JPS637013B2 - - Google Patents

Info

Publication number
JPS637013B2
JPS637013B2 JP55008154A JP815480A JPS637013B2 JP S637013 B2 JPS637013 B2 JP S637013B2 JP 55008154 A JP55008154 A JP 55008154A JP 815480 A JP815480 A JP 815480A JP S637013 B2 JPS637013 B2 JP S637013B2
Authority
JP
Japan
Prior art keywords
mol
component
less
composition
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55008154A
Other languages
Japanese (ja)
Other versions
JPS56105620A (en
Inventor
Yoshihiro Matsuo
Gen Itakura
Shoichi Ikebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP815480A priority Critical patent/JPS56105620A/en
Publication of JPS56105620A publication Critical patent/JPS56105620A/en
Publication of JPS637013B2 publication Critical patent/JPS637013B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン酸ストロンチウム(SrTiO3
を主体とする半導体磁器の粒界に酸化ビスマス
(Bi2O3)と酸化銅(Cu2O)とを主体とする拡散
剤を熱拡散させて、その粒界領域に誘電体層を設
けることにより得られるコンデンサ材料、すなわ
ち粒界誘電体層型半導体磁器組成物に関する。 コンデンサ材料としての粒界誘電体層型半導体
磁器の組成物は、半導体磁器の組成物と、その半
導体磁器の粒界領域を高抵抗化し結晶粒界に誘電
体層を設けるための粒界拡散材の組成物との両者
から成る。この両者の選択によつてコンデンサと
しての諸特性が決まる。 本発明に係る半導体磁器の組成物は、酸化ニオ
ブを含有したチタン酸ストロンチウムを主体とし
たものである。従来から、酸化ニオブ含有チタン
酸ストロンチウム半導体磁器はすでに公知であ
る。(特開昭49−129896号、特開昭50−8099号)
しかし、これらの半導体磁器の粒界に誘電体層を
設けるための粒界拡散剤は、特開昭49−129896号
では実施例としてBi2O3が、また特開昭50−8099
号ではNb2O3とZnOとから成る組成が開示されて
いるのみである。本発明に係る粒界拡散剤は、少
くともBi2O3とCu2Oとを含有する組成物であるこ
とを特徴とし、その中でも特に上記Bi2O3とCu2O
の他にMnO2とB2O3を含む組成物、また上記
Bi2O3、Cu2O、MnO2及びB2O3の他にさらに
Li2Oを含む組成物を好適例とするものである。
一方、粒界拡散剤としてBi2O3とCu2Oを含む組成
物は特開昭54−78494号、特開昭52−88799号に開
示されているが、特開昭54−78494号に記載され
ている半導体磁器組成物は酸化マンガンと酸化ニ
オブとを含有したチタン酸ストロンチウムであ
り、本発明に係る半導体磁器組成物とは異なつて
いる。また特開昭52−88799号に記載されている
半導体磁器組成物は酸化ニオブのみを含有したチ
タン酸ストロンチウムであり、同じく本発明に係
る半導体磁器組成物とは異なつており、みかけ誘
電率のわりには絶縁破壊電圧が低く、そのバラツ
キが大きい。さらに、粒界拡散剤がBi2O3
Cu2O、MnO2およびLi2Oの4成分系から成る組
成物は特開昭52−111698号に開示されているが、
これに用いられている半導体磁器組成物は酸化ビ
スマスと酸化ニオブとを含有したチタン酸ストロ
ンチウムであり、これも本発明に係る半導体磁器
組成物とは異なつている。 本発明に係る半導体磁器組成物は、酸化珪素、
酸化アルミニウム、酸化バリウム、酸化カルシウ
ム、酸化鉛、酸化マグネシウム、酸化スズ、酸化
ジルコニウム、酸化クロム、酸化鉄、酸化コバル
ト、酸化ニツケル、酸化銅、酸化銀、酸化ナトリ
ウム、酸化カリウムから成る群から選ばれた少く
とも1種以上の成分と酸化ニオブ成分とを含有す
るチタン酸ストロンチウムである。第1番目の発
明に係る組成は、SrO成分が52.32〜40.27モル%、
TiO2成分が47.63〜50.23モル%、Nb2O5成分が
0.05〜0.5モル%、さらに、1.00モル%以下のSiO2
成分、0.40モル%以下のAl2O3成分、合量が5.00
モル%以下のBaO、CaO、PbOの各成分、1.00モ
ル%以下のMgO成分、合量が1.00モル%以下の
SnO2、ZrO2の各成分、合量が0.50モル%以下の
Cr2O3、Fe2O3、CoO、NiO、Cu2O、Ag2Oの各
成分、合量が0.10モル%以下のNa2O、K2Oの各
成分のうち少なくとも1種以上の成分とから成
る。また、第2番目の発明に係る組成は、SrO成
分が51.02〜42.87モル%、TiO2成分が48.93〜
50.23モル%、Nb2O5成分が0.05〜0.50モル%、
SiO2成分が0.10〜1.00モル%以下、Al2O3が0.02
〜0.40モル%以下、およびBaO、CaO、PbOの3
成分のうちから選ばれた少くとも一種をその合量
で0.05〜0.50モル%以下を含有している。 Nb2O5成分は、SrO成分とTiO2成分とから構
成されるSrTiO3あるいはその固溶体を、原子価
制御の原理により半導体化させるのに必要な成分
で、その成分量が0.05モル%(SrTiO3系固溶体
に対してはほゞ0.10モル%)未満では半導体化の
効果はなく、一方その成分量が0.50モル%
(SrHiO3系固溶体に対してはほゞ1.00モル%)を
超えるとSrTiO3系固溶体磁器の粒成長が10μm未
満に抑制されるので望ましくない。本発明に係る
研究の結果、粒界誘電体層型半導体磁器組成物の
望ましい結晶粒径は平均で10〜30μmである。コ
ンデンサの特性として重要なみかけ誘電率εa、お
よび破壊電圧(直流印加)Vbは磁器の平均粒径
に強く依存する。粒径が大きくなるとεaは大きく
なるがVbは小さくなる。平均粒径が10μmではVb
は3500V/mmが得られるが、εaは10000しか得ら
れない。一方、平均粒径が30μmではεaは70000が
得られるが、Vbは500V/mmしか得られない。実
用コンデンサに要求されるεaは10000以上、Vb
500V/mm以上であるので、半導体磁器に要求さ
れる結晶粒径は平均で10〜30μmとなる。この結
晶粒径には、さらにSrO、BaO、CaO、PbOの各
成分の合量とTiO2成分量とのモル比が影響する。
10〜30μmの平均粒径が得られる上記モル比の範
囲は1.005〜0.990である。上記モル比が1.005を超
えても、また0.990未満でも平均粒径は10μm未満
となり、εaが10000未満となつて高い誘電率が要
求されるコンデンサ材料として望ましくない。最
も大きな平均粒径が得られる上記モル比はほゞ
0.996であり、このときの平均粒径は、0.05〜0.50
モル%の範囲内の適量のNb2O5量を選び、また
1.00モル%以下のSiO2量、0.40モル%以下の
Al2O3量を選ぶことにより30μm以下に抑えるこ
とができる。 1.00モル%以下のSiO2含有はSrTiO3半導体磁
器の焼結を促進し、誘電損失tanδをわずかに小さ
くする効果をもつが、その含有量が1.00モル%を
超えると粒成長抑制作用が大きく、10μm以上の
平均粒径が得られない。同様な粒成長抑制作用は
0.40モル%を超えるAl2O3量、また合量で5.00モ
ル%を超えるCaO、BaO、PbO量においてみら
れるので望ましくない。また1.00モル%を超える
MgO含有においても同様な作用があり、10μm未
満の平均粒径しか得られないので望ましくない。 SnO2およびZrO2の微量含有はコンデンサ容量
の温度変化率(85℃〜−25℃)をわずかに小さく
する効果を有しているが、その含有量が合量で
1.00モル%を超えるとSrTiO3半導体磁器の焼結
粒径を不均一にし、特性のばらつきを大きくする
ので望ましくない。 Cr2O3、Fe2O3、CoO、NiO、Cu2O、Ag2Oの
各成分の微量含有は、コンデンサ素子の破壊電圧
を高める効果があるが、これらの各成分の合量が
0.50モル%を超えるとSrTiO3系固溶体の原子価
制御による半導体化が困難になるため望ましくな
い。 Na2OおよびK2O成分はtanδを大きくする作用
があり、これらの成分の合量が0.10モル%を超え
ると0.01以下のtanδが得られないので望ましくな
い。 次に、本発明に係る粒界拡散剤の組成物は、主
としてBi2O3成分とCu2O成分とを9対1〜1対6
の範囲のモル比で含有する混合物から成るものを
基本とし、その中でBi2O3とCu2Oの混合物の1部
分を4.00モル%以下のMnO2成分と6.00モル%以
下のB2O3成分とで置換した4成分系混合物、さ
らには前記混合物の1部分を4.00モル%以下の
MnO2成分と6.00モル%以下のB2O3成分と20.00モ
ル%以下のLi2O成分とで置換した5成分系混合
物を好適例とするものである。本発明に係る研究
の結果、熱拡散後の粒界拡散成分においてBi2O3
成分が増えるとεaは大きくなるが、Vbが小さく
なり、容量温度変化率(85℃〜−25℃)が大きく
なる。逆にCu2O成分が増えると容量温度変化率
は小さく、Vbは大きくなるが、εaが小さくなる。
誘電損失tanδはBi2O3−Cu2Oの2成分系ではそれ
ぞれのモル%が65.00−35.00の時に最も小さく
(0.0045)なり、この組成比よりBi2O3成分が多く
なつても、Cu2O成分が多くなつてもtanδは増加
する。Bi2O3とCu2Oのモル比が9対1を超えると
Vbが500V/mm以上の特性が得られないので望ま
しくない。またBi2O3とCu2Oのモル比が1対6未
満であると、平均粒径24μmの半導体磁器を用い
てもεaが10.000以上の特性が得られないので好ま
しくない。 この2成分系拡散成分にさらにMnO2を添加す
るとVbの値が増加する効果があるが、一方εa
わずかに減少し、tanδが増大する傾向を持つ。
MnO2成分量が4.00モル%を越えるとtanδが0.01
以下の特性が得られなくなるため、含有MnO2
は4.00モル%以下であることが望ましい。さらに
B2O3を添加するとtanδを減少させる効果がある
が、一方Vbを減少させる傾向を持つ。B2O3成分
が6.00モル%を超えるとVbが500V/mmの特性が
得られなくなるので、含有B2O3成分量は6.00モ
ル%以下であることが望ましい。 さらに、Bi2O3、Cu2O、MnO2及びB2O3から成
る4成分系拡散成分にLi2O成分を添加すると容
量温度変化率を増加させることなくεaを大きくす
ることができる効果を持つているが、その含有成
分量が20.00モル%を超えるとVbの低下、tanδの
増大があり、特にVbが500V/mm以上の特性が得
られなくなるので望ましくない。 以下実施例を挙げて説明する。 実施例 1 市販の工業用原料SrCO3粉末(純度99.0%以
上)、TiO2粉末(アナターゼ型、純度99.5%以
上)、Nb2O5粉末(純度99.0%以上)、および市販
の試案特級品のSiO2、Al2O3、BaO、CaO、
MgO、PbO、SnO2、ZrO2、Cr2O3、Fe2O3
CoO、NiO、Cu2O、Ag2O、Na2CO3、K2CO3
末(純度99.5%以上)を用い、第1表に示す半導
体磁器組成物の組成比になるように配合し、湿式
混合、乾燥、1200℃の温度で仮焼した後、平均
2.5μmの粉末に粉砕した。その後、ポリビニール
アルコール水溶液をバインダーとして添加混合
し、32メツシユパスに整粒し、その整粒粉を直径
15mm×厚さ0.5mmの円板形に約1トン/cm2の加圧
力で成形し、これらの成形体を空気中で1000℃で
加熱処理した後、90%N2−10%H2の混合ガス気
流中で1390℃の温度で4時間焼成して約直径12mm
厚さ0.4mmの円板形の半導体磁器を得た。これら
の半導体磁器の破断面を研磨、エツチングして平
均粒径を観察・測定した結果を第1表に示す。
The present invention uses strontium titanate (SrTiO 3 )
A dielectric layer is provided in the grain boundary region by thermally diffusing a diffusing agent mainly composed of bismuth oxide (Bi 2 O 3 ) and copper oxide (Cu 2 O) into the grain boundaries of semiconductor ceramics mainly composed of The present invention relates to a capacitor material, that is, a grain boundary dielectric layer type semiconductor ceramic composition obtained by the method. The composition of the grain boundary dielectric layer type semiconductor porcelain as a capacitor material consists of a composition of the semiconductor porcelain and a grain boundary diffusion material for increasing the resistance of the grain boundary region of the semiconductor porcelain and providing a dielectric layer at the grain boundaries. The composition consists of both. The selection of these two determines various characteristics of the capacitor. The semiconductor ceramic composition according to the present invention is mainly composed of strontium titanate containing niobium oxide. BACKGROUND ART Niobium oxide-containing strontium titanate semiconductor porcelain is already known. (Unexamined Japanese Patent Publication No. 129896/1973, No. 8099/1973)
However, the grain boundary diffusing agent for providing a dielectric layer at the grain boundaries of these semiconductor ceramics is Bi 2 O 3 as an example in JP-A No. 49-129896, and Bi 2 O 3 as an example in JP-A No. 50-8099.
The issue only discloses a composition consisting of Nb 2 O 3 and ZnO. The grain boundary diffusing agent according to the present invention is characterized in that it is a composition containing at least Bi 2 O 3 and Cu 2 O, especially the above-mentioned Bi 2 O 3 and Cu 2 O.
Compositions containing MnO 2 and B 2 O 3 in addition to the above
In addition to Bi 2 O 3 , Cu 2 O, MnO 2 and B 2 O 3
A preferred example is a composition containing Li 2 O.
On the other hand, compositions containing Bi 2 O 3 and Cu 2 O as grain boundary diffusing agents are disclosed in JP-A-54-78494 and JP-A-52-88799; The semiconductor ceramic composition described is strontium titanate containing manganese oxide and niobium oxide, and is different from the semiconductor ceramic composition according to the present invention. Furthermore, the semiconductor ceramic composition described in JP-A-52-88799 is strontium titanate containing only niobium oxide, which is different from the semiconductor ceramic composition according to the present invention, and has a lower apparent dielectric constant. The dielectric breakdown voltage is low and its variation is large. Furthermore, the grain boundary diffusing agent is Bi 2 O 3 ,
A composition consisting of a four-component system of Cu 2 O, MnO 2 and Li 2 O is disclosed in JP-A-52-111698;
The semiconductor ceramic composition used here is strontium titanate containing bismuth oxide and niobium oxide, which is also different from the semiconductor ceramic composition according to the present invention. The semiconductor ceramic composition according to the present invention includes silicon oxide,
selected from the group consisting of aluminum oxide, barium oxide, calcium oxide, lead oxide, magnesium oxide, tin oxide, zirconium oxide, chromium oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, silver oxide, sodium oxide, potassium oxide It is strontium titanate containing at least one component and a niobium oxide component. The composition according to the first invention has a SrO component of 52.32 to 40.27 mol%,
TiO 2 component is 47.63-50.23 mol%, Nb 2 O 5 component is
0.05-0.5 mol%, furthermore, 1.00 mol% or less SiO2
Ingredients, 0.40 mol% or less Al 2 O 3 components, total amount 5.00
Each component of BaO, CaO, PbO is 1.00 mol% or less, MgO component is 1.00 mol% or less, and the total amount is 1.00 mol% or less.
The total amount of each component of SnO 2 and ZrO 2 is 0.50 mol% or less
At least one of the following components: Cr 2 O 3 , Fe 2 O 3 , CoO, NiO, Cu 2 O, Ag 2 O, Na 2 O , K 2 O in a total amount of 0.10 mol% or less Consisting of ingredients. In addition, the composition according to the second invention has a SrO component of 51.02 to 42.87 mol% and a TiO 2 component of 48.93 to 48.93 mol%.
50.23 mol%, Nb 2 O 5 component is 0.05-0.50 mol%,
SiO2 component is 0.10-1.00 mol% or less, Al2O3 is 0.02
~0.40 mol% or less, and 3 of BaO, CaO, and PbO
The total amount of at least one selected from among the components is 0.05 to 0.50 mol % or less. The Nb 2 O 5 component is a component necessary to convert SrTiO 3 or its solid solution, which is composed of an SrO component and a TiO 2 component, into a semiconductor based on the principle of valence control, and its amount is 0.05 mol% (SrTiO For tri- based solid solutions, there is no effect on semiconductor formation when the amount of the component is less than 0.10 mol%), while on the other hand, when the amount of the component is 0.50 mol%
(approximately 1.00 mol% for SrHiO 3 -based solid solution) is not desirable because grain growth of SrTiO 3 -based solid solution porcelain is suppressed to less than 10 μm. As a result of research related to the present invention, the desirable crystal grain size of the grain boundary dielectric layer type semiconductor ceramic composition is 10 to 30 μm on average. The apparent dielectric constant ε a and the breakdown voltage (direct current applied) V b , which are important characteristics of a capacitor, strongly depend on the average particle size of the porcelain. As the particle size increases, ε a increases, but V b decreases. When the average particle size is 10 μm, V b
can obtain 3500V/mm, but ε a can only obtain 10000. On the other hand, when the average particle size is 30 μm, ε a is 70,000, but V b is only 500 V/mm. ε a required for a practical capacitor is 10,000 or more, and V b is
Since it is 500 V/mm or more, the average crystal grain size required for semiconductor porcelain is 10 to 30 μm. This crystal grain size is further influenced by the molar ratio between the total amount of each component of SrO, BaO, CaO, and PbO and the amount of the two TiO components.
The above molar ratio range that provides an average particle size of 10 to 30 μm is 1.005 to 0.990. Even if the molar ratio exceeds 1.005 or is less than 0.990, the average particle size will be less than 10 μm, and ε a will be less than 10,000, which is not desirable as a capacitor material that requires a high dielectric constant. The above molar ratio that gives the largest average particle size is approximately
0.996, and the average particle size at this time is 0.05 to 0.50.
Select an appropriate amount of Nb 2 O 5 within the range of mol%, and
SiO2 amount below 1.00 mol%, below 0.40 mol%
By selecting the amount of Al 2 O 3 , the thickness can be suppressed to 30 μm or less. SiO 2 content of 1.00 mol % or less promotes sintering of SrTiO 3 semiconductor porcelain and has the effect of slightly reducing dielectric loss tan δ, but if the content exceeds 1.00 mol %, grain growth suppressing effect is large, An average particle size of 10 μm or more cannot be obtained. A similar grain growth inhibitory effect is
It is undesirable because it is observed in the amount of Al 2 O 3 exceeding 0.40 mol %, and in the total amount of CaO, BaO, and PbO exceeding 5.00 mol %. Also exceeds 1.00 mol%
A similar effect occurs when MgO is contained, which is undesirable since an average particle size of less than 10 μm can be obtained. The inclusion of small amounts of SnO 2 and ZrO 2 has the effect of slightly reducing the rate of temperature change of capacitor capacitance (85°C to -25°C), but the total content is
If it exceeds 1.00 mol%, the sintered grain size of the SrTiO 3 semiconductor porcelain becomes non-uniform, which increases the variation in properties, which is not desirable. The inclusion of trace amounts of each of Cr 2 O 3 , Fe 2 O 3 , CoO, NiO, Cu 2 O, and Ag 2 O has the effect of increasing the breakdown voltage of the capacitor element, but the total amount of each of these components
If it exceeds 0.50 mol%, it is undesirable because it becomes difficult to convert the SrTiO 3 solid solution into a semiconductor by controlling the valence. Na 2 O and K 2 O components have the effect of increasing tan δ, and if the total amount of these components exceeds 0.10 mol %, tan δ of 0.01 or less cannot be obtained, which is not desirable. Next, the composition of the grain boundary diffusing agent according to the present invention mainly has a Bi 2 O 3 component and a Cu 2 O component in a ratio of 9:1 to 1:6.
Basically, it consists of a mixture containing Bi 2 O 3 and Cu 2 O in a molar ratio in the range of 4.00 mol % or less of the MnO component and 6.00 mol % or less of B 2 O. 4-component mixtures substituted with 3 components, and furthermore, a portion of said mixture is substituted with 4.00 mol% or less of
A preferred example is a five-component mixture substituted with two MnO components, 6.00 mol % or less of B 2 O 3 components, and 20.00 mol % or less of Li 2 O components. As a result of research related to the present invention, Bi 2 O 3 in the grain boundary diffusion component after thermal diffusion
As the number of components increases, ε a increases, but V b decreases and the capacitance temperature change rate (85° C. to −25° C.) increases. Conversely, as the Cu 2 O component increases, the capacitance temperature change rate decreases, V b increases, but ε a decreases.
The dielectric loss tan δ is the smallest (0.0045) when the mole percentage of each component is 65.00-35.00 in the Bi 2 O 3 -Cu 2 O binary system, and even if the Bi 2 O 3 component is larger than this composition ratio, the Cu 2 Even if the O component increases, tanδ increases. When the molar ratio of Bi 2 O 3 and Cu 2 O exceeds 9:1
This is not desirable because it is not possible to obtain characteristics with V b of 500 V/mm or more. Furthermore, if the molar ratio of Bi 2 O 3 to Cu 2 O is less than 1:6, it is not preferable because even if semiconductor porcelain with an average grain size of 24 μm is used, a characteristic of ε a of 10.000 or more cannot be obtained. Further addition of MnO 2 to this two-component diffusion component has the effect of increasing the value of V b , but on the other hand, ε a tends to decrease slightly and tan δ increases.
When the amount of MnO two components exceeds 4.00 mol%, tanδ is 0.01
The amount of MnO 2 contained is desirably 4.00 mol % or less because the following characteristics cannot be obtained. moreover
Addition of B 2 O 3 has the effect of reducing tan δ, but on the other hand tends to reduce V b . If the B 2 O 3 component exceeds 6.00 mol %, the characteristic of V b of 500 V/mm cannot be obtained, so it is desirable that the content of the B 2 O 3 component is 6.00 mol % or less. Furthermore, by adding a Li 2 O component to the four-component diffusion component consisting of Bi 2 O 3 , Cu 2 O, MnO 2 and B 2 O 3 , ε a can be increased without increasing the capacitance temperature change rate. Although it is effective, if the content exceeds 20.00 mol %, V b decreases and tan δ increases, and in particular, characteristics with V b of 500 V/mm or more cannot be obtained, which is not desirable. This will be explained below with reference to examples. Example 1 Commercially available industrial raw materials SrCO 3 powder (purity 99.0% or higher), TiO 2 powder (anatase type, purity 99.5% or higher), Nb 2 O 5 powder (purity 99.0% or higher), and a commercially available prototype special grade product. SiO2 , Al2O3 , BaO, CaO,
MgO, PbO, SnO2 , ZrO2 , Cr2O3 , Fe2O3 ,
Using CoO, NiO, Cu 2 O, Ag 2 O, Na 2 CO 3 and K 2 CO 3 powders (purity 99.5% or more), they were mixed to have the composition ratio of the semiconductor ceramic composition shown in Table 1, After wet mixing, drying and calcination at a temperature of 1200℃, the average
It was ground to a powder of 2.5 μm. After that, polyvinyl alcohol aqueous solution is added as a binder and mixed, the sized powder is sized to 32 mesh passes, and the sized powder is
It was molded into a disc shape of 15 mm x 0.5 mm thick with a pressure of about 1 ton/cm 2 , and after heat-treating these molded bodies in air at 1000°C, it was heated to 90% N 2 -10% H 2 . Approximately 12mm in diameter after firing for 4 hours at 1390℃ in a mixed gas stream.
A disk-shaped semiconductor porcelain with a thickness of 0.4 mm was obtained. The fractured surfaces of these semiconductor ceramics were polished and etched, and the average particle size was observed and measured. Table 1 shows the results.

【表】【table】

【表】【table】

【表】 *は比較例 ↓は上に同じ
なお焼結体の平均粒径は本焼成温度を1380〜
1410℃の範囲で変えても変化しなかつた。また得
られた半導体磁器の比抵抗(In−Ga電極)は試
料11、72、73を除いてすべて0.2〜0.5Ωcmの範囲
であつた。しかし、Nb2O5成分量が0.05モル%未
満の試料番号11は2Ωcm、Cr2O3、Fe2O3、Cu2O
などの合量が0.50モル%を超えた試料番号73は
1.5Ωcmと高い比抵抗を示し、原子価制御型半導
体化が不充分であつた。一方、Nb2O5成分量が
0.50モル%を超えた試料番号29は粒成長が抑制さ
れて粒径は平均8μmと小さかつた。また、試料
番号12と23は、SrO+BaO+CaO+PbO/TiO2
のモル比が1.005を超えているため平均粒径は10μ
未満であつた。また、試料番号16と28は、SrO+
BaO+CaO+PbO/TiO2のモル比が0.990よりも
小さいために平均粒径はやはり10μm未満であつ
た。さらにBaO、CaO及びPbOの各成分の合量
が5.00モル%を超えた試料番号45、SiO2成分量が
1.00モル%を超えた試料番号49、Al2O3成分量が
0.40モル%を超えた試料番号51、およびMgO成
分量が1.00モル%を超えた試料番号63においても
平均粒径は10μm未満であつた。また、SnO2成分
およびZrO2成分の合量が増加すると、それに従
つて平均粒径のばらつきが大きくなり、その合量
が1.00モル%を超えると平均粒径が10μm未満の
望ましくないものから平均粒径30μmのものまで
現われてくる。 次に、これら試料番号11〜76(第1表)の半導
体磁器にペースト状の拡散剤を塗布し、1190℃の
温度で2時間熱処理を行なつて粒界に誘電体層を
形成した。このときの拡散剤の組成は、Bi2O3
分65.00モル%−Cu2O成分35.00モル%であつた。
なお、用いた原料粉末は市販の試薬特級品であつ
た。塗布量は半導体磁器素子1枚(250mg)当り
1.2mgであつた。また、熱拡散にあたつては塗布
した拡散成分Bi2O3及びCu2Oが試料外に蒸発およ
び拡散などにより飛散しないように留意した。こ
のようにして得られた粒界誘電体層型半導体磁器
の円板形素子の両面にAg電極を焼付けてコンデ
ンサ素子とし、コンデンサ特性、εa(1KHz)、
tanε(1KHz)およびVbを測定した。第2表にこ
れらの結果を示す。
[Table] * is a comparative example ↓ is the same as above The average grain size of the sintered body is set at a main firing temperature of 1380~
There was no change even when the temperature was changed within the range of 1410℃. Further, the specific resistance (In-Ga electrode) of the obtained semiconductor ceramics was all in the range of 0.2 to 0.5 Ωcm except for samples 11, 72, and 73. However, sample number 11 with Nb 2 O 5 component content of less than 0.05 mol % has a resistance of 2 Ωcm, Cr 2 O 3 , Fe 2 O 3 , Cu 2 O
Sample number 73 with a total amount of more than 0.50 mol% is
It exhibited a high specific resistance of 1.5 Ωcm, indicating that valence-controlled semiconductor formation was insufficient. On the other hand, the amount of Nb 2 O 5 component is
In sample No. 29, in which the content exceeded 0.50 mol %, grain growth was suppressed and the grain size was as small as 8 μm on average. In addition, sample numbers 12 and 23 are SrO + BaO + CaO + PbO/TiO 2
Since the molar ratio of is over 1.005, the average particle size is 10μ
It was less than In addition, sample numbers 16 and 28 are SrO+
The average particle size was also less than 10 μm because the molar ratio of BaO+CaO+PbO/TiO 2 was less than 0.990. Furthermore, sample number 45, in which the total amount of each component of BaO, CaO, and PbO exceeded 5.00 mol%, and the amount of two components of SiO
Sample number 49, Al 2 O 3 component amount exceeding 1.00 mol%
The average particle diameter was also less than 10 μm in Sample No. 51, in which the MgO content exceeded 0.40 mol%, and in Sample No. 63, in which the MgO content exceeded 1.00 mol%. In addition, as the total amount of SnO 2 components and ZrO 2 components increases, the variation in average particle size increases accordingly, and when the total amount exceeds 1.00 mol%, the average particle size will change from undesirable particles with an average particle size of less than 10 μm. Particles with a particle size of up to 30 μm are appearing. Next, a paste-like diffusing agent was applied to these semiconductor ceramics of sample numbers 11 to 76 (Table 1), and heat treatment was performed at a temperature of 1190° C. for 2 hours to form a dielectric layer at the grain boundaries. The composition of the diffusing agent at this time was 65.00 mol % Bi 2 O 3 component - 35.00 mol % Cu 2 O component.
The raw material powder used was a commercially available special grade reagent. Coating amount is per semiconductor porcelain element (250mg)
It was 1.2 mg. In addition, during thermal diffusion, care was taken to prevent the applied diffusion components Bi 2 O 3 and Cu 2 O from scattering outside the sample due to evaporation, diffusion, etc. Ag electrodes were baked on both sides of the disk-shaped element of the grain boundary dielectric layer type semiconductor porcelain obtained in this way to make a capacitor element, and the capacitor characteristics were determined as follows: ε a (1KHz),
tanε (1KHz) and Vb were measured. Table 2 shows these results.

【表】【table】

【表】 *は比較例
試料番号111、112、116、123、128、129、145、
149、151、163、167、173および176以外の本発明
に係る試料はすべてεa10000以上、tanδは0.01以
下、Vbは500V/mm以上の特性を有している。 実施例 2 市販の試薬特級品Bi2O3、Cu2O、MnO2、B2O3
およびLi2CO3の各粉末を第3表に示す拡散組成
物の組成比になるように配合し、乾式混合し、さ
らに松ヤニ、テレピン油等を適量加えて混合し、
ペースト状拡散剤を作成した。このペースト状拡
散剤を実施例1の第1表に示した試料番号20の半
導体磁器素子(平均粒径23μm)に塗布した。拡
散剤の塗布量は酸化物粉末に換算して素子1枚
(約250mg)当り1.2mgであつた。このペースト状
拡散剤を塗布した半導体素子を1190℃の温度で2
時間加熱処理を行なつた。この熱拡散処理にあた
つては塗布した拡散成分が蒸発、溶融流失、試料
外への拡散などにより試料外に失なわれないよう
に留意した。このようにして得られた粒界誘電体
層型半導体磁器の円板形素子の両面にAg電極を
焼付けてコンデンサ素子とし、コンデンサ特性εa
(1KHz)、tanδ(1KHz)、Vbおよび容量変化率(85
℃〜−25℃)を測定した。これらの結果を第3表
に示す。
[Table] *Comparative examples Sample numbers 111, 112, 116, 123, 128, 129, 145,
All the samples according to the present invention other than 149, 151, 163, 167, 173 and 176 have characteristics of ε a of 10000 or more, tan δ of 0.01 or less, and V b of 500 V/mm or more. Example 2 Commercially available special grade reagents Bi 2 O 3 , Cu 2 O, MnO 2 , B 2 O 3
and Li 2 CO 3 powders were blended to have the composition ratio of the diffusion composition shown in Table 3, dry mixed, and further mixed with appropriate amounts of pine tar, turpentine oil, etc.
A paste-like diffusing agent was created. This paste-like diffusing agent was applied to a semiconductor ceramic element (average particle size: 23 μm) of sample number 20 shown in Table 1 of Example 1. The amount of the diffusing agent applied was 1.2 mg per element (approximately 250 mg) in terms of oxide powder. A semiconductor device coated with this paste-like diffusing agent was heated to 1190°C for 2 hours.
Heat treatment was performed for a period of time. In this thermal diffusion treatment, care was taken to ensure that the applied diffusion component was not lost to the outside of the sample due to evaporation, melting, or diffusion to the outside of the sample. Ag electrodes are baked on both sides of the disk-shaped element of the grain boundary dielectric layer type semiconductor porcelain obtained in this way to form a capacitor element, and the capacitor characteristic ε a
(1KHz), tanδ (1KHz), V b and capacitance change rate (85
℃ to -25℃). These results are shown in Table 3.

【表】 *は比較例
第3表において、試料番号201、211、256、262
および279以外の本発明に係る試料はすべてεa
10000以上、tanδが0.01以下、Vbが500V/mm以上
の特性を有している。 以上の様に本発明によれば、実用コンデンサに
要求されるみかけ誘電率εaが10000以上、破壊電
圧Vbが500V/mm以上、誘電損失tanδが0.01以下
の特性を満足する粒界誘電体層型半導体磁器組成
物を提供でき、好適例においてはεa=40000〜
50000、Vb=2000〜1000V/mm、tanδ=0.002〜
0.005、容量変化率(85〜−25℃)=±15%以内の
優れたコンデンサ特性を有するものを提供でき
る。
[Table] * indicates comparative example. In Table 3, sample numbers 201, 211, 256, 262
All samples according to the present invention other than 279 have ε a
10,000 or more, tan δ is 0.01 or less, and V b is 500 V/mm or more. As described above, according to the present invention, a grain boundary dielectric that satisfies the characteristics required for practical capacitors: apparent permittivity ε a of 10,000 or more, breakdown voltage V b of 500 V/mm or more, and dielectric loss tan δ of 0.01 or less. A layered semiconductor ceramic composition can be provided, and in a preferred example, ε a =40000~
50000, V b =2000~1000V/mm, tanδ=0.002~
0.005, capacitance change rate (85 to -25°C) = within ±15%, and can provide capacitors with excellent characteristics.

Claims (1)

【特許請求の範囲】 1 SrO成分が52.32〜40.27モル%、TiO2成分が
47.63〜50.23モル%、Nb2O5成分が0.05〜0.50モル
%含有し、さらに下記に示すA〜Gの成分のうち
少くとも1種の成分を含有する組成の半導体磁器
の結晶粒界に少くともBi2O3とCa2Oを9対1〜1
対6の範囲のモル比で含有する組成物を熱拡散さ
せて、その結晶粒界に誘電体層を形成したことを
特徴とする粒界誘電体層型半導体磁器組成物。 A:1.00モル%以下のSiO2成分 B:0.40モル%以下のAl2O3成分 C:合量が5.00モル%以下のBaO、CaO、PbOの
各成分 D:1.00モル%以下のMgO成分 E:合量が1.00モル%以下のSnO2、ZrO2の各成
分 F:合量が0.50モル%以下のCr2O3、Fe2O3
CoO、NiO、Cu2O、Ag2Oの各成分 G:合量が1.10モル%以下のNa2O、K2Oの各成
分 2 前記半導体磁器の結晶粒界に誘電体層を形成
すべくその結晶粒界に熱拡散させる組成物が、
90.00〜12.90モル%のBi2O3、10.00〜77.10モル%
のCuO2、4.00モル%以下のMnO2及び6.00モル%
以下のB2O3から成ることを特徴とする特許請求
の範囲第1項記載の粒界誘電体層型半導体磁器組
成物。 3 前記半導体機器の結晶粒界に誘電体層を形成
すべくその結晶粒界に熱拡散させる組成物が、
90.00〜10.00モル%のBi2O3、10.00〜60.00モル%
のCu2O、4.00モル%以下のMnO2、6.00モル%以
下のB2O3及び20.00モル%以下のLi2Oから成るこ
とを特徴とする特許請求の範囲第1項記載の粒界
誘電体層型半導体磁器組成物。 4 SrO成分が51.02〜42.87モル%、TiO2成分が
48.93〜50.23モル%、Nb2O5成分が0.05〜0.50モル
%、SiO2成分が0.10〜1.00モル%、Al2O3成分が
0.02〜0.40モル%、BaO、CaO、PbOの3成分の
うちから選ばられた少くとも一種をその合量で
0.50〜5.00モル%含有する組成の半導体磁器の結
晶粒界に、少くともBi2O3とCu2Oを9対1〜1対
6の範囲のモル比で含有する組成物を熱拡散させ
て、その結晶粒界に誘電体層を形成したことを特
徴とする粒界誘電体層型半導体磁器組成物。 5 前記半導体磁器の結晶粒界に誘電体層を形成
すべくその結晶粒界に熱拡散させる組成物が
90.00〜12.90モル%のBi2O3、10.00〜77.10モル%
のCu2O、4.00モル%以下のMnO2及び6.00モル%
以下のB2O3から成ることを特徴とする特許請求
の範囲第4項記載の粒界誘電体層型半導体磁器組
成物。 6 前記半導体磁器の結晶粒界に誘電体層を形成
すべくその結晶粒界に熱拡散させる組成物が
90.00〜10.00モル%のBi2O3、10.00〜60.00モル%
のCu2O、4.00モル%以下のMnO2、6.00モル%以
下のB2O3及び20.00モル%以下のLi2Oから成るこ
とを特徴とする特許請求の範囲第4項記載の粒界
誘電体層型半導体磁器組成物。
[Claims] 1 SrO component is 52.32 to 40.27 mol%, TiO 2 component is
47.63 to 50.23 mol%, 0.05 to 0.50 mol% of Nb 2 O 5 components, and at least one component among the components A to G shown below. Both Bi 2 O 3 and Ca 2 O 9 to 1 to 1
1. A grain boundary dielectric layer type semiconductor ceramic composition, characterized in that a dielectric layer is formed at the grain boundaries of the composition by thermally diffusing a composition containing the composition at a molar ratio of 6 to 6. A: 1.00 mol% or less of SiO 2 components B: 0.40 mol% or less of Al 2 O 3 components C: Each component of BaO, CaO, and PbO with a total amount of 5.00 mol% or less D: MgO component E of 1.00 mol% or less : Each component of SnO 2 and ZrO 2 with a total amount of 1.00 mol% or less F: Cr 2 O 3 , Fe 2 O 3 with a total amount of 0.50 mol% or less,
Each component G of CoO, NiO, Cu 2 O, and Ag 2 O: Each component 2 of Na 2 O and K 2 O with a total amount of 1.10 mol % or less To form a dielectric layer at the crystal grain boundaries of the semiconductor ceramic The composition that thermally diffuses into the grain boundaries is
90.00-12.90 mol% Bi2O3 , 10.00-77.10 mol%
CuO2 , 4.00 mol% MnO2 and 6.00 mol%
The grain boundary dielectric layer type semiconductor ceramic composition according to claim 1, characterized in that it is made of the following B 2 O 3 . 3. A composition to be thermally diffused to the grain boundaries of the semiconductor device to form a dielectric layer at the grain boundaries of the semiconductor device,
90.00-10.00 mol% Bi2O3 , 10.00-60.00 mol%
of Cu 2 O, 4.00 mol % or less of MnO 2 , 6.00 mol % or less of B 2 O 3 and 20.00 mol % or less of Li 2 O. Body layered semiconductor porcelain composition. 4 SrO component is 51.02 to 42.87 mol%, TiO 2 component is
48.93-50.23 mol%, Nb 2 O 5 component is 0.05-0.50 mol%, SiO 2 component is 0.10-1.00 mol%, Al 2 O 3 component is
0.02 to 0.40 mol%, at least one selected from the three components BaO, CaO, and PbO in the total amount
A composition containing at least Bi 2 O 3 and Cu 2 O in a molar ratio of 9:1 to 1:6 is thermally diffused into the grain boundaries of semiconductor ceramic having a composition containing 0.50 to 5.00 mol%. A grain boundary dielectric layer type semiconductor ceramic composition characterized in that a dielectric layer is formed at the grain boundaries. 5. A composition is thermally diffused into the grain boundaries of the semiconductor ceramic to form a dielectric layer at the grain boundaries.
90.00-12.90 mol% Bi2O3 , 10.00-77.10 mol%
Cu2O , 4.00 mol% MnO2 and 6.00 mol%
The grain boundary dielectric layer type semiconductor ceramic composition according to claim 4, characterized in that it consists of the following B 2 O 3 . 6. A composition that is thermally diffused into the grain boundaries of the semiconductor ceramic to form a dielectric layer at the grain boundaries.
90.00-10.00 mol% Bi2O3 , 10.00-60.00 mol%
of Cu 2 O, 4.00 mol% or less of MnO 2 , 6.00 mol% or less of B 2 O 3 and 20.00 mol% or less of Li 2 O. Body layered semiconductor porcelain composition.
JP815480A 1980-01-25 1980-01-25 Grain boundary dielectric layer type semiconductor porcelain composition Granted JPS56105620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP815480A JPS56105620A (en) 1980-01-25 1980-01-25 Grain boundary dielectric layer type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP815480A JPS56105620A (en) 1980-01-25 1980-01-25 Grain boundary dielectric layer type semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS56105620A JPS56105620A (en) 1981-08-22
JPS637013B2 true JPS637013B2 (en) 1988-02-15

Family

ID=11685397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP815480A Granted JPS56105620A (en) 1980-01-25 1980-01-25 Grain boundary dielectric layer type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS56105620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439119A (en) * 1990-06-01 1992-02-10 Nippondenso Co Ltd Heating device for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288799A (en) * 1976-01-20 1977-07-25 Matsushita Electric Ind Co Ltd Semiconductor porcelain element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288799A (en) * 1976-01-20 1977-07-25 Matsushita Electric Ind Co Ltd Semiconductor porcelain element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439119A (en) * 1990-06-01 1992-02-10 Nippondenso Co Ltd Heating device for vehicle

Also Published As

Publication number Publication date
JPS56105620A (en) 1981-08-22

Similar Documents

Publication Publication Date Title
US4015230A (en) Humidity sensitive ceramic resistor
KR860001759B1 (en) Ceramic compositions
JPS634339B2 (en)
JPH0226866A (en) Semiconductor ceramic composition
GB2096128A (en) Intergranular insulation type dielectric body
JPS637013B2 (en)
EP0137044B1 (en) Composition of porcelain for voltage-dependent, non-linear resistor
CA1140741A (en) Ceramic dielectrics and process for production thereof
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPH058524B2 (en)
JPH0249523B2 (en)
JPS634340B2 (en)
JPH0249524B2 (en)
JPH0361287B2 (en)
JPS6351992B2 (en)
JP2666265B2 (en) Sintering aid used in dielectric ceramics containing TiO2 as a main component
JPS6150371B2 (en)
JPS6126208B2 (en)
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JP2666263B2 (en) Sintering aid used in dielectric ceramics containing TiO2 as a main component
JP2666262B2 (en) Sintering aid used in dielectric ceramics containing TiO2 as a main component
JPS6412084B2 (en)
JPH0571538B2 (en)
KR100236521B1 (en) Dielectric composition of ceramic condenser and method of the same
JP2666264B2 (en) Sintering aid used in dielectric ceramics containing TiO2 as a main component