JPH02359A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPH02359A
JPH02359A JP63224612A JP22461288A JPH02359A JP H02359 A JPH02359 A JP H02359A JP 63224612 A JP63224612 A JP 63224612A JP 22461288 A JP22461288 A JP 22461288A JP H02359 A JPH02359 A JP H02359A
Authority
JP
Japan
Prior art keywords
gate
nonvolatile memory
semiconductor integrated
integrated circuit
mis element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63224612A
Other languages
Japanese (ja)
Inventor
Shinji Shimizu
真二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63224612A priority Critical patent/JPH02359A/en
Publication of JPH02359A publication Critical patent/JPH02359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable a microcomputer and a non-volatile memory to be formed on the same chip, by forming a non-volatile memory MNOS element simultaneously in the Si gate process producing the microcomputer. CONSTITUTION:A CMOS transistor T1 for constituting a microcomputer and an MNOS transistor T2 for constituting a non-volatile memory element are provided on the same substrate. Active regions 11 constituting the MNOS transistor T2 are formed simultaneously when active regions of the CMOS T1 are formed. An oxide film 6 and a nitride film 5 are also formed during the formation of the active regions. After the formation of the nitride film 5, an aluminium interconnection 7 is provided on the CMOS T1 while, simultaneously, an aluminum interconnection 7 is also formed on the oxide film 6 so that it serves as a gate electrode of the MNOS T2.

Description

【発明の詳細な説明】 本発明は不揮発性メモリを含む回路とマイクロコンピュ
ータを構成する回路とを同一基板上に設けた半導体集積
回路装置の製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method of manufacturing a semiconductor integrated circuit device in which a circuit including a nonvolatile memory and a circuit constituting a microcomputer are provided on the same substrate.

現在書替え可能な不揮発性メモリとしては、MN OS
 (Metal−Nitride−Oxide−8em
iconductor)型のものが用いられ℃いる。こ
のメモリは、ゲート電極に十及び−の高電圧を印加する
ことにより、薄い酸化膜を通してナイトライド膜と酸化
膜の境界に電荷を蓄積させたり、放出させたりすること
により記憶情報を蓄積するものである。このメモリを構
成する主なるMIS素子は通常ゲート電極として、kl
を用い、ゲート絶縁膜としてのナイトライド膜はほぼ5
00A、薄い酸化膜はほぼ20A程度を用いるものであ
り、プロセスは通常のAlゲート型MOSプロセスと類
似のものである。
Currently, MN OS is a rewritable non-volatile memory.
(Metal-Nitride-Oxide-8em
(iconductor) type is used. This memory stores stored information by applying high voltages of 10 and - to the gate electrode to accumulate and release charges at the boundary between the nitride film and the oxide film through a thin oxide film. It is. The main MIS elements constituting this memory usually use kl as a gate electrode.
The nitride film as the gate insulating film is approximately 5
00A, the thin oxide film uses approximately 20A, and the process is similar to a normal Al gate type MOS process.

一方、制御用半導体装置の発達はめざましく現在、マイ
クロコンピュータとじて1チツプな(・し数チップのL
SIが製造されて(・る。これらのLSIはきわめて高
集積度となり、高性能化して(・る。このため、製造プ
ロセスとしては、通常Siゲートプロセスが使用されて
いる。又、今後の高性能化を考えることより高性能なS
iゲートプロセスになると考えられる。
On the other hand, the development of control semiconductor devices has been remarkable, and today microcomputers are made up of one chip (or several chips).
SI has been manufactured (・).These LSIs have become extremely highly integrated and have improved performance (・).For this reason, the Si gate process is usually used as the manufacturing process. High performance S rather than thinking about performance
It is thought that it will be an i-gate process.

他方、マイクロコンビーータの応用面を考えると、周辺
のICとして不揮発性メモリが必要となってきて(・る
。現在はマイクロコンビーータと不揮発性メモリとは別
々のLSI 、ICとして製造し、組み合わせて使吊し
て(・るが、今後の高性能化を考えると、同一チップ上
に形成されることが、集積度、コスト、性能等々から考
えて、望ましく・。
On the other hand, when considering the application aspect of microcombinators, nonvolatile memory is becoming necessary as a peripheral IC.Currently, microcombinators and nonvolatile memory are manufactured as separate LSIs and ICs. However, considering future performance improvements, it is desirable to form them on the same chip in terms of integration, cost, performance, etc.

しかしながら、上記に述べたごとくそれぞれのプロセス
がまったく異なっており現在のところ実現して(・な(
・。
However, as mentioned above, each process is completely different, and so far it has not been realized (・na(
・.

これな実現する方法として、MNO8素子な作るのと同
様なAlゲートプロセスを用いれば比較的容易に回路素
子と、不揮発性メモリ素子とを同一チップ上に形成する
ことができることが考えられる。しかしながら5、この
方法では、回路素子がAlゲート構造で形成されるため
、現在のマイクロコンピュータに使用されているSiゲ
ートプロセスによるものに比べ、集積度及び速度の点で
悪くなり、現在のマイクロコンビーータと!5ことはで
きなくなる。
As a method for realizing this, it is considered that the circuit element and the nonvolatile memory element can be relatively easily formed on the same chip by using an Al gate process similar to that used for making the MNO8 element. However, in this method, the circuit elements are formed with an Al gate structure, which is inferior in terms of integration and speed compared to the Si gate process used in current microcomputers. With Vita! 5 I can no longer do things.

一方、マイクロコンビエータな作って(・るS1ゲート
プロセスで、不揮発性メモリMNO8素子を同時に作る
こと火考えると、Siゲートプロセスの熱処理により、
不揮発性メモリ素子の保持特性が劣化するとか、プロセ
スがきわめて複雑になる等の欠点を有し、まだ実現して
(・な(・。
On the other hand, considering that it is possible to simultaneously manufacture 8 non-volatile memory MNO elements using the S1 gate process when making a micro combinator, the heat treatment of the Si gate process
It has drawbacks such as the retention characteristics of nonvolatile memory elements deteriorating and the process becoming extremely complicated, so it has not yet been realized (・na(・).

以上のような理由から、現在、不揮発性メモリとマイク
ロコンピュータは別々に製造されて(・る。
For the reasons mentioned above, non-volatile memory and microcomputers are currently manufactured separately.

本発明は、これを容易に同一チップ上に形成することが
でき、かつ両者の欠点ケそこなうことなく実現できる製
造方法を示すものである。
The present invention shows a manufacturing method that can easily form this on the same chip and can be realized without losing the drawbacks of both.

本発明によれば、Siゲートプロセスにより形成された
高集積度、高速、高性能なチップ上に、容易にかつ性能
を落すことなく不揮発性メモリを形成することができ、
その結果、従来は別々のチップでシステムを形成しなけ
ればならなかったが、本発明によれば、1チツプで形成
することができる。又、一方、不揮発性メモリをマイク
ロコンピュータにつけることにより、マイクロコンピュ
ータチップのプロセスが複雑になったり、価格が高くな
ることはほとんどなくなる。
According to the present invention, a nonvolatile memory can be easily formed on a high-integration, high-speed, high-performance chip formed by a Si gate process without degrading performance.
As a result, although conventionally the system had to be formed using separate chips, according to the present invention it can be formed using a single chip. On the other hand, by adding non-volatile memory to a microcomputer, the process of microcomputer chips hardly becomes complicated or the price increases.

以下、添付図面に示す実施例にそって本発明を説明する
The present invention will be described below with reference to embodiments shown in the accompanying drawings.

以下、C−Mo8SiゲートフロセスにN−チャネルの
M N OSを形成する例で示すが、C”Mo8である
必要はな(N−チャネルでもP−チャネルでもよい。又
、今後の高性能化として、Siゲートでなく、Moゲー
ト又はWゲートでも同じである。又、MNOSとしては
、P−チャネルでももちろん同じである。
In the following, an example will be shown in which an N-channel MN OS is formed on a C-Mo8Si gate process, but it does not have to be C"Mo8 (N-channel or P-channel is also acceptable. The same applies to a Mo gate or a W gate instead of a Si gate. Also, of course, the same applies to a P-channel as an MNOS.

第1図は、本発明の製造方法により、c−M。FIG. 1 shows c-M produced by the manufacturing method of the present invention.

SSiゲートにAI!ゲートのMNOSが同一基板上に
形成されている例を示す。SiゲートプロセスによりN
−チャネル、P−チャネルの素子が形成される。これは
通常のSiゲートとまったく同じである。一方、不揮発
性メモIJMNO8はSiゲート構造におけるAl配線
をゲート電極として利用している。このためMNO8構
造を形成するための余分なゲート電極層は不必要となっ
ている。
AI in SSi gate! An example is shown in which gate MNOS is formed on the same substrate. N by Si gate process
-channel, P-channel elements are formed. This is exactly the same as a normal Si gate. On the other hand, the nonvolatile memory IJMNO8 uses Al wiring in a Si gate structure as a gate electrode. Therefore, an extra gate electrode layer for forming the MNO8 structure is unnecessary.

さらにMNO8構造で使用されるナイトライド膜は、他
のSiゲート構造により形成された回路素子上の層間C
VD膜の上部にまで延長することが可能であり、これに
より、パシベーション特性を良くすることが同時に実現
される。
Furthermore, the nitride film used in the MNO8 structure is
It is possible to extend it to the top of the VD film, thereby simultaneously improving passivation characteristics.

以上のことから、Siゲート構造による高速。From the above, the high speed achieved by the Si gate structure.

高集積度、高性能な回路素子と、Alゲート構造による
良好な特性をもつMNO8素子と、又、ナイトライド膜
による良好なパシベーション特性が得られる。
A highly integrated, high-performance circuit element, an MNO8 element with good characteristics due to the Al gate structure, and good passivation characteristics due to the nitride film can be obtained.

次に本発明の製造方法の一例を示す。Next, an example of the manufacturing method of the present invention will be shown.

第2図はSiゲグーCMOSプロセスの工程の一部であ
り、選択的にマスク10を用(・て拡散又はインプラな
どにより不純物のドープがされた状態を示す。ここで選
択的に不純物をドープするマスク10を用いることによ
りMNO8素子のソース、ドレインの不純物ドープと、
チャンネル領域となる領域の分離をおこなう。
Figure 2 shows a part of the process of the Si GEG CMOS process, and shows a state in which impurities are selectively doped using a mask 10 (by diffusion or implantation). Here, impurities are selectively doped. By using the mask 10, the source and drain of the MNO8 element are doped with impurities,
Separate the area that will become the channel area.

次に層間絶縁膜12として、たとえばCVD膜を形成し
、通常のSiゲートプロセスにおけるコンタクトホール
13の穴あけをおこなう。この時、同時にMNO8素子
のソース、ドレインへのコンタクト・ホールと、MNO
8素子のゲート領域14となる部分への穴開けをおこな
う(第3図)。
Next, a CVD film, for example, is formed as the interlayer insulating film 12, and a contact hole 13 is formed in a normal Si gate process. At this time, contact holes to the sources and drains of the MNO8 elements and the MNO
Holes are made in the portions that will become the gate regions 14 of the eight elements (FIG. 3).

次に熱酸化もしくはCVDにより酸化膜15をコンタク
トホール上に形成し、かつ、ホトエツチングによりMN
O3素子のチャネル領域を含む領域16のみSi基板を
露出させる。この時に形成される酸化膜15をチャネル
領域に残しておくと、以下に述べる工程を経ることによ
り通常のAlゲートプロセスによりできる素子と同等の
絶縁ゲート型トランジスタな形成できる。又、この素子
はM N OS型不揮発性メモリにおいて必要とされる
スイッチMO3として、実際には利用される(本例では
特にこの図は示していな(・)。したがって酸化膜15
としては500A程度が適当である(第4図)。
Next, an oxide film 15 is formed on the contact hole by thermal oxidation or CVD, and MN is formed by photoetching.
The Si substrate is exposed only in the region 16 including the channel region of the O3 element. If the oxide film 15 formed at this time is left in the channel region, an insulated gate transistor equivalent to a device made by a normal Al gate process can be formed through the steps described below. Moreover, this element is actually used as the switch MO3 required in the MNOS type non-volatile memory (this figure is not particularly shown in this example (). Therefore, the oxide film 15
Approximately 500A is appropriate (Fig. 4).

次にMNO8素子のゲートとなる領域にきわめて薄(・
(20〜100A)酸化膜20を形成し、その上に全面
にナイトライド膜21を形成する。
Next, the area that will become the gate of the MNO8 element is extremely thin.
(20-100A) An oxide film 20 is formed, and a nitride film 21 is formed on the entire surface thereof.

この時、MNO8素子の特性改善のため、薄(・酸化膜
とナイトライド膜との界面に不純物層を形成する等の工
程が入ってもよい。
At this time, in order to improve the characteristics of the MNO8 element, a step such as forming an impurity layer at the interface between the thin oxide film and the nitride film may be included.

さらにコンタクトホール22を形成するため、コンタク
ト部のナイトライド膜と酸化膜とをホトエツチングによ
りとりのぞく(第5図)。
Further, in order to form a contact hole 22, the nitride film and oxide film at the contact portion are removed by photoetching (FIG. 5).

次にAlt蒸着し、パターンニングをおこない不揮発性
メモリを構成するMIS素子のゲート電極7及び前記不
揮発性メモリ以外のSiゲグーMIS素子の配線層7を
形成して第1図に示すような構造のものが完成する。
Next, Alt is deposited and patterned to form the gate electrode 7 of the MIS element constituting the nonvolatile memory and the wiring layer 7 of the Si gage MIS element other than the nonvolatile memory, resulting in the structure shown in FIG. something is completed.

以上、製造方法の一例を示したが、これ以外に様々な方
法で実現することができる。たとえば、コンタクトホー
ルとMNOSのゲート領域は別々のホトエツチング工程
で形成するよう罠してもよ(・。すなわち、最初にゲー
ト領域のホトエツチング、薄い酸化膜の形成、ナイトラ
イド膜の形成の後にコンタクト部を形成する方法でもよ
い。
Although an example of the manufacturing method has been shown above, it can be realized by various other methods. For example, the contact hole and the MNOS gate region may be formed in separate photoetching steps (i.e., the gate region is first photoetched, a thin oxide layer is formed, the nitride layer is formed, and then the contact portion is formed). It may also be a method of forming.

又、MNOSのチャネル領域を形成するために、不純物
ドープの選択ドープ用マスクを使わずに、直接フィール
ド部の厚い酸化膜ケホトエソチして形成する方法でもよ
(・。
Alternatively, in order to form the channel region of the MNOS, it is also possible to directly etching the thick oxide film in the field area without using a mask for selective doping with impurities (.

いずれにせよ、上述した実施態様の本発明に係るデバイ
スは、Siゲートプロセスで回路素子のパターンを形成
した後、MNOS部の薄(・酸化膜とナイトライド膜の
形成をおこな(・、配線電極をMNO8素子のゲート電
極として利用することにある。
In any case, in the device according to the present invention in the embodiment described above, after forming a circuit element pattern using a Si gate process, a thin oxide film and a nitride film are formed in the MNOS section. The purpose is to use the electrode as the gate electrode of the MNO8 element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図な(・し第5図は、本発明に係る絶縁ゲート型中
導体装置及びその製法を工程順に示す断面図である。 1・・・酸化膜、2・・ゲート酸化膜、3・・・ゲート
電極用多結晶シリコン膜、4・−・層間絶縁膜、5・・
・ナイトライド膜、6・・・薄(・酸化膜、7・・・ア
ルミニウム配線(電極)、10・・・マスク膜、11・
・・N中型層、12・・・PSG膜、21・・・ナイト
ライド膜。
Figures 1 and 5 are cross-sectional views showing the insulated gate type medium conductor device and its manufacturing method according to the present invention in the order of steps. 1... Oxide film, 2... Gate oxide film, 3...・・Polycrystalline silicon film for gate electrode, 4・−・Interlayer insulating film, 5・・
・Nitride film, 6... Thin (・Oxide film, 7... Aluminum wiring (electrode), 10... Mask film, 11.
... N medium layer, 12 ... PSG film, 21 ... nitride film.

Claims (1)

【特許請求の範囲】 1、不揮発性メモリを構成するMIS素子を含む第1回
路と、前記MIS素子を除くMIS素子を含む第2回路
とを同一半導体基板に形成する半導体集積回路装置の製
造方法であって、前記第1回路の不揮発性メモリを構成
するMIS素子のゲート電極形成工程と同一工程で前記
第2回路のMIS素子の配線層を形成し、かつ前記不揮
発性メモリを構成するMIS素子のゲート電極と同一材
料で前記第2回路のMIS素子の配線層を形成すること
を特徴とする半導体集積回路装置の製造方法。 2、前記不揮発性メモリを構成するMIS素子のソース
、ドレイン領域形成のための不純物導入後前記不揮発性
メモリを構成するMIS素子のゲート電極を形成する工
程を有する特許請求の範囲第1項記載の半導体集積回路
装置の製造方法。 3、前記不揮発性メモリを構成するMIS素子はソース
、ドレイン領域上に薄いゲート絶縁膜を有するように形
成されることを特徴とする特許請求の範囲第1項記載の
半導体集積回路装置の製造方法。
[Claims] 1. A method for manufacturing a semiconductor integrated circuit device in which a first circuit including an MIS element constituting a nonvolatile memory and a second circuit including an MIS element other than the MIS element are formed on the same semiconductor substrate. wherein a wiring layer of the MIS element of the second circuit is formed in the same process as a gate electrode forming step of the MIS element that constitutes the nonvolatile memory of the first circuit, and the MIS element that constitutes the nonvolatile memory A method of manufacturing a semiconductor integrated circuit device, characterized in that the wiring layer of the MIS element of the second circuit is formed of the same material as the gate electrode of the semiconductor integrated circuit device. 2. The method according to claim 1, further comprising the step of forming a gate electrode of the MIS element constituting the nonvolatile memory after introducing impurities for forming source and drain regions of the MIS element constituting the nonvolatile memory. A method for manufacturing a semiconductor integrated circuit device. 3. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the MIS element constituting the nonvolatile memory is formed to have a thin gate insulating film on the source and drain regions. .
JP63224612A 1988-09-09 1988-09-09 Manufacture of semiconductor integrated circuit device Pending JPH02359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224612A JPH02359A (en) 1988-09-09 1988-09-09 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224612A JPH02359A (en) 1988-09-09 1988-09-09 Manufacture of semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11172178A Division JPS5539609A (en) 1978-09-13 1978-09-13 Semiconductor integrated circuit device and production of the same

Publications (1)

Publication Number Publication Date
JPH02359A true JPH02359A (en) 1990-01-05

Family

ID=16816450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224612A Pending JPH02359A (en) 1988-09-09 1988-09-09 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH02359A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105784A (en) * 1976-03-01 1977-09-05 Sony Corp Mios type memory unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105784A (en) * 1976-03-01 1977-09-05 Sony Corp Mios type memory unit

Similar Documents

Publication Publication Date Title
JPS638622B2 (en)
US5357136A (en) Semiconductor device with anchored interconnection layer
JPS6212152A (en) Manufacture of semiconductor device
JP2729422B2 (en) Semiconductor device
JPH02359A (en) Manufacture of semiconductor integrated circuit device
JPH0646662B2 (en) Semiconductor device
JPS5951143B2 (en) MIS type semiconductor device
JPS62115778A (en) Semiconductor integrated circuit device
JPS6399575A (en) Manufacture of semiconductor integrated circuit
JPH04233758A (en) Semiconductor device and manufacture thereof
JPS59112641A (en) Semiconductor device and manufacture thereof
JPS59155944A (en) Manufacture of semiconductor device
JPS62115779A (en) Manufacture of semiconductor integrated circuit device
JPH0449270B2 (en)
US6858489B2 (en) Semiconductor device manufacturing method
JPH0142147B2 (en)
JPS61194764A (en) Manufacture of semiconductor device
JP3058325B2 (en) Semiconductor device and manufacturing method thereof
JPH06181312A (en) Manufacture of semiconductor device
JPS62206874A (en) Semiconductor device and manufacture thereof
JP2596405B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS5980962A (en) Manufacture of mis semiconductor device
JPH0666427B2 (en) Method for manufacturing MOS semiconductor integrated circuit device
JPH0568863B2 (en)
JPS5935186B2 (en) Manufacturing method of MOS type semiconductor device