JPS61187226A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS61187226A
JPS61187226A JP2690385A JP2690385A JPS61187226A JP S61187226 A JPS61187226 A JP S61187226A JP 2690385 A JP2690385 A JP 2690385A JP 2690385 A JP2690385 A JP 2690385A JP S61187226 A JPS61187226 A JP S61187226A
Authority
JP
Japan
Prior art keywords
pipe
crystal growth
group
aluminum
growth chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2690385A
Other languages
Japanese (ja)
Inventor
Yuzaburo Ban
雄三郎 伴
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2690385A priority Critical patent/JPS61187226A/en
Publication of JPS61187226A publication Critical patent/JPS61187226A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To enable, with excellent reproducibility, the control of composition in the case of mixed crystal growth, the control of concentration of impurity in the case of impurity doping, the control of steepness of an interface in the preparation of a multilayer thin film structure, etc., by making of aluminum a pipe introducing a VI-group hydrogenated gas from the cylinder therefor into a crystal growth chamber. CONSTITUTION:One of hydrogenated gas cylinders is a cylinder 14 for a VI- group hydrogenated gas. A pipe 15 introducing the VI-group hydrogenated gas from the cylinder 14 into a crystal growth chamber 1 is provided independently from a pipe 6 introducing another hydrogenated gas from cylinders 4 into the crystal growth chamber 1, and it is made of aluminum. A connecting part of the pipe 15 made of aluminum with the crystal growth chamber 1 is provided with an air-operated valve 16, and a stainless steel pipe 17 for making a carrier gas flow in is connected to the middle of the pipe 15 made of aluminum. H2Se is introduced to the crystal growth chamber 1 by the pipe 15 made of aluminum, and it does not stick to the inner wall of the pipe 15. By this constitution H2Se is supplied in a very stable manner and with excellent reproducibility on the occasion of an Se dope InP growth.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等を基板上に薄膜状に結晶成長す
る場合に用いる気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus used for growing crystals of compound semiconductors and the like on a substrate in the form of a thin film.

従来の技術 近年、■−■族およびIt−Vl族化合物半導体の気相
エピタキシャル成長法、特に有機金属熱分解法(MOC
VD;Metal Organic Chemical
 VaporDeposition法)、ハイドライド
気相エピタキシャル成長法、クロライド気相エピタキシ
ャル成長法が大面積エピタキシャル、量産性、膜厚や組
成2ぺ− の制御性等の点から注目を集め、各所で研究開発が活発
に行なわれている。その■−■族化合物半導体の気相結
晶成長の場合にはn型不純物ソース材料として、■−■
族化合物半導体の気相結晶成長の場合には■族ソース材
料としてVI族水素化物ガスが用いられている。
Background of the Invention In recent years, vapor phase epitaxial growth methods for ■-■ group and It-Vl group compound semiconductors, particularly metal-organic pyrolysis (MOC), have been developed.
VD; Metal Organic Chemical
VaporDeposition method), hydride vapor phase epitaxial growth method, and chloride vapor phase epitaxial growth method are attracting attention from the viewpoint of large area epitaxial growth, mass productivity, controllability of film thickness and composition, etc., and research and development are being actively conducted in various places. ing. In the case of vapor phase crystal growth of ■-■ group compound semiconductors, ■-■
In the case of vapor phase crystal growth of group compound semiconductors, group VI hydride gas is used as the group (1) source material.

従来、とのVI族水素化物ガスを用いる気相成長装置は
例えば特願昭59−185832号に示されているよう
に第2図のような構造になっていた。
Conventionally, a vapor phase growth apparatus using Group VI hydride gas has a structure as shown in FIG. 2, as shown in Japanese Patent Application No. 185832/1983, for example.

第2図は有機金属熱分解法による気相成長装置のガス系
統図であり、1は結晶成長室、2は■族あるいは■族有
機金属ボンベ、3は有機金属ボンベへ供給するキャリア
ガスの流量調整用マスフローコントローラー、4は■族
あるいはVI族水素化物ボンベ、5は■族あるいはVI
族水素化物ガスの流量調整用マスフローコントローラー
、eはv族あるいはVI族水素化物ガスをボンベから結
晶成長室内へ導くステンレス製パイプ、7はカーボン製
サセプター、8は高周波コイル、9は熱電対、10は基
板、11は圧力計、12はロータリーポンプ、3 ・ 13は排ガス処理装置である。第2図に示すように従来
の■族水素化物ガスを用いる気相成長装置では、■族水
素化物ガスをそのボンベから結晶成長室へ導くバイブロ
がステンレス製であった。
Figure 2 is a gas system diagram of a vapor phase growth apparatus using metal-organic pyrolysis, where 1 is a crystal growth chamber, 2 is a group II or group organometallic cylinder, and 3 is the flow rate of carrier gas supplied to the organometallic cylinder. Mass flow controller for adjustment, 4 is group ■ or group VI hydride cylinder, 5 is group ■ or VI
Mass flow controller for adjusting the flow rate of group hydride gas, e is a stainless steel pipe that guides group V or VI hydride gas from the cylinder into the crystal growth chamber, 7 is a carbon susceptor, 8 is a high frequency coil, 9 is a thermocouple, 10 1 is a substrate, 11 is a pressure gauge, 12 is a rotary pump, and 3 and 13 are exhaust gas treatment devices. As shown in FIG. 2, in the conventional vapor phase growth apparatus using Group 1 hydride gas, the vibro for guiding Group 1 hydride gas from its cylinder to the crystal growth chamber was made of stainless steel.

発明が解決しようとする問題点 しかし々がら上記の様に、■族水素化物ガスをそのボン
ベから結晶成長室内で導くバイブロがステンレス製の場
合、■族水素化物ガスがそのパイプ中を通過する際その
内壁にその一部が吸着されたり、あるいは、■族水素化
物ガスとステンレスの構成元素である鉄とが反応して、
そのパイプ内壁を腐食してし捷うという問題点を有して
いた。
Problems to be Solved by the Invention However, as mentioned above, if the vibro that guides the group III hydride gas from its cylinder into the crystal growth chamber is made of stainless steel, when the group III hydride gas passes through the pipe, A part of it may be adsorbed on the inner wall, or the Group I hydride gas may react with iron, which is a constituent element of stainless steel.
There was a problem in that the inner wall of the pipe corroded and broke.

すなわち、■族水素化物ガスがH2S eの場合、ステ
ンレス中に存在するフェライトとオーステナイトとの界
面、結晶粒界等の結晶不連続界面にH2S eが吸着さ
れ、−!だ、H2Sの場合、H2Sとステンレス中の鉄
とが H2S +Fe  −+  FeS +H2の様な反応
を起こしてステンレス製パイプ内金腐食してし捷う。
That is, when the group Ⅰ hydride gas is H2Se, H2Se is adsorbed at crystal discontinuous interfaces such as the interface between ferrite and austenite existing in stainless steel and grain boundaries, and -! However, in the case of H2S, H2S and the iron in the stainless steel cause a reaction like H2S +Fe - + FeS +H2, which corrodes the inner metal of the stainless steel pipe.

この結果、■族水素化物ガス供給量が不安定となり、再
現性が非常に悪くなって所望の成長結晶が得られなくな
り、このことは、特に混晶成長の場合の組成制御、不純
物ドーピングの場合の不純物濃度制御、多層薄膜構造作
成の場合の界面急峻性の制御性の制御等全非常に困難な
ものにしていた。
As a result, the supply amount of group (III) hydride gas becomes unstable, and the reproducibility becomes very poor, making it impossible to obtain the desired grown crystal.This is particularly important for composition control in mixed crystal growth and impurity doping The control of impurity concentration and the controllability of interface steepness in the case of creating a multilayer thin film structure have all been extremely difficult.

なお、以上述べた従来例としては、有機金属熱分解法に
ついて説明したが、ハイドライド気相エピタキシャル成
長法やクロライド気相エピタキシャル成長法についても
上記した構造と問題点を有している。
Note that, as the conventional example described above, the organometallic thermal decomposition method has been explained, but the hydride vapor phase epitaxial growth method and the chloride vapor phase epitaxial growth method also have the above-described structure and problems.

問題点を解決するだめの手段 本発明は、上記した従来の問題点を解消するため、■族
水素化物ガスをそのボンベから結晶成長室内で導くパイ
プをアルミニウム製にするものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention makes the pipe for guiding the group (I) hydride gas from its cylinder into the crystal growth chamber made of aluminum.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

6 ・ すなわち、アルミニウム製のパイプを用いた場合、アル
ミニウムの有する化学的性質から、そのパイプ内壁は化
学的に非常に安定なAI!、203  膜で被覆されて
おり、その結果、その中を通過する■族水素化物ガスが
パイプ内壁に付着したり、あるいはパイプ内壁を腐食し
たりすることは一部なくなる。
6. In other words, when using an aluminum pipe, the inner wall of the pipe is made of AI, which is extremely stable chemically due to the chemical properties of aluminum! , 203 membrane, and as a result, the group Ⅰ hydride gas passing through it is partially prevented from adhering to or corroding the inner wall of the pipe.

このことは、■族水素化物ガスの結晶成長室内への供給
量が安定にかつ再現性良くカリ、さらには混晶成長の場
合の組成、不純物ドーピングの場合の不純物濃度、多層
薄膜構造作成の場合の界面急峻性等を再現性良く容易に
制御することが可能となる。
This means that the amount of group hydride gas supplied into the crystal growth chamber is stable and reproducible, and also the composition in the case of mixed crystal growth, the impurity concentration in the case of impurity doping, and the formation of a multilayer thin film structure. It becomes possible to easily control the interface steepness etc. with good reproducibility.

実施例 本発明による■族水素化物ガスを用いる化合物半導体の
気相成長装置の具体的なガス系統図を第1図に示す。図
に示すように、この場合、水素化物ガスボンベは全部で
3個設置することができ、そのうち1個が■族水素化物
ガスボンベ14である。そしてそのボンベ14から結晶
成長室1丑で■族水素化物ガスを導くパイプ15は他の
水素化6ベー7′ 物ガスをそのボンベ4から結晶成長室1まで導くバイブ
ロとは独立に備えられて、かつそのパイプ15はアルミ
ニウム製のものを用いた。そのアルミニウム製パイプ1
5と結晶成長室1との接続部に空気作動式弁16を備え
、捷だそのアルミニウム製パイプ15の途中にキャリア
ガスを流入させるためのステンレス製パイプ17が接続
されかつその流量制御のためのマスフローコントローラ
18を備えている。他の部分は従来の■族水素化物ガス
を用いる気相成長装置と同じ構造である。
Embodiment FIG. 1 shows a specific gas system diagram of a compound semiconductor vapor phase growth apparatus using Group 1 hydride gas according to the present invention. As shown in the figure, in this case, a total of three hydride gas cylinders can be installed, one of which is the Group 1 hydride gas cylinder 14. A pipe 15 for guiding the group Ⅰ hydride gas from the cylinder 14 to the crystal growth chamber 1 is provided independently of the vibro for guiding the other hydride gas from the cylinder 4 to the crystal growth chamber 1. , and the pipe 15 was made of aluminum. The aluminum pipe 1
5 and the crystal growth chamber 1, and a stainless steel pipe 17 is connected in the middle of the aluminum pipe 15 of the crystal growth chamber 1 to control the flow rate of the carrier gas. A mass flow controller 18 is provided. The other parts have the same structure as the conventional vapor phase growth apparatus using group Ⅰ hydride gas.

InGaAsP /SeドープInP/n型InP基板
というダブルへテロ構造作成の場合について以下に述べ
る。
The case of creating a double heterostructure of InGaAsP/Se-doped InP/n-type InP substrate will be described below.

この場合、I n 、Ga 、 Znのソース材料とし
てそれぞれIn(C2H5)3.Ga(C2H6)3.
Zn(C2H6)2を、またAs、P、Se  のソー
ス材料としてそれぞれAsHa 。
In this case, In(C2H5)3. Ga(C2H6)3.
Zn(C2H6)2 and AsHa as source materials for As, P, and Se, respectively.

PH3,H2Se 2、捷だキャリアガスとしてH2を
用いた。最初、結晶成長室1内のカーボン製ザセプター
了上に設置されたn型InP基板10の温度を了・ 成長温度600℃壕で上昇させる。なおこの際、InP
基板表面のサーマルダメージを防ぐためにPH3を4 
CC/mm供給した。そして成長温度到達後、下の表に
示す成長条件により順次成長を行なった。
PH3, H2Se2, and H2 were used as carrier gas. First, the temperature of the n-type InP substrate 10 placed on top of the carbon-made crystal growth chamber 1 is raised to 600°C. At this time, InP
PH3 to 4 to prevent thermal damage to the board surface.
CC/mm was supplied. After reaching the growth temperature, growth was performed sequentially under the growth conditions shown in the table below.

(νχ1ん自) 9ぺ− なお上記表中において、In(C2H6)3.Ga(C
2H6)3゜Zn(C2H6)2 の供給量については
、それぞれ46℃に保温したIn(C2H6)3バブラ
ー2に供給するH2の流量、0℃に保温したGa (C
2H5)3バブラー2に供給するH2の流量したZn(
C2H5)2 バブラー2に供給するH2 の流量を表
わしている。また全流量としては、5’ R/mjn 
 、成長時の結晶成長室内圧としては760〜10mm
H’7 である。
(νχ1人) Page 9 In the above table, In(C2H6)3. Ga(C
Regarding the supply amount of 2H6)3゜Zn(C2H6)2, the flow rate of H2 supplied to the In(C2H6)3 bubbler 2 kept at 46℃, and the flow rate of Ga(C2H6)2 kept at 0℃, respectively.
2H5)3 Zn(
C2H5)2 represents the flow rate of H2 supplied to the bubbler 2. In addition, the total flow rate is 5'R/mjn
, the internal pressure of the crystal growth chamber during growth is 760 to 10 mm.
It is H'7.

以上のような本実施例によれば、H2S eはアルミニ
ウム製バイブ15によって結晶成長室1まで導かれるた
めそのパイプ15の内壁にH2S eが付着することは
一切なくこの結果、Se  ドープInP成長の際、H
2S eの供給が非常に安定にかつ再現性よくできて、
Se不純物濃度の制御性が非常に向上した。
According to this embodiment as described above, since the H2Se is guided to the crystal growth chamber 1 by the aluminum vibrator 15, no H2Se is attached to the inner wall of the pipe 15, and as a result, the Se-doped InP is grown. When, H
2S e supply is very stable and reproducible,
Controllability of Se impurity concentration was greatly improved.

以上述べた実施例においては、■原水素化物ガスとして
H2Se f用いた場合について説明したが、■原水素
化物ガスとしてH2Sヲ用いた場合にも、H2Sがそれ
を結晶成長室まで導くアルミニウム製パイプの内壁を腐
食することは一切なく、H2Sの10べ−1 供給は非常に安定にかつ再現性よく行なうことが可能で
あった。また以上述べた実施例はInP −InGaA
sP系の結晶成長について説明したが、本発明による気
相成長装置は、GaAs −GaAfiAs系。
In the above-mentioned embodiments, the case where H2Se f is used as the raw hydride gas has been explained, but also when H2S is used as the raw hydride gas, H2S is connected to an aluminum pipe that guides it to the crystal growth chamber. There was no corrosion of the inner wall of the tube, and it was possible to supply 10 b.l. of H2S very stably and with good reproducibility. Furthermore, the embodiments described above are InP-InGaA
Although sP-based crystal growth has been described, the vapor phase growth apparatus according to the present invention is a GaAs-GaAfiAs-based crystal growth.

AIV、GaInP−GaAs系等の他のm−v族半導
体結晶の成長に用いることができるばかりでなく、更に
能である。さらに、以上述べた実施例は有機金属熱分解
法の場合であったが、ハイドライド気相エピタキシャル
成長法やクロライド気相エピタキシャル成長法等の他の
化合物半導体の気相エピタキシャル成長法の場合にも用
いることが可能である。
Not only can it be used to grow other m-v group semiconductor crystals such as AIV and GaInP-GaAs systems, but it is also more efficient. Furthermore, although the above-mentioned embodiments are related to organometallic pyrolysis, it can also be used for other compound semiconductor vapor phase epitaxial growth methods such as hydride vapor phase epitaxial growth and chloride vapor phase epitaxial growth. It is.

発明の効果 以上のように本発明にかかる■原水素化物ガスを用いる
化合物半導体の気相成長装置は、■施水成長の場合の組
成制御、不純物ドーピングの場合の不純物濃度制御、多
層薄膜構造作成の場合の界11 、 面急峻性の制御等を精密に再現性よく行なうことが可能
になり、この結果、例えば超格子構造等の作成やモジュ
レーションドーピング成長が容易となって、非常にその
実用的効果は太きい。
Effects of the Invention As described above, the compound semiconductor vapor phase growth apparatus using raw hydride gas according to the present invention is capable of controlling the composition in the case of water growth, controlling the impurity concentration in the case of impurity doping, and creating a multilayer thin film structure. In the case of field 11, it becomes possible to precisely control the plane steepness with good reproducibility, and as a result, for example, the creation of superlattice structures and modulation doping growth become easy, making it very practical. The effect is strong.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるVI族水素化物ガス
を用いる気相成長装置のガス系統図、第2図は従来のV
I族水素化物ガスを用いる気相成長装置のガス系統図で
ある。 1・・・・・結晶成長室、2・・・・・・■族あるいは
■族有機金属バブラ、4・・・・・・■族あるいは■原
水素化物ガスボンベ、6・・・・・■族あるいはVI族
水素化物ガスをそのボンベから結晶成長室捷で導くステ
ンレス管、7・・・・・カーボン製サセプター、10・
・・・基板、14・・・・■原水素化物ガスボンベ、1
6・・・・・・VI族水素化物ガスをそのボンベから結
晶成長室1で導くアルミニウム管、16・・・・・開閉
弁。
FIG. 1 is a gas system diagram of a vapor phase growth apparatus using group VI hydride gas in one embodiment of the present invention, and FIG. 2 is a gas system diagram of a conventional V
FIG. 2 is a gas system diagram of a vapor phase growth apparatus using Group I hydride gas. 1... Crystal growth chamber, 2... Group ■ or Group ■ organometallic bubbler, 4... Group ■ or ■ Raw hydride gas cylinder, 6... Group ■ Alternatively, a stainless steel pipe for guiding group VI hydride gas from the cylinder to the crystal growth chamber, 7...a carbon susceptor, 10.
...Substrate, 14...■ Raw hydride gas cylinder, 1
6...Aluminum pipe for guiding the Group VI hydride gas from the cylinder into the crystal growth chamber 1, 16...Opening/closing valve.

Claims (1)

【特許請求の範囲】[Claims]  VI族水素化物ガスを原料材料として用い、前記VI族水
素化物ガスをそのボンベから結晶成長室まで導く管が、
アルミニウム製であることを特徴とする気相成長装置。
Using group VI hydride gas as a raw material, a pipe guiding the group VI hydride gas from the cylinder to the crystal growth chamber,
A vapor phase growth device characterized by being made of aluminum.
JP2690385A 1985-02-14 1985-02-14 Vapor growth apparatus Pending JPS61187226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2690385A JPS61187226A (en) 1985-02-14 1985-02-14 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2690385A JPS61187226A (en) 1985-02-14 1985-02-14 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS61187226A true JPS61187226A (en) 1986-08-20

Family

ID=12206186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2690385A Pending JPS61187226A (en) 1985-02-14 1985-02-14 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS61187226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122393A (en) * 1987-04-08 1992-06-16 British Telecommunications Public Limited Company Reagent source for molecular beam epitaxy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122393A (en) * 1987-04-08 1992-06-16 British Telecommunications Public Limited Company Reagent source for molecular beam epitaxy

Similar Documents

Publication Publication Date Title
EP0196170B1 (en) Organic metallic compound pyrolysis vapor growth apparatus
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JPS61187226A (en) Vapor growth apparatus
JPS5645899A (en) Vapor phase growing method for gallium nitride
US5037674A (en) Method of chemically vapor depositing a thin film of GaAs
JPS6163599A (en) System for vapor growth
JPS61242011A (en) Vapor-phase growth device
JPH01290221A (en) Semiconductor vapor growth method
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
KR950032727A (en) Method for manufacturing gallium nitride single crystal thin film and apparatus therefor
JP3101753B2 (en) Vapor growth method
JPH01103996A (en) Vapor growth method for compound semiconductor
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0594949A (en) Semiconductor vapor growth device
JPS6131393A (en) Vapor phase growth device
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JPH0760800B2 (en) Vapor growth method for compound semiconductors
JPH03297129A (en) Organometallic molecular-beam epitaxial growth apparatus
JPS60127291A (en) Method and apparatus for vapor-phase crystal growth
JPS62174913A (en) Mocvd growth and equipment for the same
JPS6217098A (en) Vapor growth device for semiconductor thin film
JPH03142922A (en) Semiconductor vapor growth device
JPS62244125A (en) Vapor growth method
JPS61229320A (en) Vapor growth device
JPH04370923A (en) Growth method for compound semiconductor thin film