JPS6399575A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS6399575A
JPS6399575A JP62199710A JP19971087A JPS6399575A JP S6399575 A JPS6399575 A JP S6399575A JP 62199710 A JP62199710 A JP 62199710A JP 19971087 A JP19971087 A JP 19971087A JP S6399575 A JPS6399575 A JP S6399575A
Authority
JP
Japan
Prior art keywords
gate
film
oxide film
semiconductor substrate
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62199710A
Other languages
Japanese (ja)
Inventor
Shinji Shimizu
真二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62199710A priority Critical patent/JPS6399575A/en
Publication of JPS6399575A publication Critical patent/JPS6399575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To form both gate electrodes on the same semiconductor substrate, by forming the gate electrode of an MIS element on the surface of the semiconductor substrate, and thereafter forming the gate electrode of an MIS element constituting a nonvolatile memory on the surface of the semiconductor substrate. CONSTITUTION:As an interlayer insulating film 12, e.g., a CVD film is formed. A contact hole 13 is provided in an ordinary Si gate step. An oxide film 15 is formed on the contact hole by thermal oxidation or CVD. An Si substrate is exposed only at a region 16 including the channel region of an MNOS element by photoetching. A very thin oxide film 20 (20-100Angstrom ) is formed at a region which is to become the gate of the MNOS element. A nitride film 21 is formed on the entire surface thereon. The nitride film and the oxide film at the contact part are removed by photoetching. Then Al is evaporated, and patterning is performed.

Description

【発明の詳細な説明】 本発明は不揮発性メモリを含む回路とマイクロコンビー
ータを構成jる回路とを同一基板上に設けた半導体集積
回路装置の製法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing a semiconductor integrated circuit device in which a circuit including a nonvolatile memory and a circuit constituting a microconverter are provided on the same substrate.

現在書替え可能な不揮発性メモリとしては、MN OS
 (Metal−Ni tride−Oxide−8e
miconductor )型ツものが用いられている
。このメモリは、ゲート電極に十及び−の高電圧を印加
することにより、薄い酸化膜を通してナイトライド膜と
酸化膜の境界に電荷を蓄積させたり、放出させたりする
ことにより記憶情報を蓄積するものである。このメモリ
を構成する主なるMIS素子は通常ゲート電極として、
A[を用い、ゲート絶縁膜としてのナイトライド膜はほ
ぼ500A、薄い酸化膜はほぼ2OA程度を用いるもの
であり、プロセスは通常のAlゲート型MOSプロセス
と類似のものである。
Currently, MN OS is a rewritable non-volatile memory.
(Metal-Ni tride-Oxide-8e
Microconductor type devices are used. This memory stores stored information by applying high voltages of 10 and - to the gate electrode to accumulate and release charges at the boundary between the nitride film and the oxide film through a thin oxide film. It is. The main MIS elements that make up this memory usually have gate electrodes,
The nitride film as a gate insulating film has a thickness of about 500A, and the thin oxide film has a thickness of about 2OA.The process is similar to a normal Al gate type MOS process.

一方、制御用半導体装置の発達はめざましく現在、マイ
クロpンビュータとして1チツプないし数チップのLS
Iが製造されている。これらのLSIはきわめて高集積
度となり、高性能化している。このため、製造プロセス
としては、通常Siゲートプロセスが使用されている。
On the other hand, the development of control semiconductor devices has been remarkable, and micropn viewers are currently using one-chip or several-chip LS.
I is being manufactured. These LSIs have become extremely highly integrated and have improved performance. For this reason, a Si gate process is usually used as a manufacturing process.

又、今後の高性能化を考えることより高性能なSiゲー
トブロセスになると考えられる。
Furthermore, considering future performance improvements, it is thought that a high-performance Si gate process will become available.

他方、マイクロコンピータの応用面ヲ考えると、周辺の
ICとして不揮発性メモリが必要となってきている。現
在はマイクロ・コンピュータと不揮発性メモリとは別々
のLSI 、ICとし、て製造し、組み合わせて使用l
−ているが、今後の高性能化を考えると、同一チップ上
に形成されることが、集積度、コスト、性能等々から考
えて、望ましい。しかしながら、上記に述べたごとくそ
れぞれのプロセスがまったく異なっており現在のところ
実現していない。
On the other hand, when considering the application aspect of microcomputers, nonvolatile memories are becoming necessary as peripheral ICs. Currently, microcomputers and nonvolatile memory are manufactured as separate LSIs and ICs, and used in combination.
However, considering future performance improvements, it is desirable to form them on the same chip in terms of integration degree, cost, performance, etc. However, as mentioned above, each process is completely different, and so far this has not been realized.

これを実現する方法として、MNO8素子を作るのと同
様なA[ゲートプロセスを用いれば比較的容易に回路素
子と、不揮発性メモリ素子とを同一チップ上に形成する
ことができることが考えられる。しかしながら、この方
法では、回路素子がAlゲート構造で形成されるため、
現在のマイクロ・コンピータに使用されているSiゲー
トプロセスによるものに比べ、集積度及び速度の点で悪
くなり、現在のマイクロ・コンピュータト競うことはで
きなくなる。
As a method for realizing this, it is considered that the circuit element and the nonvolatile memory element can be relatively easily formed on the same chip by using the A gate process, which is similar to that used to make the MNO8 element. However, in this method, since the circuit element is formed with an Al gate structure,
Compared to the Si gate process used in current microcomputers, the integration and speed will be worse, making it impossible for current microcomputers to compete.

一方、マイクロ・コンピュータを作っているSiゲート
プロセスで、不揮発性メモリMNO8素子を同時に作る
ことを考えると、Siゲ・−トブロセスの熱処理により
、不揮発性メモリ素子の保持特性が劣化するとか、プロ
セスがきわめて複雑圧なる等の欠点を有し、まだ実現し
ていない。
On the other hand, when considering the simultaneous fabrication of 8 non-volatile memory MNO elements using the Si gate process used to make microcomputers, heat treatment of the Si gate process may deteriorate the retention characteristics of the non-volatile memory elements, or the process may be delayed. It has drawbacks such as being extremely complex and has not yet been realized.

以上のような理由から、現在、不揮発性メモリとマイク
ロ・コンピータは別々に製造されている。
For the above reasons, nonvolatile memories and microcomputers are currently manufactured separately.

本発明は、これを容易に同一チップ上に形成することが
でき、かつ両者の欠点をそこなうことなく実現できる半
導体集積回路装置の製法を提供するものである。
The present invention provides a method for manufacturing a semiconductor integrated circuit device that can be easily formed on the same chip and can be realized without sacrificing the drawbacks of both.

本発明によれば、Siゲートプロセスにより形成された
高集積度、高速、高性能なチップ上に、容易にかつ性能
を落丁ことな(不揮発性メモリを形成することができ、
その結果、別々のチップでシステムを形成しなければな
らなかった。システムを1チツプで形成することができ
る。又、一方、不揮発性メモリをマイクロコンピュータ
にっHることにより、マイクロコンピュータチップのプ
ロセスが複雑になったり、価格が高くなることはほとん
どな(なる。
According to the present invention, it is possible to easily form a non-volatile memory (non-volatile memory) on a highly integrated, high-speed, high-performance chip formed by a Si gate process without compromising performance.
As a result, separate chips had to form the system. The system can be formed with one chip. On the other hand, by incorporating non-volatile memory into a microcomputer, it is unlikely that the process of the microcomputer chip will become complicated or the price will increase.

以下、添付図面に示す実施例にそって本発明を説明する
The present invention will be described below with reference to embodiments shown in the accompanying drawings.

以下%C−MO8SiゲートプロセスにN−チャネルの
MNOSを形成する例で示すが、今後の高性能化として
、Slゲートでなく、Moゲート又はWゲートでも同じ
である。又、MNOSとしては、P−チャネルでももち
ろん同じである。
An example in which an N-channel MNOS is formed in a %C-MO8Si gate process will be shown below, but the same will apply to Mo or W gates instead of Sl gates in order to improve performance in the future. Also, as for MNOS, the same is of course true for P-channel.

第1図は、C−MO8SiゲートにAA’ゲートのMN
OSが同一基板上に形成されている例を示す。S1ゲー
トプロセスによ’)N−fヤネy、p−チャネルの素子
が形成される。これは通常のSlゲートとまったく同じ
である。一方、不揮発性メモ!JMNO8はSiゲート
構造におけるl配線をゲート電極として利用している。
Figure 1 shows MN of AA' gate in C-MO8Si gate.
An example in which an OS is formed on the same substrate is shown. The S1 gate process forms a p-channel device. This is exactly the same as a normal Sl gate. On the other hand, non-volatile notes! JMNO8 uses the l wiring in the Si gate structure as a gate electrode.

このためMNO8構造を形成するだめの余分なゲート電
極層は不必要となっている。さらにMNO8構造で使用
されるナイトライド膜は、他のSiゲート構造により形
成された回路素子上の層間CVD膜の上部にまで延長す
ることが可能であり、これにより、パッシベーション特
性を良くすることが同時に実現される。
Therefore, an extra gate electrode layer for forming the MNO8 structure is unnecessary. Furthermore, the nitride film used in the MNO8 structure can extend to the top of the interlayer CVD film on circuit elements formed with other Si gate structures, thereby improving passivation properties. realized at the same time.

以上のことから、Siゲート構造による高速。From the above, the high speed achieved by the Si gate structure.

高集積度、高性能な回路素子と、Alゲート構造による
良好な特性をもつMNO8素子と、又、ナイトライド膜
による良好なパシベーション特性が得られる。
A highly integrated, high-performance circuit element, an MNO8 element with good characteristics due to the Al gate structure, and good passivation characteristics due to the nitride film can be obtained.

次に本発明の製造方法の一例を示す。Next, an example of the manufacturing method of the present invention will be shown.

第2図はSiゲー)CMOSプロセスの工程の一部であ
り、選択的にマスク10を用いて拡散又はインプラなど
により不純物のドープがされた状態を示す。ここで選択
的に不純物をドープするマスク10を用いることにより
MNO8素子のソース、ドレインの不純物ドープと、チ
ャンネル領域となる領域の分離をおこなう。
FIG. 2 is a part of a SiG CMOS process, and shows a state in which impurities are selectively doped by diffusion or implantation using a mask 10. Here, by using a mask 10 for selectively doping impurities, the source and drain of the MNO8 element are doped with impurities and the region that will become the channel region is separated.

次に層間絶縁膜12として、たとえばCVD膜を形成し
、通常のSiゲートプロセスにおけるコンタクトホール
13の穴あけをおこなう。この時、同時にMNO8素子
のソース、ドレインへのコンタクト・ホールと、MNO
8素子のゲート領[14となる部分への穴開げをおこな
う(第3図)。
Next, a CVD film, for example, is formed as the interlayer insulating film 12, and a contact hole 13 is formed in a normal Si gate process. At this time, contact holes to the sources and drains of the MNO8 elements and the MNO
Drill a hole in the gate area [14] of the 8 elements (Figure 3).

次に熱酸化もしくはCVDにより酸化膜15をコンタク
トホール上に形成し、かつ、ホト・エツチングによりM
NO8素子のチャネル領域を含む領櫨16のみSi基板
を露出させる。この時に形成される酸化膜15をチャネ
ル領域に残してお(と、以下に述べる工程を経ることに
より通常のMゲートプロセスによりできる素子と同等の
絶縁ゲート型トランジスタを形成できる。又、この素子
はMNO8型不揮発性メモリにおいて必要とされるスイ
ッチMO8として、実際には利用される(本例では特に
この図は示していない)。したがって酸化膜15として
は500A程度が適当である(第4図)。
Next, an oxide film 15 is formed on the contact hole by thermal oxidation or CVD, and an M
Only the Si substrate 16 including the channel region of the NO8 element is exposed. By leaving the oxide film 15 formed at this time in the channel region (and going through the steps described below), an insulated gate transistor equivalent to a device made by a normal M-gate process can be formed. It is actually used as the switch MO8 required in the MNO8 type nonvolatile memory (this figure is not particularly shown in this example).Therefore, approximately 500A is appropriate for the oxide film 15 (Fig. 4). .

次にMNO8素子のゲートとなる領域にきわめて薄い(
20〜100A)酸化膜20を形成し、その上に全面に
ナイトライド膜21を形成する。この時、MNO8素子
の特性改善のため、薄い酸化膜とナイトライド膜との界
面に不純物層を形成する等の工程が入ってもよい。
Next, there is a very thin (
20-100A) An oxide film 20 is formed, and a nitride film 21 is formed on the entire surface thereof. At this time, in order to improve the characteristics of the MNO8 element, a step such as forming an impurity layer at the interface between the thin oxide film and the nitride film may be included.

さらにコンタクトホール22を形成するため、コンタク
ト部のナイトライド膜と酸化膜とをホト・エツチングに
よりとりのぞく(第5図)。
Further, in order to form a contact hole 22, the nitride film and oxide film at the contact portion are removed by photo-etching (FIG. 5).

次Klを蒸着し、パターンニングをおこなえば第1図に
示すような構造のものが完成する。
Next, by depositing Kl and performing patterning, a structure as shown in FIG. 1 is completed.

以上、製造方法の1例を示したが、これ以外に様々な方
法で実現することができる。たとえば。
Although one example of the manufacturing method has been shown above, it can be realized by various other methods. for example.

コンタクト・ホールとMNOSのゲート領域は別々のホ
ト・エツチング工程で形成するようにしてもよい。すな
わち、最初にゲート領域のホトエツチング、薄い酸化膜
の形成、ナイトライド膜の形成の後にコンタクト部を形
成する方法でもよい。
The contact hole and the MNOS gate region may be formed in separate photoetching steps. That is, a method may be employed in which the contact portion is formed after first photoetching the gate region, forming a thin oxide film, and forming a nitride film.

又、MNOSのチャネル領域を形成するために、不純物
ドープの選択ドープ用マスクを使わずに、直接フィール
ド部の厚い酸化膜をホト・エッチして形成する方法でも
よい。
Alternatively, in order to form the channel region of the MNOS, a method may be used in which the thick oxide film in the field portion is directly photo-etched without using a selective doping mask for impurity doping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製法によって形成された半導体集積回
路装置の断面図、第2図乃至第5図は、本発明に係る半
導体集積回路装置の製法を工程順に示す断面図である。 1・・・酸化膜、2・・・ゲート酸化膜、3・・・ゲー
ト電極用多結晶シリコン膜、4・・・層間絶縁膜、5・
・・ナイトライド膜、6・・・薄い酸化膜、7・・・ア
ルミニウム配線(電極)、10・・・マスク膜、11・
・・N+型層、12・・・PSG膜、21・・・ナイト
ライド膜。 第  1  図
FIG. 1 is a cross-sectional view of a semiconductor integrated circuit device formed by the manufacturing method of the present invention, and FIGS. 2 to 5 are cross-sectional views showing the manufacturing method of the semiconductor integrated circuit device according to the present invention in order of steps. DESCRIPTION OF SYMBOLS 1... Oxide film, 2... Gate oxide film, 3... Polycrystalline silicon film for gate electrodes, 4... Interlayer insulating film, 5...
... Nitride film, 6... Thin oxide film, 7... Aluminum wiring (electrode), 10... Mask film, 11.
... N+ type layer, 12... PSG film, 21... Nitride film. Figure 1

Claims (1)

【特許請求の範囲】 1、不揮発性メモリを構成するMIS素子を含む第1回
路と、前記MIS素子を除くMIS素子を含む第2回路
とを同一半導体基板に形成する半導体集積回路装置の製
法であって、半導体基板表面に第2回路におけるMIS
素子のゲート電極を形成したのち、前記第1回路の不揮
発性メモリを構成するMIS素子のゲート電極を前記半
導体基板表面に形成することを特徴とする半導体集積回
路装置の製法。 2、第2回路におけるMIS素子として、Pチャンネル
とNチャンネルとが含まれている相補形MIS素子を形
成する特許請求の範囲第1項記載の半導体集積回路装置
の製法。
[Claims] 1. A method for manufacturing a semiconductor integrated circuit device in which a first circuit including an MIS element constituting a nonvolatile memory and a second circuit including an MIS element other than the MIS element are formed on the same semiconductor substrate. There is an MIS in the second circuit on the surface of the semiconductor substrate.
A method for manufacturing a semiconductor integrated circuit device, characterized in that after forming a gate electrode of an element, a gate electrode of a MIS element constituting a nonvolatile memory of the first circuit is formed on a surface of the semiconductor substrate. 2. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein a complementary MIS element including a P channel and an N channel is formed as the MIS element in the second circuit.
JP62199710A 1987-08-12 1987-08-12 Manufacture of semiconductor integrated circuit Pending JPS6399575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62199710A JPS6399575A (en) 1987-08-12 1987-08-12 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62199710A JPS6399575A (en) 1987-08-12 1987-08-12 Manufacture of semiconductor integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11172178A Division JPS5539609A (en) 1978-09-13 1978-09-13 Semiconductor integrated circuit device and production of the same

Publications (1)

Publication Number Publication Date
JPS6399575A true JPS6399575A (en) 1988-04-30

Family

ID=16412322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62199710A Pending JPS6399575A (en) 1987-08-12 1987-08-12 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6399575A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105979A (en) * 1978-02-07 1979-08-20 Sony Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105979A (en) * 1978-02-07 1979-08-20 Sony Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP3128323B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS60163455A (en) Read only memory device and manufacture thereof
JPS627701B2 (en)
JP2000031295A (en) Semiconductor integrated circuit and manufacture thereof
JPS60186051A (en) Cmos semiconductor device and manufacture thereof
KR100399694B1 (en) Insulated gate semiconductor device and manufacturing method thereof
JPH03114235A (en) Semiconductor device containing charge transfer device and its manufacture
JP4300017B2 (en) Manufacturing method of semiconductor device
JP2729422B2 (en) Semiconductor device
JPS6399575A (en) Manufacture of semiconductor integrated circuit
US6278163B1 (en) HV transistor structure and corresponding manufacturing method
JPS6038856A (en) Manufacture of semiconductor device
JP2008131023A (en) Semiconductor device and its manufacturing method
JPS62115778A (en) Semiconductor integrated circuit device
JP3125929B2 (en) Method for manufacturing semiconductor device
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPH02359A (en) Manufacture of semiconductor integrated circuit device
JPS62115779A (en) Manufacture of semiconductor integrated circuit device
JPS61194764A (en) Manufacture of semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
JPH0449270B2 (en)
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JPH04233758A (en) Semiconductor device and manufacture thereof
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JPS61150376A (en) Semiconductor device