JPS63939B2 - - Google Patents

Info

Publication number
JPS63939B2
JPS63939B2 JP53086492A JP8649278A JPS63939B2 JP S63939 B2 JPS63939 B2 JP S63939B2 JP 53086492 A JP53086492 A JP 53086492A JP 8649278 A JP8649278 A JP 8649278A JP S63939 B2 JPS63939 B2 JP S63939B2
Authority
JP
Japan
Prior art keywords
gas
line
flow rate
valve
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53086492A
Other languages
Japanese (ja)
Other versions
JPS5513922A (en
Inventor
Atsuo Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8649278A priority Critical patent/JPS5513922A/en
Publication of JPS5513922A publication Critical patent/JPS5513922A/en
Publication of JPS63939B2 publication Critical patent/JPS63939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は良質な気相成長膜を得るための気相成
長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth method for obtaining a high quality vapor phase growth film.

気相成長において良質な気相成長膜を形成する
一方法として、気相成長時の試料基板から成長膜
への不純物のオートドーピングや、アウトデイフ
ユージヨンを少なくすることが有効かつ重要であ
り、このため、成長温度を下げるか、成長時間を
短かくすることが必要である。しかし、成長温度
を下げると成長膜の結晶性が低下するため、一般
には成長温度をあまり下げずに成長時間を短かく
する方法がとられている。そのため成長膜厚
(t)、成長時間(TG)、成長速度(RG)、の関係
式t=TG×RGから一定膜厚の成長膜を短時間の
成長で得るためには成長速度を上げることが必要
である。ところが、成長時間を短かくすると反応
ガスを反応室へ供給することに種々の問題を呈
す。
As a method for forming high-quality vapor-phase grown films during vapor-phase growth, it is effective and important to auto-dope impurities from the sample substrate to the grown film during vapor-phase growth and to reduce out-diffusion. Therefore, it is necessary to lower the growth temperature or shorten the growth time. However, lowering the growth temperature lowers the crystallinity of the grown film, so generally a method is used to shorten the growth time without lowering the growth temperature too much. Therefore, from the relational expression t=T G ×R G among the grown film thickness (t), growth time (T G ), and growth rate (R G ), in order to obtain a grown film of a constant thickness in a short time, It is necessary to increase the speed. However, shortening the growth time presents various problems in supplying the reaction gas to the reaction chamber.

従来の気相成長装置のガス系概略を第1図に示
す。この装置を用いて単結晶サフアイヤ基板上に
シリコン単結晶を成長させるいわゆるSOS結晶成
長を行なう従来方法について説明する。パラジウ
ム膜を透過させることにより高純度に純化された
水素ガスをキヤリアーガスとしてキヤリアーガス
ライン1に導入し流量調整装置を有したキヤリア
ーガス流量計(FM―1)2により例えば100
/分に流量調整を行なつた後、反応室ガスライ
ン3を経て反応室4内に配設されているガス噴射
装置5から反応室4内に噴射する。反応室4内に
は円盤上サセプター6が配設されていて、回転機
構を有した支持台により保持すると共に、加熱位
置により適当な成長温度例えば950〜1020℃まで
加熱する。サセプター6上にはサフアイア基板を
載置しておく。一方、反応系ガスとして不純物ガ
スライン7とモノシランガスライン8にそれぞれ
不純物ガス(ドーパントガス;例えばホスフイン
(PH3))とモノシランガス(SiH4)を導く。不
純物ガスライン7に導入した不純物ガスはガス流
量調整装置を備えた不純物ガス流量計(FM―
2)9で流量調整すると共に、前記キヤリアーガ
スライン1から分岐されてなる不純物ガス希釈ラ
イン10を経て導入する水素ガスにより適当な不
純物濃度に希釈した後、第1の自動ガス流量調整
装置(AFC―1)から成る添加不純物ガス流量
調整装置11とガス流量調整装置を備えた希釈ガ
ス流量計(FM―3)12に導入することにより
反応系ガス混合ライン14に適当量の不純物ガス
が第7のバルブ(V7)13を経て導入する。
FIG. 1 shows an outline of the gas system of a conventional vapor phase growth apparatus. A conventional method of growing a silicon single crystal on a single-crystal sapphire substrate using this apparatus, so-called SOS crystal growth, will be explained. Hydrogen gas that has been purified to a high degree by passing through a palladium membrane is introduced into the carrier gas line 1 as a carrier gas, and the carrier gas flowmeter (FM-1) 2 having a flow rate adjustment device is used to measure, for example, 100%
After adjusting the flow rate to 1/min, the gas is injected into the reaction chamber 4 from a gas injection device 5 disposed within the reaction chamber 4 via the reaction chamber gas line 3. A disc-shaped susceptor 6 is disposed in the reaction chamber 4, and is supported by a support having a rotation mechanism, and heated to a suitable growth temperature, for example, 950 to 1020°C, depending on the heating position. A sapphire substrate is placed on the susceptor 6. On the other hand, an impurity gas (dopant gas; for example, phosphine (PH 3 )) and monosilane gas (SiH 4 ) are introduced into an impurity gas line 7 and a monosilane gas line 8 as reaction system gases, respectively. The impurity gas introduced into the impurity gas line 7 is passed through an impurity gas flow meter (FM--) equipped with a gas flow rate adjustment device.
2) After adjusting the flow rate at step 9 and diluting the impurity gas to an appropriate concentration with hydrogen gas introduced through the impurity gas dilution line 10 branched from the carrier gas line 1, the first automatic gas flow rate adjustment device (AFC) An appropriate amount of impurity gas is introduced into the reaction system gas mixing line 14 by introducing it into the diluent gas flowmeter (FM-3) 12 equipped with the added impurity gas flow rate adjustment device 11 and the gas flow rate adjustment device consisting of It is introduced through the valve (V 7 ) 13.

一方、モノシランガスライン8に導入されたモ
ノシランガスは、第2の自動ガス流量調整装置
(AFC―2)から成るモノシランガス流量調整装
置15により適当流量(例えば1/分)に調整
され、前記反応系ガス混合ライン14に第8のバ
ルブ(V8)16を経て導入される。該反応系ガ
ス混合ライン14は第1のバルブ(V1)17お
よび第2のバルブ(V2)18の一次側と接続さ
れていて、第1のバルブ17の二次側は前記反応
室ガスライン3に第2のバルブ18の二次側は反
応系ガス排出ライン19にそれぞれ接続されてい
る。第1のバルブ(V1)17および第2のバル
ブ(V2)18の開閉動作は逆になるような連動
機構となつていて、気相成長反応の開始前の状態
では第1のバルブ17が閉じ第2のバルブ18が
開いているので、前記反応系の混合ガスは反応系
ガス混合ライン14から反応系ガス排出ライン1
9に導入される。該反応系ガス排出ライン19は
反応系ガスと希釈ガス流量計12からの不純物含
有ガスを気相成長装置外に排出するように配設さ
れている。気相成長反応の開始は第1のバルブ1
7が開き連動動作により第2のバルブ18が閉じ
た時点から始まる。即ち反応系ガス混合ライン1
4の反応系ガスが反応室ガスライン3に導入され
た時点から始まると考えることができる。反応室
ガスライン3には前述した如く水素ガスがキヤリ
アーガスとして導入されているので、反応室ガス
ライン3に導入された反応系ガスは水素ガスと混
合した状態で反応室4内のガス噴射装置5を介し
て反応室4内に導入することにより適当な温度に
昇温加熱されたサセプター6上のサフアイア単結
晶基板上に適当量の不純物元素を含んだシリコン
単結晶が成長する。反応室4内に導入された水素
ガスや反応系ガスの反応ガスは、その後、反応室
4下方に配設されているガス排出口を経て反応室
ガス排出ライン20に導入された後、気相成長装
置外に排出される。
On the other hand, the monosilane gas introduced into the monosilane gas line 8 is adjusted to an appropriate flow rate (for example, 1/min) by a monosilane gas flow rate adjustment device 15 consisting of a second automatic gas flow rate adjustment device (AFC-2), and the reaction system gas is mixed. It is introduced into line 14 via an eighth valve (V 8 ) 16 . The reaction system gas mixing line 14 is connected to the primary side of a first valve (V 1 ) 17 and a second valve (V 2 ) 18, and the secondary side of the first valve 17 is connected to the reaction chamber gas. The secondary side of the second valve 18 in the line 3 is connected to a reaction system gas discharge line 19, respectively. The first valve (V 1 ) 17 and the second valve (V 2 ) 18 have an interlocking mechanism in which the opening and closing operations are reversed, and in the state before the start of the vapor growth reaction, the first valve 17 Since the second valve 18 is closed and the second valve 18 is open, the mixed gas of the reaction system flows from the reaction system gas mixing line 14 to the reaction system gas discharge line 1.
introduced in 9. The reaction system gas discharge line 19 is arranged so as to discharge the reaction system gas and the impurity-containing gas from the dilution gas flowmeter 12 to the outside of the vapor phase growth apparatus. The vapor phase growth reaction starts at the first valve 1.
7 opens and the second valve 18 closes due to the interlocking operation. That is, reaction system gas mixing line 1
It can be considered that the process starts from the time when the reaction system gas No. 4 is introduced into the reaction chamber gas line 3. Since hydrogen gas is introduced into the reaction chamber gas line 3 as a carrier gas as described above, the reaction system gas introduced into the reaction chamber gas line 3 is mixed with hydrogen gas when the gas injection device in the reaction chamber 4 A silicon single crystal containing an appropriate amount of impurity elements is grown on a sapphire single crystal substrate on a susceptor 6 which is heated to an appropriate temperature by introducing the silicon single crystal into the reaction chamber 4 via the susceptor 5 . The reaction gases such as hydrogen gas and reaction system gas introduced into the reaction chamber 4 are then introduced into the reaction chamber gas exhaust line 20 through the gas exhaust port provided below the reaction chamber 4, and are then introduced into the gas phase. It is discharged outside the growth equipment.

以上の従来方法による気相成長方法において
は、次のような欠点があつた。即ち、反応室ガス
ライン3と反応系ガス排出ライン19間のガス流
量が大きく異なつているため、それぞれのライン
間に圧力差を生じている。このことから反応開始
前後において反応系ガス混合ライン14の内圧が
変動する。これはとりもなおさず自動ガス流量調
整装置から成る添加不純物ガス流量調整装置11
とモノシランガス流量調整装置15の二次側圧力
を変動させることになる。前記自動ガス流量調整
装置の二次側や一次側の圧力変動は40〜60秒間に
おいてガス流量に変化を与えるので、反応開始前
の所定流量に設定された反応系ガスの流量を維持
した60秒以下の理想的な気相成長はなされない。
即ち高速成長条件による短時間の気相成長、例え
ば成長速度5〜15μm/分で成長時間4〜10秒程
度の成長を行なう場合、気相成長膜の膜厚および
成長膜中の不純物濃度を再現性よく制御すること
は困難であつた。
The conventional vapor phase growth method described above has the following drawbacks. That is, since the gas flow rates between the reaction chamber gas line 3 and the reaction system gas discharge line 19 are significantly different, a pressure difference is generated between the respective lines. For this reason, the internal pressure of the reaction system gas mixing line 14 fluctuates before and after the start of the reaction. This is an added impurity gas flow rate adjustment device 11 consisting of an automatic gas flow rate adjustment device.
This changes the pressure on the secondary side of the monosilane gas flow rate adjustment device 15. Since pressure fluctuations on the secondary and primary sides of the automatic gas flow rate adjustment device change the gas flow rate for 40 to 60 seconds, the flow rate of the reaction system gas maintained at the predetermined flow rate before the start of the reaction was maintained for 60 seconds. The following ideal vapor phase growth cannot be performed.
In other words, when performing short-term vapor phase growth under high-speed growth conditions, for example, when growing at a growth rate of 5 to 15 μm/min and a growth time of about 4 to 10 seconds, it is possible to reproduce the thickness of the vapor phase grown film and the impurity concentration in the grown film. It was difficult to control it effectively.

本発明はかかる欠点を改善した気相成長方法を
提供するものである。
The present invention provides a vapor phase growth method that improves these drawbacks.

本気相成長方法の基本となるのは気相成長開始
前後において反応室ガスライン及び反応性ガス排
出ライン中を流れるガスの流量変動をなくすと共
に、反応室ガスラインと反応性ガスラインの内圧
をほぼ等しく調整し、その後気相成長を開始する
ことである。
The basics of the serious vapor phase growth method are to eliminate fluctuations in the flow rate of gas flowing through the reaction chamber gas line and reactive gas discharge line before and after the start of vapor phase growth, and to almost maintain the internal pressure of the reaction chamber gas line and reactive gas line. Adjust them equally and then start vapor phase growth.

以下本発明の一実施例としてSOS結晶成長を行
なうための気相成長装置のガス制御系概略を示す
第2図について説明する。
Hereinafter, a description will be given of FIG. 2, which schematically shows a gas control system of a vapor phase growth apparatus for performing SOS crystal growth as an embodiment of the present invention.

本発明の気相成長を実現するための装置は、キ
ヤリアーガスを反応室に供給するための第1のガ
スラインと、1または複数の反応性ガスを所定量
供給する第2のガスラインと、第2のガスライン
によつて供給されるガスの流量にほぼ等しい量の
キヤリアーガスを供給する第3のガスラインとの
ガス供給系から成つている。パラジウム膜を透過
することにより高純度に純化された水素ガスをキ
ヤリアーガスライン1に導入すると、導入された
キヤリアーガスは前記第1のガスライン上の流量
制御装置を備えた主キヤリアーガス流量計(FM
―1)2と前記第3のガスライン上の副キヤリア
ーガス流量計(FM―4)22および不純物ガス
希釈ライン10を介し希釈ガス流量計(FM―
3)12の一次側に導入される。主キヤリアーガ
ス流量計2の二次側からガス流量の調整された水
素ガスが反応室ガスライン3を経て反応室4内に
配設されているガス噴射装置5から反応室4内に
噴射される。反応室4内には試料載置台としてカ
ーボングラフアイト上にシリコンカーバイトをコ
ーテイングした円盤状サセプター6が配設されて
いて、該サセプター6は回転機構を有する支持台
により保持されると共に前記ガス噴射装置5を中
心として水平に回転する。また、サセプター6は
高周波加熱により成長温度迄昇温される。一方、
反応系ガスとして不純物ガス(Dopant)とモノ
シランガス(SiH4)が、それぞれ不純物ガスラ
イン7およびモノシランガスライン8に導びかれ
る。不純物ガスライン7に導入された不純物ガス
はガス流量調整装置を備えた不純物ガス流量計9
により流量調整された後、前記キヤリアーガスラ
イン1から希釈ライン10を経て導入される水素
ガスと混合され不純物ガス濃度が希釈せられて
後、第1の自動ガス流量調整装置(AFC―1)
から成る添加不純物ガス流量調整装置11の一次
側と前記ガス流量調整装置を備えた希釈ガス流量
計(FM―3)12に導入される不純物ガスの希
釈される度合は、不純物ガス流量計9の不純物ガ
ス流量と希釈ガス流量計12の希釈ガス流量との
割合により決定せられる。適当な不純物濃度に調
整せられた不純物ガスは前記添加不純物ガス流量
調整装置11の二次側から適当量の不純物ガス量
となつて第7のバルブ(V7)13を経て反応系
ガス混合ライン14に導入される。一方モノシラ
ンガスライン8に導入されるモノシランガスは第
2の自動ガス流量調整装置(AFC―2)から成
るモノシランガス流量調整装置15の一次側に導
入され二次側から適当流量に調整されたモノシラ
ンガスが第8のバルブ(V8)16を経て前記反
応系ガス混合ライン14に導入される。反応系ガ
ス混合ライン14は導入された不純物ガスおよび
モノシランガスを集合させた後、第1のバルブ
(V1)17と第2のバルブ(V2)18および第3
のバルブ(V3)23の一次側に供給される。第
1のバルブ17の二次側は前記反応室ガスライン
3に接続されている。また第2のバルブ18の二
次側は反応系ガス排出ライン19に接続されてい
る。反応系ガス排出ライン19は希釈ガス流量計
12の2次側と接続されていて希釈ガス流量計1
2からの不純物ガスと反応系ガス排出ライン19
からの反応系混合ガスが混合された後、排出ガス
ガス圧調整バルブ25を介して気相成長装置外に
排出される。第3のバルブ23の二次側はガス圧
力計(PG)26と第4のバルブ(V4)24の二
次側に接続されていて、第4のバルブ24の一次
側は反応室ガスライン3に接続されている。一
方、副キヤリアーガス流量計22に導入された水
素キヤリアーガスは前記反応系ガス混合ラインに
導入される不純物ガス流量とモノシランガス流量
の和に等しい流量に該副キヤリアーガス流量計の
ガス流量調整装置により調整されて第5のバルブ
(V5)27および第6のバルブ(V6)28の一次
側に導入される。第5のバルブ27の二次側は反
応室ガスライン3に接続されている。また第6の
バルブ28の二次側は前記反応系ガス排出ライン
19に接続されている。第5のバルブ27および
第6のバルブ28の開閉動作は逆になつていて絶
えずいずれかのバルブが開いている。例えば気相
成長前の状態では第5のバルブ27が開いていて
反応系ガス混合ライン3に導入される反応系ガス
流量すなわち、添加不純物ガス流量調整装置11
とモノシランガス流量調整装置15を流れるガス
流量の和に等しい水素ガスが反応系ガスライン3
を経て反応室4に導入される。また第1のバルブ
17と第2のバルブ18の開閉動作も逆になつて
いて気相成長前の状態では第1のバルブ17が閉
じていて第2のバルブ18は開いている。即ち気
相成長前においては第1のバルブ17と第6のバ
ルブ28が閉じていて第2のバルブ18と第5の
バルブ27が開いている。また、気相成長時にお
いては各バルブの開閉状態は気相成長前の逆の状
態になる。これらの各バルブは同時に動作するよ
うになつている。副キヤリアーガスは気相成長前
と気相成長中の反応室ガスライン3および反応系
ガス排出ライン19のガス流量を一定に保つ作用
をなす。以上の如く、気相成長前に反応室系ガス
ライン3に導入されるガスは主キヤリアーガスと
副キヤリアーガスの水素ガスのみである反応室系
ガスライン3に導入されたガスは反応室4内に噴
射された後、反応室4下方に配設されているガス
排出口を経て反応室ガス排出ライン20に導入さ
れて後、気相成長装置外に排出される。ガス圧力
計26は反応室ガスライン3および反応系排出ラ
イン19のガス圧力を測定するためのものであ
る。ガス圧力計26に接続されている第3のバル
ブ23および第4のバルブ24の開閉動作は両方
のバルブが同時に開の状態にはならない様になつ
ていて、両方のバルブが閉じた状態、もしくはい
ずれか一方のバルブが閉じている状態をとること
が可能になつている。ここで一つのガス圧力計で
両ラインの圧力を測定する理由は両ラインの圧力
差をほとんどなくすために圧力計間のバラツキに
よる測定誤差の発生を防止するためであるが、そ
のことを無視すればそれぞれ単独のガス圧力計を
用いれば良い。ガス圧力計26で測定した反応室
ガスライン3と反応系ガス排出ライン19間に圧
力差が生じた場合は排出ガスガス圧調整バルブ2
5により両ラインの圧力差がなくなる様に調整で
きる。サセプター6上にはサフアイヤ基板が載置
され気相成長温度に昇温されている状態で、且
つ、主キヤリアーガス流量(FM―2)、副キヤ
リアーガス流量(FM―4)、不純物ガス流量
(FM―2)、希釈ガス流量(FM―3)添加不純
物ガス流量(AFC―1)とモノシランガス流量
(AFC―2)等の流量調整および反応室ガスライ
ン3と反応系ガス排出ライン19の圧力調整が終
了している状態において、気相成長準備が完了し
ている。気相成長の開始は前記、気相成長準備完
了状態において第2のバルブ18と第5のバルブ
27が閉じると同時に、第1のバルブ17および
第6のバルブ28が開いた時点から始まる。即ち
反応系ガス混合ライン14の反応系ガスが反応系
ガス排出ライン19から反応室ガスライン3に変
わると共に副キヤリアーガスが反応室ガスライン
3から反応系ガス排出ライン19に変つた時点か
ら気相成長が始まる。反応室ガスライン3に添加
された反応系ガスは主キヤリアーガスの水素ガス
と混合されて反応室4内のガス噴射装置5から反
応室4内に噴射されサフアイア基板上やサセプタ
ー6上に不純物量の制御されたシリコンを成長さ
せる。その後反応室4下方に配設されているガス
排出口を経て反応室ガス排出ライン20に導入さ
れた後気相成長装置外に排出される。
The apparatus for realizing vapor phase growth of the present invention includes a first gas line for supplying a carrier gas to a reaction chamber, a second gas line for supplying a predetermined amount of one or more reactive gases, A third gas line supplies a carrier gas in an amount approximately equal to the flow rate of the gas supplied by the second gas line. When hydrogen gas that has been highly purified by passing through a palladium membrane is introduced into the carrier gas line 1, the introduced carrier gas is passed through a main carrier gas flow meter (equipped with a flow rate control device) on the first gas line. FM
-1) Sub carrier gas flowmeter (FM-4) 22 on the third gas line and the dilution gas flowmeter (FM-4) via the impurity gas dilution line 10.
3) Introduced on the primary side of 12. Hydrogen gas whose gas flow rate has been adjusted is injected into the reaction chamber 4 from the secondary side of the main carrier gas flowmeter 2 through the reaction chamber gas line 3 from the gas injection device 5 disposed in the reaction chamber 4. . A disk-shaped susceptor 6 made of carbon graphite coated with silicon carbide is disposed as a sample mounting table in the reaction chamber 4, and the susceptor 6 is held by a support table having a rotating mechanism and the gas injection It rotates horizontally around the device 5. Further, the temperature of the susceptor 6 is raised to the growth temperature by high frequency heating. on the other hand,
Impurity gas (Dopant) and monosilane gas (SiH 4 ) as reaction system gases are led to an impurity gas line 7 and a monosilane gas line 8, respectively. The impurity gas introduced into the impurity gas line 7 is passed through an impurity gas flow meter 9 equipped with a gas flow rate adjustment device.
After the flow rate is adjusted by the carrier gas line 1, the impurity gas concentration is diluted by mixing with the hydrogen gas introduced from the carrier gas line 1 through the dilution line 10, and then the first automatic gas flow rate adjustment device (AFC-1)
The degree of dilution of the impurity gas introduced into the primary side of the added impurity gas flow rate adjustment device 11 and the dilution gas flowmeter (FM-3) 12 equipped with the gas flow rate adjustment device is determined by the impurity gas flowmeter 9. It is determined by the ratio between the impurity gas flow rate and the dilution gas flow rate of the dilution gas flow meter 12. The impurity gas adjusted to an appropriate impurity concentration flows from the secondary side of the added impurity gas flow rate adjustment device 11 into an appropriate amount of impurity gas, and passes through the seventh valve (V 7 ) 13 to the reaction system gas mixing line. 14 will be introduced. On the other hand, the monosilane gas introduced into the monosilane gas line 8 is introduced into the primary side of the monosilane gas flow rate adjustment device 15 consisting of a second automatic gas flow rate adjustment device (AFC-2), and the monosilane gas adjusted to an appropriate flow rate from the secondary side is introduced into the 8th line. is introduced into the reaction system gas mixing line 14 through the valve (V 8 ) 16. The reaction system gas mixing line 14 collects the introduced impurity gas and monosilane gas, and then connects the first valve (V 1 ) 17, the second valve (V 2 ) 18 and the third valve
is supplied to the primary side of the valve (V 3 ) 23. The secondary side of the first valve 17 is connected to the reaction chamber gas line 3. Further, the secondary side of the second valve 18 is connected to a reaction system gas discharge line 19. The reaction system gas discharge line 19 is connected to the secondary side of the diluent gas flow meter 12.
Impurity gas from 2 and reaction system gas discharge line 19
After the reaction system mixed gases are mixed, they are discharged to the outside of the vapor phase growth apparatus via the exhaust gas pressure regulating valve 25. The secondary side of the third valve 23 is connected to the gas pressure gauge (PG) 26 and the secondary side of the fourth valve (V 4 ) 24, and the primary side of the fourth valve 24 is connected to the reaction chamber gas line. Connected to 3. On the other hand, the hydrogen carrier gas introduced into the sub-carrier gas flow meter 22 is adjusted to a flow rate equal to the sum of the impurity gas flow rate introduced into the reaction system gas mixing line and the monosilane gas flow rate by the gas flow rate adjustment device of the sub-carrier gas flow meter. It is regulated and introduced into the primary side of the fifth valve (V 5 ) 27 and the sixth valve (V 6 ) 28 . The secondary side of the fifth valve 27 is connected to the reaction chamber gas line 3. Further, the secondary side of the sixth valve 28 is connected to the reaction system gas discharge line 19. The opening and closing operations of the fifth valve 27 and the sixth valve 28 are reversed, so that one of the valves is always open. For example, in a state before vapor phase growth, the fifth valve 27 is open and the flow rate of the reaction gas introduced into the reaction gas mixing line 3, that is, the added impurity gas flow rate adjustment device 11
Hydrogen gas equal to the sum of the gas flow rates flowing through the and monosilane gas flow rate adjusting device 15 flows into the reaction system gas line 3.
It is introduced into the reaction chamber 4 through. Further, the opening and closing operations of the first valve 17 and the second valve 18 are reversed, and in the state before vapor phase growth, the first valve 17 is closed and the second valve 18 is open. That is, before vapor phase growth, the first valve 17 and the sixth valve 28 are closed, and the second valve 18 and the fifth valve 27 are open. Furthermore, during vapor phase growth, the opening and closing states of each valve are reversed to those before vapor phase growth. Each of these valves is adapted to operate simultaneously. The sub-carrier gas functions to keep the gas flow rates in the reaction chamber gas line 3 and reaction system gas discharge line 19 constant before and during vapor phase growth. As described above, the gases introduced into the reaction chamber system gas line 3 before vapor phase growth are only hydrogen gas as the main carrier gas and the subcarrier gas. After being injected, the gas is introduced into the reaction chamber gas exhaust line 20 through a gas exhaust port provided below the reaction chamber 4, and then discharged to the outside of the vapor growth apparatus. The gas pressure gauge 26 is for measuring the gas pressure in the reaction chamber gas line 3 and the reaction system discharge line 19. The opening and closing operations of the third valve 23 and the fourth valve 24 connected to the gas pressure gauge 26 are such that both valves are not open at the same time, and both valves are closed or closed. It is now possible for either one of the valves to be in a closed state. The reason for measuring the pressure of both lines with one gas pressure gauge is to almost eliminate the pressure difference between the two lines and prevent measurement errors due to variations between the pressure gauges, but this should be ignored. If so, a separate gas pressure gauge may be used for each. If a pressure difference occurs between the reaction chamber gas line 3 and the reaction system gas discharge line 19 measured by the gas pressure gauge 26, the exhaust gas pressure adjustment valve 2
5 allows adjustment to eliminate the pressure difference between both lines. The sapphire substrate is placed on the susceptor 6 and heated to the vapor growth temperature, and the main carrier gas flow rate (FM-2), sub-carrier gas flow rate (FM-4), impurity gas flow rate ( FM-2), dilution gas flow rate (FM-3), flow rate adjustment of added impurity gas flow rate (AFC-1), monosilane gas flow rate (AFC-2), etc., and pressure adjustment of reaction chamber gas line 3 and reaction system gas discharge line 19. In the state where the process has been completed, the preparation for vapor phase growth is completed. The start of vapor phase growth begins at the time when the second valve 18 and the fifth valve 27 are closed and the first valve 17 and the sixth valve 28 are opened at the same time in the vapor phase growth preparation completion state. That is, from the time when the reaction gas in the reaction gas mixing line 14 changes from the reaction gas discharge line 19 to the reaction chamber gas line 3 and the subcarrier gas changes from the reaction chamber gas line 3 to the reaction gas discharge line 19, the gas phase changes. Growth begins. The reaction gas added to the reaction chamber gas line 3 is mixed with hydrogen gas as the main carrier gas, and is injected into the reaction chamber 4 from the gas injection device 5 in the reaction chamber 4 to reduce the amount of impurities on the sapphire substrate and susceptor 6. controlled growth of silicon. Thereafter, the gas is introduced into the reaction chamber gas discharge line 20 through a gas discharge port provided below the reaction chamber 4, and then discharged to the outside of the vapor phase growth apparatus.

以上の構成によれば次の効果を生ずる。 According to the above configuration, the following effects are produced.

即ち、気相成長前と気相成長中の反応室ガスラ
イン3と反応系ガス排出ライン19のガス流量に
変化が生じない。つまり、気相成長前の反応室ガ
スライン3のガス流量(FRL)は、主キヤリアー
ガス流量(FCn)に副キヤリアーガス流量(FCS
が加算された量(FRL=FCn+FCS)であり、気相
成長中の反応室ガスライン3のガス流量(FRL′)
は主キヤリアーガス流量(FCn)に反応系ガス流
量FRが加算された量(FRL′=FCn+FR)である。
ここで副キヤリアーガス流量(FCS)は反応系ガ
ス流量FRと同量(FCS=FR)になるように副キヤ
リアーガス流量計22により調整されているの
で、FRL=FRL′となる。従つて、気相成長開始直
後から気相成長準備完了状態を保持したまま、即
ち各ガス流量およびセプター温度に変更を生じる
ことなく気相成長を行なえる。また反応系ガス排
出ライン19においても気相成長前と気相成長中
のガス流量に変化を生じない。つまり希釈ガス流
量計12の二次側に圧力変動を生じないので、希
釈ガス流量も安定していて添加不純物ガス流量調
整装置11に供給される不純物ガス濃度も安定し
ている。
That is, there is no change in the gas flow rates in the reaction chamber gas line 3 and the reaction system gas discharge line 19 before and during vapor phase growth. In other words, the gas flow rate (F RL ) in the reaction chamber gas line 3 before vapor phase growth is the main carrier gas flow rate (F Cn ) and the sub-carrier gas flow rate (F CS ).
is the added amount (F RL = F Cn + F CS ), and the gas flow rate in the reaction chamber gas line 3 during vapor phase growth (F RL ′)
is the amount obtained by adding the reaction system gas flow rate F R to the main carrier gas flow rate (F Cn ) (F RL '=F Cn + F R ).
Here, the sub-carrier gas flow rate (F CS ) is adjusted by the sub-carrier gas flow meter 22 so that it is the same as the reaction system gas flow rate F R (F CS = F R ), so F RL = F RL ′ becomes. Therefore, immediately after the start of vapor phase growth, vapor phase growth can be performed while maintaining the state of completion of preparation for vapor phase growth, that is, without changing each gas flow rate and scepter temperature. Also, in the reaction system gas discharge line 19, there is no change in the gas flow rate before and during vapor phase growth. In other words, since no pressure fluctuation occurs on the secondary side of the dilution gas flowmeter 12, the dilution gas flow rate is also stable, and the impurity gas concentration supplied to the added impurity gas flow rate adjustment device 11 is also stable.

以上のように本発明による気相成長方法によれ
ば安定な気相成長を行なうことが出来る。このこ
とから特に成長測度が大きく例えば5〜15μm/
分程度の条件で0.5〜1.0μm程度の成長膜を得る様
な短時間(10秒前後)の成長において、成長膜の
不純物濃度や成長膜厚の制御性および再現性が飛
躍的に向上した。
As described above, according to the vapor phase growth method according to the present invention, stable vapor phase growth can be performed. For this reason, the growth rate is particularly large, for example, 5 to 15 μm/
The controllability and reproducibility of the impurity concentration of the grown film and the thickness of the grown film have been dramatically improved in short-term growth (about 10 seconds), where a film of about 0.5 to 1.0 μm can be grown under conditions of about 1 minute.

上記実施例においてはSOSの結晶成長について
述べたが、本発明はシリコンの高速成長に限定さ
れるものではなく他の気相成長においても適用で
きることはいうまでもない。また低速成長条件に
よる短かい時間の気相成長においても安定な成長
が行なえるものである。
Although the above embodiments have described SOS crystal growth, it goes without saying that the present invention is not limited to high-speed growth of silicon and can be applied to other types of vapor phase growth. Furthermore, stable growth can be achieved even in short-term vapor phase growth under low-speed growth conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例による気相成長装置のガス系概
略図、第2図は本発明による気相成長方法を実現
するためのガス系概略図である。 1……キヤリアーガスライン、2……キヤリア
ーガス流量計、3……反応室ガスライン、4……
反応室、5……ガス噴射装置、6……サセプタ
ー、7……不純物ガスライン、8……モノシラン
ガスライン、9……不純物ガス流量計、10……
希釈ライン、11……添加不純物ガス流量調整装
置、12……希釈ガス流量計、13……第7のバ
ルブ、14……反応系ガス混合ライン、15……
モノシランガス流量調整装置、16……第8のバ
ルブ、17……第1のバルブ、18……第2のバ
ルブ、19……反応系ガス排出ライン、20……
反応室ガス排出ライン、22……副キヤリアーガ
ス流量計、23……第3のバルブ、24……第4
のバルブ、25……排出ガスガス圧調整バルブ。
FIG. 1 is a schematic diagram of a gas system of a conventional vapor phase growth apparatus, and FIG. 2 is a schematic diagram of a gas system for realizing a vapor phase growth method according to the present invention. 1...Carrier gas line, 2...Carrier gas flow meter, 3...Reaction chamber gas line, 4...
Reaction chamber, 5... Gas injection device, 6... Susceptor, 7... Impurity gas line, 8... Monosilane gas line, 9... Impurity gas flow meter, 10...
Dilution line, 11... Added impurity gas flow rate adjustment device, 12... Dilution gas flow meter, 13... Seventh valve, 14... Reaction system gas mixing line, 15...
Monosilane gas flow rate adjustment device, 16...Eighth valve, 17...First valve, 18...Second valve, 19...Reaction system gas discharge line, 20...
Reaction chamber gas discharge line, 22...Sub-carrier gas flow meter, 23...Third valve, 24...Fourth
Valve 25...Exhaust gas pressure adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 1 気相成長前においては主キヤリアーガスと副
キヤリアーガスを加えて反応室ガスラインに流す
と同時に、副キヤリアーガスと同量の反応性ガス
を排出ガスラインに流し、気相成長時において
は、副キヤリアーガスと反応性ガスを切換えるこ
とにより、主キヤリアーガスと反応性ガスを加え
て上記反応室ガスラインに流すと同時に、反応性
ガスと同量の副キヤリアーガスを上記排出ガスラ
インに流すことを特徴とする気相成長方法。
1. Before vapor phase growth, main carrier gas and subcarrier gas are added and flowed into the reaction chamber gas line, and at the same time, the same amount of reactive gas as the subcarrier gas is flowed into the exhaust gas line, and during vapor phase growth, By switching the sub-carrier gas and the reactive gas, the main carrier gas and the reactive gas are added and flowed into the reaction chamber gas line, and at the same time, the sub-carrier gas in the same amount as the reactive gas is allowed to flow into the exhaust gas line. A vapor phase growth method characterized by:
JP8649278A 1978-07-14 1978-07-14 Vapor phase growthing method and its device Granted JPS5513922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8649278A JPS5513922A (en) 1978-07-14 1978-07-14 Vapor phase growthing method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8649278A JPS5513922A (en) 1978-07-14 1978-07-14 Vapor phase growthing method and its device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27352688A Division JPH01164026A (en) 1988-10-28 1988-10-28 Gas mixing device

Publications (2)

Publication Number Publication Date
JPS5513922A JPS5513922A (en) 1980-01-31
JPS63939B2 true JPS63939B2 (en) 1988-01-09

Family

ID=13888474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8649278A Granted JPS5513922A (en) 1978-07-14 1978-07-14 Vapor phase growthing method and its device

Country Status (1)

Country Link
JP (1) JPS5513922A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027119A (en) * 1983-07-22 1985-02-12 Nec Corp Vapor growth device of semiconductor
US4522697A (en) * 1983-12-22 1985-06-11 Sputtered Films, Inc. Wafer processing machine
JPS60255694A (en) * 1984-05-31 1985-12-17 Mitsubishi Metal Corp Method for forming thin film of compound of group iii-v
JPH0642454B2 (en) * 1984-11-12 1994-06-01 松下電子工業株式会社 Vapor growth method
JPS61136993A (en) * 1984-12-10 1986-06-24 Agency Of Ind Science & Technol Method for growing semiconductor crystal
JPH0713945B2 (en) * 1985-04-03 1995-02-15 松下電器産業株式会社 Vapor growth method
JPS6328875A (en) * 1986-07-23 1988-02-06 Anelva Corp Method for introducing gas
JPH0620050B2 (en) * 1987-08-12 1994-03-16 富士電機株式会社 Gas dilution device
JP2607715Y2 (en) * 1991-07-11 2002-07-08 株式会社ユーエイキャスター Casters with braking device
JPH07153705A (en) * 1994-05-20 1995-06-16 Matsushita Electric Ind Co Ltd Vapor growth device
CN103882409B (en) * 2014-03-13 2016-04-20 中国科学院半导体研究所 The adjustable gas path device of source conveying ratio of mixture

Also Published As

Publication number Publication date
JPS5513922A (en) 1980-01-31

Similar Documents

Publication Publication Date Title
EP0837495B1 (en) Vapor phase growth apparatus
JPS63939B2 (en)
JPH06232060A (en) Method and device for growing epitaxial silicon layer
JPS63316425A (en) Manufacturing apparatus for semiconductor device
CA1325160C (en) Apparatus for producing compound semiconductor
JPH0434293B2 (en)
US5685905A (en) Method of manufacturing a single crystal thin film
JPH0439921A (en) Control method of gas flow rate at vapor phase epitaxial growth apparatus
JP2002367911A (en) Device and method for manufacturing vapor growth semiconductor
JPS59194424A (en) Vapor growth apparatus
JPS62230694A (en) Production of gaas single crystal
JPS6143413A (en) Formation of compound semiconductor single crystal thin film
JPH09142983A (en) Horizontal vapor phase epitaxy method and apparatus therefor
JP3156858B2 (en) Liquid feeder
JPH0562031U (en) Vapor phase growth equipment
JPS61114519A (en) Vapor growth equipment
JPH01301585A (en) Apparatus for growing semiconductor crystal
JPS6390121A (en) Vapor phase crystal growth system
JPS63266816A (en) Growing method for iii-v compound semiconductor crystal
JPS5986215A (en) Vapor growth method of gallium arsenide
JPH0521351A (en) Vapor growing method for semiconductor and vapor growing apparatus
JPH0573322B2 (en)
JPH0594949A (en) Semiconductor vapor growth device
JPH1129399A (en) Production of gallium arsenide single crystal and apparatus therefor
JPS60126818A (en) Pyrolytically decomposing vapor growth device of compound semiconductor