JPS6150371B2 - - Google Patents

Info

Publication number
JPS6150371B2
JPS6150371B2 JP54161778A JP16177879A JPS6150371B2 JP S6150371 B2 JPS6150371 B2 JP S6150371B2 JP 54161778 A JP54161778 A JP 54161778A JP 16177879 A JP16177879 A JP 16177879A JP S6150371 B2 JPS6150371 B2 JP S6150371B2
Authority
JP
Japan
Prior art keywords
component
mol
oxide
composition
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54161778A
Other languages
Japanese (ja)
Other versions
JPS5683919A (en
Inventor
Yoshihiro Matsuo
Gen Itakura
Shoichi Ikebe
Masanori Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16177879A priority Critical patent/JPS5683919A/en
Publication of JPS5683919A publication Critical patent/JPS5683919A/en
Publication of JPS6150371B2 publication Critical patent/JPS6150371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン酸ストロンチウム(SrTiO3)を
主体とする半導体磁器の粒界に酸化ビスマス
(Bi2O3)と酸化銅(Cu2O)および酸化硼素
(B2O3)の混合物を主体とする拡散剤を熱拡散さ
せて、その粒界領域に誘電体層を設けることによ
り得られるコンデンサ材料、すなわち粒界誘電体
層型磁器の組成物に関する。 コンデンサ材料としての粒界誘電体層型半導体
磁器の組成物は半導体磁器の組成物とその半導体
磁器の粒界領域を高抵抗化し、結晶粒界に誘電体
層を設けるための粒界拡散剤の組成物との両者か
らなる。この両者の選択によつてコンデンサとし
ての諸特性が決まる。 本発明にかかる半導体磁器の組成物は酸化ニオ
ブを含有したチタン酸ストロンチウムを主体とし
たものである。従来、酸化ニオブ含有チタン酸ス
トロンチウム半導体磁器はすでに公知である。
(特開昭49−129896号公報、同50−8099号公報、
特開昭52−88799号公報)。しかし、これらの半導
体磁器の粒界に誘電体層を設けるための粒界拡散
剤は特開昭49−129896号公報にはBi2O3が、また
同508099号公報ではNb2O5とZnOとからなる組成
が、また特開昭52−88799号公報ではBi2O3
Cu2O3からなる組成が開示されているのみであ
る。本発明における粒界拡散剤はBi2O3とCu2Oと
B2O3とからなる組成物、あるいはBi2O3とCu2O
とB2O3のほかにMnO2およびZi2Oのうち少なくと
も1成分を含む組成物であることを特徴とする。
一方、粒界拡散剤がBi2O3とCu2Oとを含む組成物
は特開昭54−78494号公報に開示されているが、
これに用いられる半導体磁器組成物は酸化マンガ
ンと酸化ニオブとを含有したチタン酸ストロンチ
ウムであり、本発明にかかる半導体磁器組成物と
は異なる。また粒界拡散剤がBi2O3,Cu2O,
MnO2,およびLi2Oの4成分系からなる組成物は
特開昭52−111698号公報、またBi2O3,Cu2O,お
よびMnO2の3成分系からなる組成物は特開昭52
−124200号公報に開示されているがこれに用いら
れる半導体磁器の組成物は酸化ビスマスと酸化ニ
オブとを含有したチタン酸ストロンチウムであ
り、本発明にかかる半導体磁器組成物とは異な
る。本発明にかかる半導体磁器組成物は酸化ニオ
ブと酸化ストロンチウムとを含有したチタン酸ス
トロンチウム、あるいは酸化ニオブと酸化チタン
とを含有したチタン酸ストロンチウム、あるいは
酸化ニオブのみを含有したチタン酸ストロンチウ
ムである。 本発明にかかる半導体磁器組成物はSrO成分が
50.23〜49.47モル%、TiO2成分が49.72〜50.23モ
ル%、Nb2O5成分が0.05〜0.3モル%からなるもの
である。Nb2O5はSrO成分とTiO2成分とから構成
されるSrTiO3を原子価制御の原理により半導体
化させるのに必要な成分で、その成分量が0.05モ
ル%(SrTiO3に対してはほぼ0.1モル%)未満で
は半導体化の効果がなく、一方その成分量が0.3
モル%(SrTiO3に対してはほぼ0.6モル%)を超
えるとSrTiO3磁器の粒成長が10μm未満に抑制
されるので望ましくない。 発明者らによる研究の結果、粒界誘電体層型磁
器の望ましい結晶粒径は平均は平均で10〜30μm
である。コンデンサの特性として重要なみかけ誘
電率εa、および破壊電圧(直流)Vbは磁器の
平均粒径に強く依存する。粒径が大きくなるとε
aは大きくなるがVbは小さくなる。平均粒径10μ
mではVbは3500V/mmが得られるが、εaは
10000しか得られない。一方、平均粒径が30μm
ではεaは70000が得られるが、Vbは500V/mmし
か得られない。実用コンデンサに要求されるεa
は10000以上、Vbは500V/mmであるので、半導体
磁器に要求される結晶粒径は平均で10〜30μmと
なる。SrO成分とTiO2成分とのモル比がこの平
均粒径に影響する。10〜30μmの平均粒径が得ら
れるSrO/TiO2のモル比の範囲は1.005〜0.990で
ある。SrO/TiO2のモル比が1.005を超えてもま
た0.990未満でも平均粒径は10μm未満となり、
εaが10000未満となり、高い誘電率が要求される
コンデンサ材料としては望ましくない。最も大き
な平均粒径が得られるSrO/TiO2のモル比はほ
ぼ0.996であり、このときの平均粒径は、Nb2O5
量を選ぶことにより、30μmに抑えることができ
る。 次に、本発明における粒界拡散剤の組成物は90
〜14.3モル%のBi2O3成分と10〜85.7モル%の
Cu2O成分と0.5〜6モル%のB2O3とからなる3成
分系混合物を基本とし、さらにこの混合物の一部
分を4モル%以下のMnO2成分あるいは20モル%
以下のLi2O成分のいずれかで置換した4成分系
混合物、さらには4モル%以下のMnO2成分と20
モル%以下のLi2Oで置換した5成分系混合物で
あることに特徴がある。本発明にかかる研究の結
果、熱拡散後の粒界拡散成分においてBi2O3成分
が増えるとεaは大きくなるが、Vbは小さくな
り、容量温度変化率(85℃〜−25℃)は大きくな
る。逆にCu2O成分が増えると容量温度変化率は
小さくなり、Vbは大きくなるが、εaが小さくな
る。 誘電損失tanδはBi2O3―Cu2Oの2成分系では
それぞれのモル比でほぼ65対35のときに最も小さ
く(0.0045)なり、この組成比より、Bi2O3成分
が多くなつても、Cu2O成分が多くなつてもtanδ
は増加する。Bi2O3成分が90モル%を超えると、
Vbが500V/mm以上の特性が得られないので望ま
しくない。またBi2O3成分が14.3モル%未満であ
ると、平均粒径24μmの半導体磁器を用いてもε
aが10000以上の特性が得られないので望ましくな
い。 この2成分系拡散成分にさらにMnO2を添加す
るとVbの値が増加するという効果があるが、一
方εaがわずかに減少し、tanδが増大する傾向を
持つ。MnO2成分量が4モル%を超えるとtanδが
0.01以下の特性が得られなくなるため、含有
MnO2量は4モル以下であることが望ましい。ま
たBi2O3―Cu2O系拡散成分およびBi2O3―Cu2O―
MnO2系拡散成分にB2O3を添加するとtanδを減
少させる効果があるが、一方Vbを減少させる傾
向を持つ。B2O3成分が6モル%を超えるとVbが
500V/mmの特性が得られなくなるので、含有
B2O3成分量は6モル%以下であることが望まし
い。さらに、これらの2成分系,3成分系,4成
分系の拡散成分にLi2O成分を添加すると、容量
温度変化率を増加させることなくεaを大きくす
ることができる効果を持つているが、その含有成
分量が20モル%を超えるとVbの低下、tanδの増
大があり、特に、Vbが500V/mm以上の特性が得
られなくなるので望ましくない。 このように、本発明にかかる粒界誘電体層型半
導体磁器組成物は実用コンデンサ素子に要求され
るみかけ誘電率10000以上、破壊電圧500V/mm、
誘電損失0.01以下の特性を満足するものであつ
て、たとえばεaが40000〜50000,Vbが2000〜
1000V/mm,tanδが0.002〜0.005、容量温度変化
率(85〜−25℃)が±15%以内の優れたコンデン
サ特性を提供するものである。 以下実施例を挙げて説明する。 実施例 1 市販の工業用原料SrCO3粉末(純度97.5%以
上)、TiO2粉末(アナターゼ型,純度98.5%以
上)、およびNb2O5粉末(純度98%以上)を用
い、第1表に示す半導体磁器組成物の組成比にな
るように配合し、湿式混合,乾燥,1200℃の温度
で仮焼成した後、平均2.5μmの粉末に粉砕した
後、ポリビニールアルコール水溶液をバインダー
として添加混合し、32メツシユパスに整粒し、そ
の整粒粉を直径15mm、厚さ0.5mmの円板形に約1
トン/cm2の加圧力で成形し、これらの成形体を空
気中において1000℃で加熱処理した後、90%N2
―10%H2の混合ガス気流中において1390℃の温
度で4時間焼成して直径約12.5mm、厚さ約0.4mm
の円板形の半導体磁器を得た。これらの半導体磁
器の破断面を研磨、エツチングして、平均粒径を
観察・測定した結果を第1表に示す。なお焼結体
の平均粒径は本焼成温度を1370〜1410℃の範囲内
で変えても変化しなかつた。
The present invention incorporates a mixture of bismuth oxide (Bi 2 O 3 ), copper oxide (Cu 2 O), and boron oxide (B 2 O 3 ) mainly at the grain boundaries of semiconductor porcelain mainly composed of strontium titanate (SrTiO 3 ). The present invention relates to a capacitor material obtained by thermally diffusing a diffusing agent and providing a dielectric layer in the grain boundary region, that is, a composition of grain boundary dielectric layer type porcelain. The composition of the grain boundary dielectric layer type semiconductor porcelain used as a capacitor material consists of the composition of the semiconductor porcelain and the grain boundary diffusing agent for increasing the resistance of the grain boundary region of the semiconductor porcelain and providing a dielectric layer at the grain boundaries. It consists of both a composition and a composition. The selection of these two determines various characteristics of the capacitor. The semiconductor ceramic composition according to the present invention is mainly composed of strontium titanate containing niobium oxide. Conventionally, niobium oxide-containing strontium titanate semiconductor ceramics are already known.
(Japanese Patent Application Laid-open No. 49-129896, JP-A No. 50-8099,
(Japanese Patent Application Laid-Open No. 52-88799). However, the grain boundary diffusing agent for providing a dielectric layer at the grain boundaries of these semiconductor ceramics is Bi 2 O 3 in JP-A-49-129896, and Nb 2 O 5 and ZnO in JP-A-508099. In JP-A No. 52-88799, the composition consists of Bi 2 O 3 and
Only a composition consisting of Cu 2 O 3 is disclosed. The grain boundary diffusing agent in the present invention is Bi 2 O 3 and Cu 2 O.
A composition consisting of B 2 O 3 or Bi 2 O 3 and Cu 2 O
The composition is characterized by containing at least one component of MnO 2 and Zi 2 O in addition to B 2 O 3 and B 2 O 3 .
On the other hand, a composition containing Bi 2 O 3 and Cu 2 O as a grain boundary diffusing agent is disclosed in JP-A-54-78494;
The semiconductor ceramic composition used here is strontium titanate containing manganese oxide and niobium oxide, and is different from the semiconductor ceramic composition according to the present invention. In addition, grain boundary diffusing agents include Bi 2 O 3 , Cu 2 O,
A composition consisting of a four-component system of MnO 2 and Li 2 O is disclosed in JP-A-52-111698, and a composition consisting of a three-component system of Bi 2 O 3 , Cu 2 O, and MnO 2 is disclosed in JP-A-52-111698. 52
The semiconductor ceramic composition disclosed in Japanese Patent No. 124200 is strontium titanate containing bismuth oxide and niobium oxide, and is different from the semiconductor ceramic composition according to the present invention. The semiconductor ceramic composition according to the present invention is strontium titanate containing niobium oxide and strontium oxide, strontium titanate containing niobium oxide and titanium oxide, or strontium titanate containing only niobium oxide. The semiconductor ceramic composition according to the present invention has a SrO component.
50.23 to 49.47 mol%, TiO 2 component is 49.72 to 50.23 mol%, and Nb 2 O 5 component is 0.05 to 0.3 mol%. Nb 2 O 5 is a component necessary to convert SrTiO 3 , which is composed of SrO component and TiO 2 component, into a semiconductor based on the principle of valence control, and its component amount is 0.05 mol% (approximately If the amount of the component is less than 0.1 mol%), there will be no effect on semiconductor formation;
If it exceeds mol % (approximately 0.6 mol % for SrTiO 3 ), grain growth of SrTiO 3 porcelain will be suppressed to less than 10 μm, which is not desirable. As a result of research conducted by the inventors, the desirable crystal grain size of grain boundary dielectric layer type porcelain is on average 10 to 30 μm.
It is. The apparent dielectric constant εa and breakdown voltage (DC) Vb, which are important characteristics of a capacitor, strongly depend on the average particle size of the ceramic. As the particle size increases, ε
a increases, but Vb decreases. Average particle size 10μ
m, Vb can be obtained as 3500V/mm, but εa is
You can only get 10000. On the other hand, the average particle size is 30μm
Then, ε a can be obtained as 70000, but Vb can only be obtained as 500V/mm. ε a required for practical capacitors
is 10,000 or more, and Vb is 500 V/mm, so the average crystal grain size required for semiconductor porcelain is 10 to 30 μm. The molar ratio of the SrO component and the TiO 2 component influences this average particle size. The SrO/ TiO2 molar ratio range is 1.005 to 0.990, giving an average particle size of 10 to 30 μm. Even if the SrO/TiO 2 molar ratio exceeds 1.005 or less than 0.990, the average particle size will be less than 10 μm.
ε a is less than 10,000, which is undesirable as a capacitor material that requires a high dielectric constant. The molar ratio of SrO/TiO 2 that gives the largest average particle size is approximately 0.996, and the average particle size at this time is Nb 2 O 5
By selecting the amount, it can be suppressed to 30 μm. Next, the composition of the grain boundary diffusing agent in the present invention is 90%
~14.3 mol% Bi2O3 component and 10~85.7 mol%
Based on a three-component mixture consisting of a Cu 2 O component and 0.5 to 6 mol% B 2 O 3 , a part of this mixture is further added with 2 components of MnO of up to 4 mol% or 20 mol%.
A four-component mixture substituted with any of the following Li 2 O components, and furthermore, 4 mol % or less of MnO 2 components and 20
It is characterized by being a five-component mixture substituted with less than mol % of Li 2 O. As a result of research related to the present invention, as the Bi 2 O 3 component increases in the grain boundary diffusion component after thermal diffusion, ε a increases, but Vb decreases, and the capacitance temperature change rate (85℃ to -25℃) decreases. growing. Conversely, as the Cu 2 O component increases, the capacitance temperature change rate decreases, Vb increases, but ε a decreases. The dielectric loss tan δ is the lowest (0.0045) when the respective molar ratios are approximately 65:35 in a binary system of Bi 2 O 3 - Cu 2 O, and the Bi 2 O 3 component is larger than this composition ratio. Also, even if the Cu 2 O component increases, tanδ
increases. When the Bi 2 O 3 component exceeds 90 mol%,
This is undesirable because characteristics with Vb of 500 V/mm or higher cannot be obtained. Furthermore, if the Bi 2 O 3 component is less than 14.3 mol%, even if semiconductor porcelain with an average grain size of 24 μm is used, ε
This is not desirable because it is not possible to obtain characteristics with a of 10,000 or more. Further addition of MnO 2 to this two-component diffusion component has the effect of increasing the value of Vb, but on the other hand, ε a tends to decrease slightly and tan δ increases. When the amount of MnO two components exceeds 4 mol%, tanδ
Since properties of 0.01 or less cannot be obtained, the inclusion
It is desirable that the amount of MnO 2 is 4 moles or less. In addition, Bi 2 O 3 ―Cu 2 O diffused components and Bi 2 O 3 ―Cu 2 O―
Adding B 2 O 3 to the MnO 2 -based diffusion component has the effect of reducing tan δ, but on the other hand tends to reduce Vb. When the B 2 O 3 component exceeds 6 mol%, Vb
Since the characteristics of 500V/mm cannot be obtained, the inclusion
It is desirable that the amount of B 2 O 3 component is 6 mol % or less. Furthermore, adding Li 2 O component to the diffusion component of these two-component, three-component, and four-component systems has the effect of increasing ε a without increasing the capacitance temperature change rate. If the content exceeds 20 mol %, Vb decreases and tan δ increases, and in particular, characteristics with Vb of 500 V/mm or more cannot be obtained, which is undesirable. As described above, the grain boundary dielectric layer type semiconductor ceramic composition according to the present invention has an apparent dielectric constant of 10,000 or more, a breakdown voltage of 500 V/mm, and a breakdown voltage of 500 V/mm, which are required for practical capacitor elements.
It satisfies the characteristics of dielectric loss of 0.01 or less, for example, ε a is 40,000 to 50,000, Vb is 2,000 to
It provides excellent capacitor characteristics of 1000V/mm, tan δ of 0.002 to 0.005, and capacitance temperature change rate (85 to -25°C) within ±15%. This will be explained below with reference to examples. Example 1 Using commercially available industrial raw materials SrCO 3 powder (purity 97.5% or more), TiO 2 powder (anatase type, purity 98.5% or more), and Nb 2 O 5 powder (purity 98% or more), The semiconductor ceramic composition was blended to have the composition ratio shown below, wet mixed, dried, pre-fired at a temperature of 1200°C, and ground to a powder with an average size of 2.5 μm. Polyvinyl alcohol aqueous solution was added as a binder and mixed. , sized to 32 mesh passes, and the sized powder is shaped into a disk with a diameter of 15 mm and a thickness of 0.5 mm.
After molding with a pressure of ton/cm 2 and heat-treating these molded bodies at 1000°C in air, 90% N 2
- Sintered at a temperature of 1390℃ for 4 hours in a mixed gas flow of 10% H2 , with a diameter of approximately 12.5 mm and a thickness of approximately 0.4 mm.
A disk-shaped semiconductor porcelain was obtained. The fractured surfaces of these semiconductor ceramics were polished and etched, and the average particle size was observed and measured. Table 1 shows the results. Note that the average grain size of the sintered body did not change even if the main firing temperature was changed within the range of 1370 to 1410°C.

【表】 *印は比較用試料
得られた半導体磁器の比抵抗(In―Ga電極)
は試料11を除いてすべて0.2〜0.4Ωcmの範囲にあ
つた。しかし試料11のみは2Ωcmと高い比抵抗を
示し、原子価制御型半導体化が不十分であるだけ
でなく、焼結粒径も平均8μmと小さかつた。一
方、Nb2O5成分量が0.30モル%を超えた試料31は
粒成長が抑制され、平均粒径で7μmと小さかつ
た。また試料12、および同25はSrO/TiO2のモ
ル比が1.005を超えているため、やはり平均粒径
が10μm未満であつた。また試料30ではSrO/
TiO2のモル比が0.990よりも小さいために平均粒
径は10μm未満であつた。試料11,12,25,30,
31以外の試料はすべて平均粒径は10μm以上であ
つた。 次に、これらの試料11〜31の半導体磁器にペー
スト状の拡散剤を塗布し1190℃の温度で2時間加
熱処理を行なつて、粒界に誘電体層を形成した。
このときの拡散剤の組成はBi2O3とCu2Oとの2成
分であり、それぞれの成分比は65モル%と35モル
%であつた(用いたBi2O3とCu2Oの原料粉末は市
販の試薬特級)。塗布量は半導体磁器素子1枚
(250mg)当り、1.2mgであつた。また熱拡散にあ
たつては、塗布した拡散成分Bi2O3とCu2Oが試料
外に蒸発および拡散などにより飛散しないように
留意した。このようにして得られた粒界誘電体層
型半導体磁器の円板形素子の両面にAg電極を焼
付けてコンデンサ素子とし、εa(1KHz),tanδ
(1KHz),およびVbを測定した。これらの結果を
第2表に示す。試料111,112,125,130,および
131以外の本発明の試料はすべてεaが10000以
上、tanδが0.01以下、Vbが500V/mm以上の特性
を有している。
[Table] *marked is sample for comparison.Resistivity of obtained semiconductor ceramic (In-Ga electrode)
were all in the range of 0.2 to 0.4 Ωcm except for sample 11. However, only sample 11 showed a high specific resistance of 2 Ωcm, and not only was the valence control type semiconductor insufficient, but also the sintered grain size was small at an average of 8 μm. On the other hand, in sample 31 in which the Nb 2 O 5 content exceeded 0.30 mol %, grain growth was suppressed and the average grain size was as small as 7 μm. In addition, Samples 12 and 25 had a SrO/TiO 2 molar ratio of more than 1.005, so the average particle size was also less than 10 μm. In addition, in sample 30, SrO/
The average particle size was less than 10 μm because the TiO 2 molar ratio was less than 0.990. Samples 11, 12, 25, 30,
All samples other than No. 31 had an average particle size of 10 μm or more. Next, a paste-like diffusing agent was applied to the semiconductor ceramics of Samples 11 to 31, and heat treatment was performed at a temperature of 1190° C. for 2 hours to form a dielectric layer at the grain boundaries.
The composition of the diffusing agent at this time was two components, Bi 2 O 3 and Cu 2 O, and the respective component ratios were 65 mol % and 35 mol % (the difference between Bi 2 O 3 and Cu 2 O used) was 65 mol % and 35 mol %. The raw material powder is a commercially available reagent grade). The coating amount was 1.2 mg per semiconductor ceramic element (250 mg). Furthermore, during thermal diffusion, care was taken to prevent the applied diffusion components Bi 2 O 3 and Cu 2 O from scattering outside the sample due to evaporation, diffusion, etc. Ag electrodes were baked on both sides of the disk-shaped element of the grain boundary dielectric layer type semiconductor porcelain obtained in this way to form a capacitor element.
(1KHz), and Vb were measured. These results are shown in Table 2. Samples 111, 112, 125, 130, and
All the samples of the present invention other than No. 131 have the following characteristics: ε a of 10,000 or more, tan δ of 0.01 or less, and Vb of 500 V/mm or more.

【表】 実施例 2 市販の試薬特級Bi2O3,Cu2O,MnO2,B2O3
およびLi2CO3の各粉末を第3表に示す拡散剤組
成物の組成比になるように配合し、乾式混合し、
さらに松やに、テレピン油等を適量加えて混合
し、ペースト状拡散剤を作製した。このペースト
状拡散剤を実施例1の第1表に示した試料22の半
導体磁器素子(平均粒径24μm)に塗布した。拡
散剤の塗布量は酸化物粉末に換算して素子1枚
(約250mg)当り1.2mgである。このペースト状拡
散剤を塗布した半導体磁器素子を1190℃の温度で
2時間加熱処理を行なつた。この熱拡散処理にあ
たつては塗布した拡散成分が蒸発、溶融流失,試
料外への拡散などにより試料外に失なわれないよ
うに留意した。このようにして得られた粒界誘電
体層動半導体磁器の円板形素子の両面にAg電極
を焼付けてコンデンサ素子とし、εa(1KHz),
tanδ(1KHz),Vbおよび容量温度変化率(85℃
−25℃)を測定した。これらの結果を第3表に示
す。比較試料201,211,256,262,279以外の本
発明にかかる試料はすべてεaが10000以上、tan
δは0.01以下、Vbは500V/mm以上の特性を有し
ている。
[Table] Example 2 Commercially available reagent special grade Bi 2 O 3 , Cu 2 O, MnO 2 , B 2 O 3 ,
and Li 2 CO 3 powders were blended to have the composition ratio of the diffusing agent composition shown in Table 3, and dry mixed.
Furthermore, an appropriate amount of turpentine oil, etc. was added to the pine resin and mixed to prepare a paste-like dispersing agent. This paste-like diffusing agent was applied to a semiconductor ceramic element (average particle size: 24 μm) of Sample 22 shown in Table 1 of Example 1. The amount of the diffusing agent applied is 1.2 mg per element (approximately 250 mg) in terms of oxide powder. The semiconductor ceramic element coated with this paste-like diffusing agent was heat-treated at a temperature of 1190° C. for 2 hours. In this thermal diffusion treatment, care was taken to prevent the applied diffusion component from being lost to the outside of the sample due to evaporation, melting, or diffusion to the outside of the sample. Ag electrodes were baked on both sides of the disk-shaped element of the grain boundary dielectric layered semiconductor porcelain obtained in this way to form a capacitor element, and ε a (1KHz),
tanδ (1KHz), Vb and capacitance temperature change rate (85℃
-25℃) was measured. These results are shown in Table 3. All samples according to the present invention other than comparative samples 201, 211, 256, 262, and 279 have ε a of 10000 or more and tan
It has the characteristics that δ is 0.01 or less and Vb is 500V/mm or more.

【表】【table】

Claims (1)

【特許請求の範囲】 1 酸化ストロンチウム(SrO)成分が50.23〜
49.47モル%,酸化チタン(TiO2)成分が49.72〜
50.23モル%,および酸化ニオブ(Nb2O5)成分が
0.05〜0.3モル%からなる組成の半導体磁器の粒
界に、酸化ビスマス(Bi2O3)成分が90〜14.3モル
%,酸化銅(Cu2O)成分が10〜85.7モル%、お
よび酸化硼素(B2O3)成分が0.5〜6モル%からな
る組成を含有させて、前記結晶粒界に誘電体層を
形成してなることを特徴とする粒界誘電体層型磁
器組成物。 2 半導体磁器の組成を構成する酸化ストロンチ
ウム(SrO)成分と酸化チタン(TiO2)成分との
モル比の値が1.005〜0.990の範囲内にあることを
特徴とする特許請求の範囲第1項記載の粒界誘電
体層型磁器組成物。 3 酸化ストロンチウム(SrO)成分が50.23〜
49.47モル%,酸化チタン(TiO2)成分が49.72〜
50.23モル%,および酸化ニオブ(Nb2O5)成分が
0.05〜0.3モル%からなる組成の半導体磁器の粒
界に、酸化ビスマス(Bi2O3)成分が90〜14.3モル
%、酸化銅(Cu2O)成分が10〜85.7モル%,酸
化硼素(B2O3)成分が0.5〜6モル%,および酸化
マンガン(MnO2)成分が4モル%以下の4成分
からなる組成を含有させて、前記結晶粒界に誘電
体層を形成してなることを特徴とする粒界誘電体
層型磁器組成物。 4 半導体磁器の組成を構成する酸化ストロンチ
ウム(SrO)成分と酸化チタン(TiO2)成分との
モル比の値が1.005〜0.990の範囲内にあることを
特徴とする特許請求の範囲第3項に記載の粒界誘
電体層型磁器組成物。 5 酸化ストロンチウム(SrO)成分が50.23〜
49.47モル%,酸化チタン(TiO2)成分が49.72〜
50.23モル%、および酸化ニオブ(Nb2O5)成分が
0.05〜0.3モル%からなる組成の半導体磁器の粒
界に、酸化ビスマス(Bi2O3)成分が90〜14.3モル
%,酸化銅(Cu2O)成分が10〜85.7モル%,酸
化硼素(B2O3)成分が0.5〜6モル%および酸化リ
チウム(Li2O)成分が20モル%以下の4成分か
らなる組成を含有させて、前記結晶粒界に誘電体
層を形成してなることを特徴とする粒界誘電体層
型磁器組成物。 6 半導体磁器の組成を構成する酸化ストロンチ
ウム(SrO)成分と酸化チタン(TiO2)成分との
モル比の値が1.005〜0.990の範囲内にあることを
特徴とする特許請求の範囲第5項に記載の粒界誘
電体層型磁器組成物。 7 酸化ストロンチウム(SrO)成分が50.23〜
49.47モル%,酸化チタン(TiO2)成分が49.72〜
50.23モル%,および酸化ニオブ(Nb2O5)成分が
0.05〜0.3モル%からなる組成の半導体磁器の粒
界に、酸化ビスマス(Bi2O3)成分が90〜14.3モル
%,酸化銅(Cu2O)成分が10〜85.7モル%,酸
化硼素(B2O3)成分が0.5〜6モル%,酸化マンガ
ン(MnO2)成分が4モル%以下、および酸化リ
チウム(Li2O)成分が20モル%以下の5成分か
らなる組成を含有させて、前記結晶粒界に誘電体
層を形成してなることを特徴とする粒界誘電体層
型磁器組成物。 8 半導体磁器の組成を構成する酸化ストロンチ
ウム(SrO)成分と酸化チタン(TiO2)成分との
モル比の値が1.005〜0.990の範囲内にあることを
特徴とする特許請求の範囲第7項に記載の粒界誘
電体層型磁器組成物。
[Claims] 1. Strontium oxide (SrO) component is 50.23~
49.47 mol%, titanium oxide (TiO 2 ) component is 49.72~
50.23 mol%, and niobium oxide (Nb 2 O 5 ) component
Bismuth oxide (Bi 2 O 3 ) component is 90 to 14.3 mol %, copper oxide (Cu 2 O) component is 10 to 85.7 mol %, and boron oxide is present in the grain boundaries of semiconductor porcelain with a composition of 0.05 to 0.3 mol %. A grain boundary dielectric layer type ceramic composition, characterized in that it contains a composition consisting of 0.5 to 6 mol % of the (B 2 O 3 ) component to form a dielectric layer at the grain boundaries. 2. Claim 1, characterized in that the molar ratio between the strontium oxide (SrO) component and the titanium oxide (TiO 2 ) component constituting the composition of the semiconductor ceramic is within the range of 1.005 to 0.990. Grain boundary dielectric layer type porcelain composition. 3 Strontium oxide (SrO) component is 50.23~
49.47 mol%, titanium oxide (TiO 2 ) component is 49.72~
50.23 mol%, and niobium oxide (Nb 2 O 5 ) component
At the grain boundaries of semiconductor porcelain with a composition of 0.05 to 0.3 mol%, bismuth oxide (Bi 2 O 3 ) component is 90 to 14.3 mol%, copper oxide (Cu 2 O) component is 10 to 85.7 mol%, boron oxide ( A dielectric layer is formed at the grain boundaries by containing a composition consisting of four components: 0.5 to 6 mol% of B 2 O 3 ) component and 4 mol% or less of manganese oxide (MnO 2 ) component. A grain boundary dielectric layer type ceramic composition characterized by the following. 4. Claim 3, characterized in that the molar ratio between the strontium oxide (SrO) component and the titanium oxide (TiO 2 ) component constituting the composition of the semiconductor ceramic is within the range of 1.005 to 0.990. The grain boundary dielectric layer type ceramic composition described above. 5 Strontium oxide (SrO) component is 50.23~
49.47 mol%, titanium oxide (TiO 2 ) component is 49.72~
50.23 mol%, and niobium oxide (Nb 2 O 5 ) component
At the grain boundaries of semiconductor porcelain with a composition of 0.05 to 0.3 mol%, bismuth oxide (Bi 2 O 3 ) component is 90 to 14.3 mol%, copper oxide (Cu 2 O) component is 10 to 85.7 mol%, boron oxide ( A dielectric layer is formed at the grain boundaries by containing a four-component composition of 0.5 to 6 mol% of B 2 O 3 ) component and 20 mol% or less of lithium oxide (Li 2 O) component. A grain boundary dielectric layer type ceramic composition characterized by the following. 6. Claim 5, characterized in that the molar ratio between the strontium oxide (SrO) component and the titanium oxide (TiO 2 ) component constituting the composition of the semiconductor ceramic is within the range of 1.005 to 0.990. The grain boundary dielectric layer type ceramic composition described above. 7 Strontium oxide (SrO) component is 50.23~
49.47 mol%, titanium oxide (TiO 2 ) component is 49.72~
50.23 mol%, and niobium oxide (Nb 2 O 5 ) component
At the grain boundaries of semiconductor porcelain with a composition of 0.05 to 0.3 mol%, bismuth oxide (Bi 2 O 3 ) component is 90 to 14.3 mol%, copper oxide (Cu 2 O) component is 10 to 85.7 mol%, boron oxide ( Contains a composition consisting of five components: 0.5 to 6 mol% of B 2 O 3 ) component, 4 mol% or less of manganese oxide (MnO 2 ) component, and 20 mol% or less of lithium oxide (Li 2 O) component. A grain boundary dielectric layer type ceramic composition, characterized in that a dielectric layer is formed at the grain boundaries. 8. Claim 7, characterized in that the molar ratio between the strontium oxide (SrO) component and the titanium oxide (TiO 2 ) component constituting the composition of the semiconductor ceramic is within the range of 1.005 to 0.990. The grain boundary dielectric layer type ceramic composition described above.
JP16177879A 1979-12-12 1979-12-12 Grain boundary dielectric layer type semiconductor porcelain composition Granted JPS5683919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16177879A JPS5683919A (en) 1979-12-12 1979-12-12 Grain boundary dielectric layer type semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16177879A JPS5683919A (en) 1979-12-12 1979-12-12 Grain boundary dielectric layer type semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS5683919A JPS5683919A (en) 1981-07-08
JPS6150371B2 true JPS6150371B2 (en) 1986-11-04

Family

ID=15741720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16177879A Granted JPS5683919A (en) 1979-12-12 1979-12-12 Grain boundary dielectric layer type semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS5683919A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149961A (en) * 1974-05-22 1975-12-01
JPS5288799A (en) * 1976-01-20 1977-07-25 Matsushita Electric Ind Co Ltd Semiconductor porcelain element
JPS52111698A (en) * 1976-03-16 1977-09-19 Matsushita Electric Ind Co Ltd Semiconductor porcelain element
JPS52124200A (en) * 1976-04-10 1977-10-18 Matsushita Electric Ind Co Ltd Seramic semiconductor element
JPS52147798A (en) * 1976-06-02 1977-12-08 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor ceramic capacitor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149961A (en) * 1974-05-22 1975-12-01
JPS5288799A (en) * 1976-01-20 1977-07-25 Matsushita Electric Ind Co Ltd Semiconductor porcelain element
JPS52111698A (en) * 1976-03-16 1977-09-19 Matsushita Electric Ind Co Ltd Semiconductor porcelain element
JPS52124200A (en) * 1976-04-10 1977-10-18 Matsushita Electric Ind Co Ltd Seramic semiconductor element
JPS52147798A (en) * 1976-06-02 1977-12-08 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor ceramic capacitor element

Also Published As

Publication number Publication date
JPS5683919A (en) 1981-07-08

Similar Documents

Publication Publication Date Title
US4987107A (en) Ceramic composition for reduction-reoxidation type semiconductive capacitor
JPS634339B2 (en)
JPS6150371B2 (en)
JPH058524B2 (en)
JPS623569B2 (en)
JPS634340B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JP2654113B2 (en) High dielectric constant porcelain composition
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPS6351992B2 (en)
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPH0361287B2 (en)
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPS637013B2 (en)
JPH0571538B2 (en)
JPS6057163B2 (en) High permittivity porcelain dielectric composition
JPS6412084B2 (en)
JP2619675B2 (en) Dielectric porcelain composition
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPS6055925B2 (en) Surface dielectric layer type semiconductor ceramic composition and its manufacturing method
JPS6053435B2 (en) High permittivity porcelain dielectric composition
JPS61256968A (en) Dielectric ceramic composition
JPH10212161A (en) Thermistor material having positive characteristic and its production
JPS61251561A (en) Dielectric ceramic composition and manufacture