重量%溶解した溶液18g 、溶剤としてターピネオー
ル40gを秤量し、ライカイ機で3時間攪拌し、ペース
トを作った。
Then, add 50 g of dry powder to 80 g of ethyl cellulose (N-100) as an adhesive and terpineol as a solvent.
18 g of a solution dissolved in weight percent and 40 g of terpineol as a solvent were weighed out and stirred in a Raikai machine for 3 hours to make a paste.

このペーストおよびAg粉末のペーストをスクリーン印
刷法により交1にJA層してチップコンデンサを作り、
乾燥後、焼成寸法4.5 x ]、2snのチップに切
断し、 890°Cで2吟間空気中で焼成してチップコ
ンデンサを作成した。これにより得られた諸性性は表1
に示す通りであった。表1において、T2は焼成温度(
°C)、ε、は比誘電率、IRは絶縁抵抗(Ω)、Va
は破壊電圧(V)で50終■間隔の場合を示し、また、
Shは収縮率(%)である。
A chip capacitor was made by layering this paste and Ag powder paste in a cross-layered JA layer using a screen printing method.
After drying, it was cut into chips with firing dimensions of 4.5 x ] and 2 sn, and fired at 890°C for 2 minutes in air to produce chip capacitors. The various properties obtained from this are shown in Table 1.
It was as shown in In Table 1, T2 is the firing temperature (
°C), ε is the relative dielectric constant, IR is the insulation resistance (Ω), Va
indicates the case where the breakdown voltage (V) is 50 cm apart, and
Sh is the shrinkage rate (%).

表1 表1に示す本実施例の特性は、従来のコンデンサの特性
に比較しても劣らない特性である。
Table 1 The characteristics of this example shown in Table 1 are comparable to those of conventional capacitors.

[実施例2] L記実施例1における5rCO:1. Ti06のモル
比、Cub、 MnOの添加量、ガラスの添加量を変え
、実施例1と回し方法でチップコンデンサを製造した。
[Example 2] 5rCO in L Example 1: 1. Chip capacitors were manufactured by the same method as in Example 1, changing the molar ratio of Ti06, the amount of Cub, MnO, and the amount of glass.

そのat成と2特性はそれぞれ表2−1、表2−2に示
す通りであった。
Its at composition and two characteristics were as shown in Table 2-1 and Table 2-2, respectively.

(以下余白) 表2−1 表λ−2 [実施例31 まず市販の5rCO+とTiO□と、焼成により生成す
る5rTi03におけるSrO/Ti0zモル比が1.
025となるようにI平槍し、そのSrCO3°とTi
O2のSrTiO,に換算した+001!i1部に対し
、 (:uOを1.0重量部、M n C02をMnO
に換算して1.0重量部となるように秤量し、またCa
C0+とTi0aとを、これらを焼成することにより生
成するCaTiO3におけるCaO/TiO□モル比が
10口となるようにJWfitし、そのCaC0,jと
TiO2のCaTi0.に換算した 100重量部に対
し、CIOを15重量部秤量し、この両者を別々のボー
ルミルに入れ、これらにそれぞれ純水を250重量部加
えて16時間混合し、脱水乾燥した。そしてこの乾燥粉
末を50kg/cm’で仮プレスし、1000℃でおの
おの仮焼し、ライカイ機で1時間粗粉砕した。その粉末
SrTiO,1を35重量部、 CaTi0:+を15
重量部にガラス粉末(Zn050〜6[1%、 B20
,20〜:10%、 Sing 5〜10%(爪間%)
、残部が微量成分からなるガラス)を2.5重量部加え
、これに純水 160ilj量部加え、ボールミルに入
れて24時間混合粉砕し、脱水乾燥した。その乾燥粉末
をさらに50kg/cm2で仮プレスし800°Cて再
仮焼を行いライカイ機で1時間粗粉砕した。その粉末を
再度ボールミルにて24詩間微粉砕し脱水乾燥した。
(Leaving space below) Table 2-1 Table λ-2 [Example 31 First, the SrO/Ti0z molar ratio in commercially available 5rCO+ and TiO□ and 5rTi03 produced by firing is 1.
025, and its SrCO3° and Ti
+001 converted to SrTiO of O2! For 1 part of i, (: 1.0 part by weight of uO, MnO of MnC02)
Calculated to 1.0 parts by weight, Ca
C0+ and Ti0a are JWfitted so that the CaO/TiO□ molar ratio in CaTiO3 produced by firing them is 10, and the CaTi0. 15 parts by weight of CIO was weighed out based on 100 parts by weight converted to 100 parts by weight, and both were placed in separate ball mills. 250 parts by weight of pure water were added to each of these and mixed for 16 hours, followed by dehydration and drying. This dry powder was then pre-pressed at 50 kg/cm', calcined at 1000°C, and coarsely pulverized for 1 hour using a Raikai machine. 35 parts by weight of the powder SrTiO,1, 15 parts by weight of CaTi0:+
Glass powder (Zn050-6 [1%, B20
, 20~: 10%, Sing 5~10% (% between nails)
2.5 parts by weight of glass (with the remainder consisting of trace components) were added, 160 parts of pure water was added thereto, the mixture was mixed and ground in a ball mill for 24 hours, and dehydrated and dried. The dried powder was further pre-pressed at 50 kg/cm2, re-calcined at 800°C, and coarsely pulverized for 1 hour using a Raikai machine. The powder was again pulverized for 24 minutes using a ball mill and dehydrated and dried.

そして乾燥粉末50gに、接着剤としてエチルセルロー
ス(N −100)を溶媒としてのターピネオールに8
重量%溶解した溶液18g、溶剤としてターピネオール
40gを秤量し、ライカイ機で3時間攪拌し、ペースト
を作った。
Then, 50 g of dry powder was added with ethyl cellulose (N-100) as an adhesive and terpineol as a solvent.
18 g of a solution dissolved in weight percent and 40 g of terpineol as a solvent were weighed out and stirred for 3 hours using a Raikai machine to form a paste.

このペーストおよびhg粗粉末ペーストをスクリーン印
刷法により交力]に請層してチップコンデンサを作り、
乾・燥後、焼成寸法4.5 X3.2−一のチウブに切
断し、 890℃で2時間空気中て焼成してチップコン
デンサを作成した。これにより得られた諸特性は表3に
示す通りであった。
A chip capacitor was made by layering this paste and Hg coarse powder paste by screen printing method.
After drying, it was cut into chips with firing dimensions of 4.5 x 3.2-1, and fired in air at 890°C for 2 hours to produce chip capacitors. The various properties obtained were as shown in Table 3.

(以下余白) 表   3 表3に示す本実施例の特性は、従来のコンデンサの特性
に比較しても劣らない特性である。特に誘電率ε5は前
記実施例に比較して優れており、Qの値も先願のものと
ほぼ同等の値か得られた。
(Left below) Table 3 The characteristics of this example shown in Table 3 are comparable to those of conventional capacitors. In particular, the dielectric constant ε5 was superior to that of the previous example, and the Q value was also approximately the same as that of the previous application.

[実施例4] 上記実施例3における工程を用い、 CaTi(1+を
混入しないものにおいて、5rC03,TiO2のモル
比および仮焼温度を変え、実施例3と同じ方法でチップ
コンデンサを製造した。その組成と諸特性はそれぞれ表
4−1、表4−2に示す通ってあった。
[Example 4] Using the process in Example 3 above, a chip capacitor was manufactured in the same manner as in Example 3, except that CaTi(1+ was not mixed) and the molar ratio of 5rC03 and TiO2 and the calcination temperature were changed. The composition and various properties were as shown in Tables 4-1 and 4-2, respectively.

表4−1、表4−2に示すように、ガラスの混合量を前
記実施例1のものより少なくすることにより、誘電率ε
3か200以上となるものか得られ、Qの値も前記実施
例1のものより大きな値か得られた。
As shown in Tables 4-1 and 4-2, by reducing the amount of glass mixed than that of Example 1, the dielectric constant ε
3 or 200 or more, and the Q value was also larger than that of Example 1.

[実施例5] 表5−1および表5−2は、 SrTiOzに対するC
aTi0+の混合比(を量比)を、 100:0ないし
5゜:50に変えた場合の諸特性を示すものであり、S
rTiO:+に対するCaTi0iの混合率が50:5
0以下より小さい場合、誘1rL率c5が200以上と
なり、Qの値も前記先願のものより大きな値か得られた
[Example 5] Tables 5-1 and 5-2 show that C for SrTiOz
It shows various characteristics when the mixing ratio (quantity ratio) of aTi0+ is changed from 100:0 to 5°:50, and S
The mixing ratio of CaTiOi to rTiO:+ is 50:5
When it was less than 0, the dielectric constant c5 was 200 or more, and the value of Q was also larger than that of the previous application.

[実施例6] 表6−11表6−2はSrTiO,に対するCaTiO
3の混合比(重量比)を70:30とし、 SrTiO
+あるいはCaTi0iに対する(:uO,MnOの混
合率を変えた場合の組成および諸特性をそれぞれ示すも
のであり、いずれも誘電率ε8として200以上ないし
ZOOに近い高い値が得られた。たたし’CuOの量が
増大すると、Qの値の低下か見られる。
[Example 6] Table 6-11 Table 6-2 shows CaTiO for SrTiO,
The mixing ratio (weight ratio) of 3 is 70:30, and SrTiO
+ or CaTi0i (: shows the composition and various properties when changing the mixing ratio of uO and MnO, and in both cases, a high value of dielectric constant ε8 of 200 or more or close to ZOO was obtained. 'As the amount of CuO increases, a decrease in the value of Q is observed.

[実施例7] また,CaTiO3を含まないものにおいて、ガラスの
添加にを20重量部、30重量部に増加させた場合の組
成、特性をそれぞれ表7−1、表7−2に示す。表7−
1のように、ガラスの混合量を主成分100 ?Bに対
してそれぞれ20,30重量部と増大させた場合、表7
−2のように、誘1u率〔5か低下する傾向かある。
[Example 7] Table 7-1 and Table 7-2 show compositions and properties when the amount of glass added was increased to 20 parts by weight and 30 parts by weight, respectively, in cases where CaTiO3 was not included. Table 7-
As in 1, the amount of glass mixed is 100% of the main component? Table 7 when increasing B by 20 and 30 parts by weight, respectively.
-2, there is a tendency for the dielectric constant to decrease by 5.

(以下余白) 表  5−1 (発1111の効果) 請求項1によれば、焼結温度を860°C〜900°C
と低温化することかできるため、焼成に要する電  1
カ費か低減されると共に、電極としてへg等の導体か焼
付可能となり、これによって′電極の価格低減かH(能
となる。また、従来技術によるチップコンデンサと比較
しても劣らない特性のものを得ることができる。
(Left below) Table 5-1 (Effects of Hatsu 1111) According to claim 1, the sintering temperature is 860°C to 900°C.
Since the temperature can be lowered, the electricity required for firing is 1
In addition to reducing the cost, it becomes possible to bake a conductor such as aluminum as an electrode, which reduces the cost of the electrode.It also has characteristics comparable to those of conventional chip capacitors. can get things.

請求項2によれば、請求項1の効果に加え、さらに焼結
性か良好になるという効果か得られる。
According to claim 2, in addition to the effect of claim 1, the sinterability is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用対象の一例であるチップコンデン
サを示す側面図である。
FIG. 1 is a side view showing a chip capacitor, which is an example of an object to which the present invention is applied.

Claims (2)

【特許請求の範囲】[Claims] 1.SrTiO_3(SrO/TiO_2モル比=0.
950〜1.055)100重量部に対してCuOを0
〜15重量部、Mn酸化物をMnOに換算して0〜5重
量部添加したものを主成分とし、その主成分100重量
部に対してガラスを5〜30重量部混合し焼結してなる
ことを特徴とする誘電体磁器材料。
1. SrTiO_3 (SrO/TiO_2 molar ratio=0.
950-1.055) 0 CuO per 100 parts by weight
~15 parts by weight, 0 to 5 parts by weight of Mn oxide converted to MnO are added as the main component, and 5 to 30 parts by weight of glass is mixed with 100 parts by weight of the main component and sintered. A dielectric porcelain material characterized by:
2.SrTiO_3(SrO/TiO_2モル比=0.
950〜1.055)100重量部に対してCuOを0
〜15重量部、Mn酸化物をMnOに換算して0〜1.
5重量部添加したものに,CaT_2O_3(CaO/
TiO_2モル比=1.0)100重量部に対してCu
Oを0〜20重量部、Mn酸化物をMnOに換算して0
〜1.5重量部添加したものを、その混合率が2.5〜
50重量%となるように混合し、さらにその混合粉10
0重量部に対してガラス粉末を5〜30重量部混合し焼
結してなることを特徴とする誘電体磁器材料。
2. SrTiO_3 (SrO/TiO_2 molar ratio=0.
950-1.055) 0 CuO per 100 parts by weight
~15 parts by weight, Mn oxide converted to MnO: 0 to 1.
CaT_2O_3 (CaO/
TiO_2 molar ratio = 1.0) Cu to 100 parts by weight
O is 0 to 20 parts by weight, Mn oxide is 0 when converted to MnO.
〜1.5 parts by weight is added, and the mixing ratio is 2.5〜
Mix to make it 50% by weight, and further add 10% of the mixed powder.
A dielectric ceramic material characterized in that it is made by mixing 5 to 30 parts by weight of glass powder to 0 parts by weight and sintering the mixture.
JP63296584A 1987-11-28 1988-11-23 Electronic components using dielectric porcelain materials Expired - Fee Related JP3030557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296584A JP3030557B2 (en) 1987-11-28 1988-11-23 Electronic components using dielectric porcelain materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30134787 1987-11-28
JP62-301347 1987-11-28
JP63296584A JP3030557B2 (en) 1987-11-28 1988-11-23 Electronic components using dielectric porcelain materials

Publications (2)

Publication Number Publication Date
JPH01236514A true JPH01236514A (en) 1989-09-21
JP3030557B2 JP3030557B2 (en) 2000-04-10

Family

ID=26560741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296584A Expired - Fee Related JP3030557B2 (en) 1987-11-28 1988-11-23 Electronic components using dielectric porcelain materials

Country Status (1)

Country Link
JP (1) JP3030557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195026A (en) * 1989-09-12 1993-03-16 Hitachi, Ltd. Method and apparatus for computer controlled nonlinear optimization
US5723395A (en) * 1995-06-30 1998-03-03 Tdk Corporation Dielectric ceramic composition, its preparation method, multilayer chip capacitor, dielectric filter, and electronic parts
EP1978004A1 (en) * 2007-03-30 2008-10-08 TDK Corporation Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618383B2 (en) 2008-05-12 2011-01-26 Tdk株式会社 Dielectric ceramic composition, multilayer composite electronic component, multilayer common mode filter, multilayer ceramic coil and multilayer ceramic capacitor
CN102216238B (en) * 2008-11-21 2013-05-01 株式会社村田制作所 Ceramic composition, ceramic green sheet, and ceramic electronic component
KR101828748B1 (en) * 2017-05-31 2018-02-13 김진석 Functional floating apparatus using magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227769A (en) * 1983-06-06 1984-12-21 太陽誘電株式会社 Dielectric ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227769A (en) * 1983-06-06 1984-12-21 太陽誘電株式会社 Dielectric ceramic composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195026A (en) * 1989-09-12 1993-03-16 Hitachi, Ltd. Method and apparatus for computer controlled nonlinear optimization
US5723395A (en) * 1995-06-30 1998-03-03 Tdk Corporation Dielectric ceramic composition, its preparation method, multilayer chip capacitor, dielectric filter, and electronic parts
EP1978004A1 (en) * 2007-03-30 2008-10-08 TDK Corporation Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor
JP2008254936A (en) * 2007-03-30 2008-10-23 Tdk Corp Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor
US7799718B2 (en) 2007-03-30 2010-09-21 Tdk Corporation Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor
TWI412046B (en) * 2007-03-30 2013-10-11 Tdk Corp Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP3030557B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
JPH0355002B2 (en)
JPS634339B2 (en)
JP3471839B2 (en) Dielectric porcelain composition
CN100364924C (en) Titanium barium base ceramic medium materials and capacitor made thereform
JPH01236514A (en) Dielectric porcelain material
JPH0552602B2 (en)
JPH0544764B2 (en)
JPS5920905A (en) High dielectric contact porcelain composition
JP2594989B2 (en) Dielectric porcelain material
JP2531548B2 (en) Porcelain composition for temperature compensation
JP3030558B2 (en) Dielectric porcelain material
CN100372802C (en) High frequency thermostable titanium barium neodymium base ceramic medium materials and multilayer sheet type ceramic capacitor
JPS62262303A (en) High dielectric constant porcelain compound
JPH05182523A (en) Dielectric porcelain composition
JPH0518202B2 (en)
JPH0551127B2 (en)
JPH0524651B2 (en)
JP2671422B2 (en) Non-reducing dielectric porcelain composition
JPS6224385B2 (en)
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH0581927A (en) Dielectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP2531547B2 (en) Porcelain composition for temperature compensation
JPH0518203B2 (en)
JPS6126207B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees