JPH0642454B2 - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH0642454B2
JPH0642454B2 JP59237824A JP23782484A JPH0642454B2 JP H0642454 B2 JPH0642454 B2 JP H0642454B2 JP 59237824 A JP59237824 A JP 59237824A JP 23782484 A JP23782484 A JP 23782484A JP H0642454 B2 JPH0642454 B2 JP H0642454B2
Authority
JP
Japan
Prior art keywords
gas
pressure
growth
source gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59237824A
Other languages
Japanese (ja)
Other versions
JPS61115324A (en
Inventor
永孝 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59237824A priority Critical patent/JPH0642454B2/en
Publication of JPS61115324A publication Critical patent/JPS61115324A/en
Publication of JPH0642454B2 publication Critical patent/JPH0642454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体の気相成長過程における原料ガスの供給
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying a source gas in a semiconductor vapor phase growth process.

従来の技術 半導体の気相成長法は、液相エピタキシャル成長法と比
べて、はるかに薄い成長層を均一な厚さで精度よく形成
できる事から、半導体薄膜形成法として最も有力な方法
となっている。最近では、異なる組成の薄膜層を交互に
成長させる気相成長技術によって、量子井戸型レーザや
高性能電界効果トランジスタなどが実現されるようにな
ってきている。
2. Description of the Related Art Compared to liquid phase epitaxial growth method, semiconductor vapor phase growth method is the most effective method for forming semiconductor thin film because it can form much thinner growth layer with uniform thickness and higher accuracy. . Recently, quantum well lasers, high-performance field-effect transistors, etc. have been realized by vapor phase growth technology in which thin film layers having different compositions are alternately grown.

発明が解決しようとする問題点 上記のような従来の気相成長法では、成長層の均一性を
増し、さらに精度良い薄膜層を得るために、装置内の圧
力を下げ、減圧下で成長を行なうようになってきてい
る。このような場合、気相成長用原料ガスを、空流し状
態から成長装置内へ導入する際、原料ガスや成長装置内
の圧力が変動するため、過渡的に原料ガスの流量制御が
できなくなり、結果として、成長層の組成や特性を成長
開始時では制御できなくなるなど、不安定性を生ずる。
Problems to be Solved by the Invention In the conventional vapor phase growth method as described above, in order to increase the uniformity of the growth layer and obtain a more accurate thin film layer, the pressure inside the apparatus is lowered and the growth is performed under reduced pressure. I'm starting to do it. In such a case, when the raw material gas for vapor phase growth is introduced into the growth apparatus from the idle state, the raw material gas and the pressure in the growth apparatus fluctuate, so that the flow rate of the raw material gas cannot be transiently controlled. As a result, instability occurs such that the composition and characteristics of the growth layer cannot be controlled at the start of growth.

問題点を解決するための手段 本発明は、上記問題点が原料ガス導入前後での導入ガス
総量の変化に起因している事に注目し、これを解決する
ため、原料ガスと並列に圧力調整された水素ガスあるい
は不活性ガスによる非原料ガスの供給ラインを設け、さ
らに原料ガスと前記圧力調整された非原料ガスが互いに
反対に、排気ラインと成長装置への導入ラインとに接続
されるように切換える供給方法であり、装置には、切換
えコックを設置した。
Means for Solving Problems The present invention focuses on the fact that the above problems are caused by a change in the total amount of introduced gas before and after introducing the raw material gas, and in order to solve this, pressure adjustment is performed in parallel with the raw material gas. A non-source gas supply line for the hydrogen gas or the inert gas is provided, and the source gas and the pressure-controlled non-source gas are connected to the exhaust line and the introduction line to the growth apparatus, opposite to each other. It is a supply method of switching to the above, and a switching cock is installed in the device.

作用 本発明によると、上記構成のもとに、前記圧力調整され
た非原料ガスの流量を原料ガスと同等量になし、成長装
置内へ流入するガスの総量を原料ガス導入の前後で一定
に保つことにより、成長装置内および原料ガス供給ライ
ンの圧力変動を抑え、成長開始時での流量制御を容易に
することができる。
Effect According to the present invention, based on the above configuration, the flow rate of the pressure-controlled non-source gas is made equal to that of the source gas, and the total amount of gas flowing into the growth apparatus is constant before and after the source gas is introduced. By keeping it, the pressure fluctuation in the growth apparatus and the source gas supply line can be suppressed, and the flow rate control at the start of growth can be facilitated.

実施例 第1図は本発明実施例に用いた装置の概要図であり、第
2図はその応用例である。本発明の方法を燐化インジウ
ム(InP)の有機金属熱分解成長法に応用した例でのべ
る。原料ガスとしては、供給ライン1からは、ホスフィ
ン(PH3)とトリエチルインジウム(TEI)との混合物を
供給する。
EXAMPLE FIG. 1 is a schematic diagram of an apparatus used in an example of the present invention, and FIG. 2 is an application example thereof. An example in which the method of the present invention is applied to the metalorganic pyrolysis growth method of indium phosphide (InP) will be given. As the raw material gas, a mixture of phosphine (PH 3 ) and triethylindium (TEI) is supplied from the supply line 1.

TEIは常温で液体であるため、この混合物を形成するに
は、第2図のように水素ガス(H2)をTEI容器11内で
バブリングさせ、飽和蒸気圧までTEIを蒸発させること
により供給している。したがって、TEIの供給量は、H2
流量、温度及び容器内の圧力により変化するため、これ
らを正確に制御しなければならない。非原料ガスは、供
給ライン2より、原料ガスの供給と同様に、ガス流量制
御器3を介して、排気ライン4または導入ライン5に供
給される。始めに、導入ライン5の圧力は搬送用ガス供
給ライン6を通じ流量調整器7により大気圧に調節され
る。これは、切換えコック8(81または82)を通じ大気
圧の排気ライン4から流量調整器7を介して、減圧F
(0.1気圧とした)の導入ライン5へ切換える際の容器
内圧力の大きな変動をなくすためである。初期状態にお
いて、ガス切換えコック81は排気ライン4へ接続さ
れ、一方、切換えコック82は導入ライン5へ接続され
ており、TEIバブリングによる原料ガスと同流量に制御
された非原料ガスのH2ガスを同時に切換え供給するよう
に構成されている。なお、第2図では、ホスフィンは別
の供給ライン12を通じて、切換えコック83より供給
される。
Since TEI is a liquid at room temperature, to form this mixture, hydrogen gas (H 2 ) is bubbled in the TEI container 11 as shown in FIG. 2 and supplied by evaporating the TEI to a saturated vapor pressure. ing. Therefore, the supply amount of TEI is H 2
These must be precisely controlled as they vary with flow rate, temperature and pressure in the vessel. The non-source gas is supplied from the supply line 2 to the exhaust line 4 or the introduction line 5 via the gas flow rate controller 3 similarly to the supply of the source gas. First, the pressure of the introduction line 5 is adjusted to atmospheric pressure by the flow rate regulator 7 through the carrier gas supply line 6. This is a pressure reduction F from the exhaust line 4 of atmospheric pressure through the switching cock 8 (81 or 82) and the flow rate regulator 7.
This is to eliminate large fluctuations in the pressure inside the container when switching to the introduction line 5 (at 0.1 atm). In the initial state, the gas switching cock 81 is connected to the exhaust line 4, while the switching cock 82 is connected to the introduction line 5, and the non-source gas H 2 gas controlled to the same flow rate as the source gas by TEI bubbling. Are simultaneously switched and supplied. In FIG. 2, phosphine is supplied from the switching cock 83 through another supply line 12.

この状態から、切換えコック81,82を同時に、互い
に反対になるように切換えて、TEIを導入した場合の圧
力および流量の変動量を調べたところ、ほとんど変動は
観測されなかった。
From this state, the switching cocks 81 and 82 were simultaneously switched so as to be opposite to each other, and the fluctuation amounts of the pressure and the flow rate when TEI was introduced were examined. As a result, almost no fluctuations were observed.

一方、本発明の方法である非原料ガス供給ライン2を用
いない場合の例として、搬送ガス流量をH2:500cc/分
とし、TEI・バブリングガス流量をH2:200cc/分として
同様に圧力変動を調べた。コック切換え後、圧力は1.4
気圧まで増加し、これはTEIの蒸発量が約2/3に減少
した事に対応する。また、圧力変動に要した時間は約1
5秒程度であり、成長層厚に換算すると約50Åの過渡
領域層を形成する事になる。
On the other hand, as an example of the case where the non-raw material gas supply line 2 which is the method of the present invention is not used, the carrier gas flow rate is H 2 : 500 cc / min, and the TEI / bubbling gas flow rate is H 2 : 200 cc / min. I examined the fluctuations. Pressure is 1.4 after switching cock
Increased to atmospheric pressure, which corresponds to a decrease in TEI evaporation of about 2/3. Also, the time required for pressure fluctuation is about 1
It takes about 5 seconds, and when converted to the growth layer thickness, a transition region layer of about 50Å is formed.

第3図は以上の結果をまとめたものであり、従来法にお
けるガス切換時の圧力変動は、特性Aのように大きな変
動がみられるのに対し、本発明の方法では特性Bのよう
に、ほとんど観測されず、圧力変動に伴なう問題点は著
しく改善される事が確認できた。
FIG. 3 is a summary of the above results. The pressure fluctuation at the time of gas switching in the conventional method shows a large fluctuation like the characteristic A, while the pressure fluctuation in the method of the present invention becomes like the characteristic B. It was confirmed that it was hardly observed, and the problems associated with pressure fluctuations were remarkably improved.

発明の効果 以上説明してきたように、本発明の方法ではガス切換時
の圧力変動がなくなるため、成長開始時での成長条件の
不安定性を取り除くことができ、成長層の品質を著しく
向上できる。また、圧力変動に伴なう過渡層がなくなる
ため、品質の良い薄膜層を再現性よく提供する事を可能
にし、その工業的価値は大といえる。
EFFECTS OF THE INVENTION As described above, the method of the present invention eliminates pressure fluctuations at the time of gas switching, so that instability of growth conditions at the start of growth can be eliminated and the quality of the growth layer can be significantly improved. Further, since the transient layer associated with the pressure fluctuation is eliminated, it is possible to provide a thin film layer of good quality with good reproducibility, and it can be said that its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法の構成を示す図、第2図は本発明
の一実施例の構成を示す図、第3図は導入ラインの圧力
変動を従来法と本発明の実施例とで比較した特性図であ
る。 1……原料ガス供給ライン、2……非原料ガス供給ライ
ン、3……ガス流量制御器、4……排気ライン、5……
導入ライン、8(81,82,83)……ガス切換コッ
ク。
FIG. 1 is a diagram showing the constitution of the method of the present invention, FIG. 2 is a diagram showing the constitution of one embodiment of the present invention, and FIG. 3 is a diagram showing the pressure fluctuation of the introduction line between the conventional method and the embodiment of the present invention. It is a characteristic diagram compared. 1 ... Raw material gas supply line, 2 ... Non-raw material gas supply line, 3 ... Gas flow controller, 4 ... Exhaust line, 5 ...
Introductory line, 8 (81, 82, 83) ... Gas switching cock.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧力、流量を制御した気相成長用原料ガス
供給の第1の系統から、これと異なる圧力、流量に制御
された非原料ガス供給の第2の系統とを切換える際に、
前記原料ガスと同等量に制御した非原料ガスを前記第2
の系統から前記第1の系統に切換える事を特徴とした気
相成長方法。
1. When switching from a first system for supplying a source gas for vapor phase growth whose pressure and flow rate are controlled to a second system for supplying a non-source gas whose pressure and flow rate are different from each other,
The non-source gas controlled to the same amount as the source gas is used as the second
The method of vapor phase growth characterized by switching from the above system to the above first system.
JP59237824A 1984-11-12 1984-11-12 Vapor growth method Expired - Lifetime JPH0642454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237824A JPH0642454B2 (en) 1984-11-12 1984-11-12 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237824A JPH0642454B2 (en) 1984-11-12 1984-11-12 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS61115324A JPS61115324A (en) 1986-06-02
JPH0642454B2 true JPH0642454B2 (en) 1994-06-01

Family

ID=17020943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237824A Expired - Lifetime JPH0642454B2 (en) 1984-11-12 1984-11-12 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH0642454B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136587A (en) * 1974-04-06 1976-03-27 Int Standard Electric Corp
JPS5513922A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Vapor phase growthing method and its device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136587A (en) * 1974-04-06 1976-03-27 Int Standard Electric Corp
JPS5513922A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Vapor phase growthing method and its device

Also Published As

Publication number Publication date
JPS61115324A (en) 1986-06-02

Similar Documents

Publication Publication Date Title
US4911101A (en) Metal organic molecular beam epitaxy (MOMBE) apparatus
US5460654A (en) Apparatus for generating raw material gas used in apparatus for growing thin film
US20230212787A1 (en) Metalorganic chemical vapor phase epitaxy or vapor phase deposition apparatus
JPH0642454B2 (en) Vapor growth method
JPS63939B2 (en)
US4468258A (en) Method of controlling the partial pressure of at least one substance mixture or mixture of substances
JP2701339B2 (en) Vapor phase growth equipment
JPH0194613A (en) Vapor growth method
JPH01220821A (en) Gas controlling method for vapor growth equipment
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JPH05121336A (en) Metal organic gaseous phase growth system
JP2646647B2 (en) Low pressure vapor phase growth equipment
JPS60145999A (en) Gaseous-phase growth of compound semiconductor
JPH0620050B2 (en) Gas dilution device
JPS61229321A (en) Vapor growth method
JPS63319292A (en) Crystal growth device by vapor-phase thermal decomposition
JPH07315986A (en) Method for growing compound semiconductor thin film
JP2990472B2 (en) Low pressure vapor deposition
JPH0536397B2 (en)
JPS61187226A (en) Vapor growth apparatus
JP3342729B2 (en) Method and apparatus for forming aluminum alloy wiring
JPH0594949A (en) Semiconductor vapor growth device
JPS6251209A (en) Vapor growth apparatus
JPH03232221A (en) Vapor growth method for compound semiconductor
JPS60136308A (en) Vapor growth of compound semiconductor