JP3101753B2 - Vapor growth method - Google Patents
Vapor growth methodInfo
- Publication number
- JP3101753B2 JP3101753B2 JP05164735A JP16473593A JP3101753B2 JP 3101753 B2 JP3101753 B2 JP 3101753B2 JP 05164735 A JP05164735 A JP 05164735A JP 16473593 A JP16473593 A JP 16473593A JP 3101753 B2 JP3101753 B2 JP 3101753B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- layer
- substrate
- growth
- ingap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は、化合物半導体の気相成
長方法に関し、特にAsを構成元素として含む化合物半
導体よりなる基板又は層(以下、「基板又は層」をまと
めて「基板等」と記述する。)の上に、InGaP層又
はInGaAsP層をハイドライド気相成長法によりエ
ピタキシャル成長させる場合に適用して有用な技術に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vapor-phase growth of a compound semiconductor, and more particularly, to a substrate or layer made of a compound semiconductor containing As as a constituent element (hereinafter, "substrate or layer" is collectively referred to as "substrate etc." The present invention relates to a technique which is useful when applied to a case where an InGaP layer or an InGaAsP layer is epitaxially grown by a hydride vapor phase epitaxy method.
【0002】[0002]
【従来の技術】化合物半導体の単結晶薄膜を基板等の上
にエピタキシャル成長させる一方法としてハイドライド
気相成長法がある。この気相成長法は、成長速度が速
く、しかも膜厚や組成などの制御性もよいなどの理由に
より、III−V族化合物半導体基板等に混晶組成の薄膜を
成長させる場合などに広く利用されており、例えば半導
体レーザや発光ダイオード等の光半導体デバイスの作製
において、InGaP/GaAsのようなヘテロ構造の
エピタキシャル層を形成する際などによく利用されてい
る。2. Description of the Related Art A hydride vapor phase epitaxy method is one method for epitaxially growing a single crystal thin film of a compound semiconductor on a substrate or the like. This vapor phase growth method is widely used, for example, when growing a thin film having a mixed crystal composition on a III-V compound semiconductor substrate or the like because the growth rate is high and the controllability of the film thickness and composition is good. For example, it is often used to form a heterostructure epitaxial layer such as InGaP / GaAs in the production of an optical semiconductor device such as a semiconductor laser or a light emitting diode.
【0003】例えば上記InGaP/GaAsのヘテロ
構造を形成する場合には、気相成長装置の反応容器内に
GaAs基板等を配置し、その反応容器内にGa原料ガ
スとIn原料ガスとP原料ガスを流して、GaAs基板
等の上にInGaP層をエピタキシャル成長させる。G
aAs基板等は反応容器内の風下に置かれ、風上にはメ
タルソースとしてGa単体及びIn単体が別々のボート
に入れられて置かれる。そして、図3に示したタイムチ
ャートのように、先ず反応容器内にP原料ガスであるP
H3(ホスフィン)ガスを供給する(時刻t0’)。反応
容器内が定常状態となったところで(時刻t1’)、反
応容器内にさらにHCl(塩化水素)ガスを上記Ga単
体及び上記In単体に夫々流し、それらGa単体及びI
n単体にHClガスを接触させて、Ga原料ガスとなる
GaCl(塩化ガリウム)ガス及びIn原料ガスとなる
InCl(塩化インジウム)ガスを夫々生成させる。そ
れらGaClガス及びInClガス並びに上記PH3ガ
スがGaAs基板等の表面において反応することにより
InGaPが生成する。なお、PH3ガスより生成する
P2分子は、InClガスよりもGaClガスと反応し
易いため、基板等へのInClガスの供給量はGaCl
ガスの供給量の10〜20倍となるように制御してい
る。For example, when the above-mentioned InGaP / GaAs heterostructure is formed, a GaAs substrate or the like is placed in a reaction vessel of a vapor phase growth apparatus, and a Ga source gas, an In source gas, and a P source gas are placed in the reaction vessel. To cause an InGaP layer to grow epitaxially on a GaAs substrate or the like. G
The aAs substrate and the like are placed on the leeward side of the reaction vessel, and on the windward side, Ga alone and In alone as metal sources are placed in separate boats. Then, as shown in the time chart of FIG. 3, first, the P source gas P
H 3 (phosphine) gas is supplied (time t 0 ′). When the inside of the reaction vessel becomes a steady state (time t 1 ′), HCl (hydrogen chloride) gas is further flowed into the reaction vessel to the above Ga simple substance and the above In simple substance, respectively.
HCl gas is brought into contact with n alone to generate a GaCl (gallium chloride) gas serving as a Ga source gas and an InCl (indium chloride) gas serving as an In source gas, respectively. The GaCl gas, the InCl gas, and the PH 3 gas react with each other on the surface of a GaAs substrate or the like to generate InGaP. Since the P 2 molecule generated from the PH 3 gas reacts more easily with the GaCl gas than the InCl gas, the supply amount of the InCl gas to the substrate and the like is GaCl.
Control is performed so as to be 10 to 20 times the gas supply amount.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
ヘテロ構造のように、構成元素としてAsを含む化合物
半導体よりなる基板や層の上に、InGaP層又はIn
GaAsP層をエピタキシャル成長させる場合に、成長
層の厚さや混晶組成などの制御性が悪いことがあった。
即ち、例えばGaAs基板上にInGaP層を成長させ
ると、図4に示した成長層の断面拡大写真の模式図のよ
うに、GaAs基板1とInGaP層2との界面(成長
界面)に凹凸が生じてその界面が平坦にならないだけで
なく、形成されたInGaP層2の厚さa’は約2μm
程度しかなく、厚いエピタキシャル成長層が形成されな
いという問題点があった。さらに、目標とする混晶組成
であるIn0.5Ga0.5P(InGaPに占めるGaPの
比率が50at%であり、GaAs基板との格子整合性が
よい。)が形成されず、Gaが過剰となった組成のも
の、例えばIn0.1Ga0.9P(InGaPに占めるGa
Pの比率が90at%である。)が形成されてしまうとい
う問題点もあった。However, like the above-mentioned heterostructure, an InGaP layer or an InGaP layer is formed on a substrate or a layer made of a compound semiconductor containing As as a constituent element.
When epitaxially growing a GaAsP layer, controllability such as the thickness of the grown layer and the mixed crystal composition may be poor.
That is, for example, when an InGaP layer is grown on a GaAs substrate, as shown in a schematic view of an enlarged photograph of a cross section of the growth layer shown in FIG. 4, irregularities occur at the interface (growth interface) between the GaAs substrate 1 and the InGaP layer 2. Not only is the interface not flat, but the thickness a ′ of the formed InGaP layer 2 is about 2 μm.
However, there is a problem that a thick epitaxial growth layer is not formed. Furthermore, the target mixed crystal composition of In 0.5 Ga 0.5 P (the ratio of GaP to InGaP is 50 at% and the lattice matching with the GaAs substrate is good) was not formed, and Ga became excessive. Composition, for example, In 0.1 Ga 0.9 P (Ga in InGaP)
The ratio of P is 90 at%. ) Is formed.
【0005】上述した各問題点は、基板等の材料がGa
Asである場合に限らず、InAs、GaAsP、In
GaAs、又はInAsPなどからなる基板等の場合も
同様であり、またInGaP層以外にも例えばInGa
AsP層などPを構成元素として含む層をエピタキシャ
ル成長させる場合にも同様である。[0005] The above-mentioned problems are caused by the fact that the material of the substrate or the like is Ga
Not limited to As, InAs, GaAsP, In
The same applies to the case of a substrate or the like made of GaAs or InAsP.
The same applies to the case where a layer containing P as a constituent element, such as an AsP layer, is epitaxially grown.
【0006】本発明は、上記問題点を解決するためにな
されたもので、その目的とするところは、GaAsなど
Asを構成元素として含む化合物半導体よりなる基板又
は層の上に、InGaP層又はInGaAsP層をハイ
ドライド気相成長法によりエピタキシャル成長させるに
あたり、成長層の厚さや混晶組成の制御性がよく、しか
も基板等とエピタキシャル成長層との界面が平坦となる
ような気相成長方法を提供することにある。The present invention has been made to solve the above problems, and an object of the present invention is to form an InGaP layer or an InGaAsP layer on a substrate or a layer made of a compound semiconductor containing As as a constituent element such as GaAs. In providing epitaxial growth of a layer by hydride vapor phase epitaxy, it is necessary to provide a vapor phase epitaxy method in which the thickness of the growth layer and the controllability of the mixed crystal composition are good and the interface between the substrate and the epitaxial growth layer is flat. is there.
【0007】[0007]
【課題を解決するための手段】上記問題点の原因に付い
て、本発明者は、反応容器内に先に供給したPH3ガ
スにより、エピタキシャル成長の始まる前に、Pと基板
等の表面に露出するAsとが置換したり、Asの空格子
点をPが埋めるなどして、基板等の表面にGaPやGa
AsPなどが不均一に生成してしまうとともに、それに
よって以後のInGaP層の成長が妨げられてしまう、
PはInよりもGaとの反応性に富んでいるため、エ
ピタキシャル成長の開始段階においてGaを過剰に含む
組成の成長核が基板等の表面に生成し、以後その成長核
と同じ組成の層が成長してしまう、と推察した。In order to solve the above problems, the present inventor has proposed that P and P be exposed to the surface of a substrate or the like before the start of epitaxial growth by using a PH 3 gas previously supplied into a reaction vessel. Is replaced with As, or P fills a vacancy of As, so that GaP or Ga
AsP and the like are generated unevenly, which hinders the subsequent growth of the InGaP layer.
Since P is more reactive with Ga than In, a growth nucleus having a composition containing excessive Ga is generated on the surface of a substrate or the like at the start of epitaxial growth, and a layer having the same composition as the growth nucleus grows thereafter. I guessed it.
【0008】そして、本発明者は、反応容器内へのPH
3ガスの導入時期を種々変えて実験を試みた。その結
果、反応容器内にPH3ガス及びHClガスを略同時に
供給して、PH3ガスとGaClガスとInClガスの
基板等への供給開始タイミングが略同時になるようにし
たところ、基板等とエピタキシャル成長層との界面は平
坦となり良好であったが、成長層の厚さは約5μmと薄
く、しかもその混晶組成はIn0.15Ga0.85P(InG
aPに占めるGaPの比率が85at%である。)であっ
た。また、反応容器内に先にHClガスを供給し、遅れ
てPH3ガスを供給して、基板等にGaClガス及びI
nClガスがPH3ガスよりも先に供給されるようにし
たところ、基板等とエピタキシャル成長層との界面が平
坦となり良好であったのに加えて、成長層の厚さも約3
0μmと厚く、しかもその混晶組成は目標組成のIn
0.5Ga0.5Pであった。Then, the present inventor has proposed that the pH of the
Experiments were conducted with various introduction timings of the three gases. As a result, the PH 3 gas and the HCl gas were supplied substantially simultaneously into the reaction vessel so that the supply start timings of the PH 3 gas, the GaCl gas, and the InCl gas to the substrate and the like were substantially the same. The interface with the layer was flat and good, but the thickness of the grown layer was as thin as about 5 μm, and its mixed crystal composition was In 0.15 Ga 0.85 P (InG
The ratio of GaP to aP is 85 at%. )Met. Further, HCl gas is first supplied into the reaction vessel, PH 3 gas is supplied later, and GaCl gas and I
When the nCl gas was supplied before the PH 3 gas, the interface between the substrate or the like and the epitaxial growth layer was flat and good, and the growth layer had a thickness of about 3
0 μm, and its mixed crystal composition is the target composition of In
0.5 Ga 0.5 P.
【0009】本発明は、上記知見に基づきなされたもの
で、Asを構成元素として含む化合物半導体よりなる基
板又は層の上に、InGaP層又はInGaAsP層を
エピタキシャル成長させるにあたり、反応容器内にIn
原料ガス及びGa原料ガスをP原料ガスよりも先に供給
し、反応容器内が定常状態となった後、反応容器内にP
原料ガスを供給することを提案するものである。また、
Asを構成元素として含む上記化合物半導体は、GaA
s、InAs、GaAsP、InGaAs、又はInA
sPとする。The present invention has been made on the basis of the above-mentioned knowledge. In growing an InGaP layer or an InGaAsP layer epitaxially on a substrate or a layer made of a compound semiconductor containing As as a constituent element, the reaction vessel contains an InGaP layer or an InGaAsP layer.
The raw material gas and the Ga raw material gas are supplied before the P raw material gas, and after the inside of the reaction vessel has reached a steady state, the P
It is proposed to supply a source gas. Also,
The compound semiconductor containing As as a constituent element is GaAs.
s, InAs, GaAsP, InGaAs, or InA
sP.
【0010】[0010]
【作用】上記した手段によれば、反応容器内に先に供給
したHClガスにより生成したGaClガス及びInC
lガスでもって反応容器内が定常状態となってからPH
3ガスを供給するようにしたため、成長開始段階におい
ては容器内に置かれた基板等の表面にはGaCl分子及
びInCl分子が吸着している。そのため、後から供給
されたPH3より生じたP2分子は、基板等と反応するこ
となく、吸着しているGaCl分子及びInCl分子と
反応するので、成長開始段階において基板等の表面にG
aPやGaAsPなどが不均一に生成してしまうのが防
止され、成長界面は平坦になる。According to the above-mentioned means, GaCl gas and InC generated by the HCl gas previously supplied into the reaction vessel.
After the inside of the reaction vessel becomes steady state with
Since three gases are supplied, GaCl molecules and InCl molecules are adsorbed on the surface of the substrate or the like placed in the container at the stage of starting the growth. Therefore, the P 2 molecules generated from PH 3 supplied later do not react with the substrate or the like, but react with the adsorbed GaCl molecules and InCl molecules.
Non-uniform formation of aP, GaAsP and the like is prevented, and the growth interface becomes flat.
【0011】また、基板等の表面に吸着するGaCl分
子とInCl分子との比率は、P2分子とGaCl分子
との反応性、及びP2分子とInCl分子との反応性、
の大小に応じて決められてなるGaClガス及びInC
lガスの基板等への供給量に応じた比率と略同じになる
ので、例えばGaCl分子1個に対してInCl分子1
0〜20個が吸着していることになる。つまり、基板等
の表面においては、GaCl分子はInCl分子により
囲まれたような状態となっているため、InCl分子に
より略満たされている基板等の表面に点在するGaCl
分子のみにP2分子が選択的に到達してGaPのみが生
成され続けることはなく、丁度1:1の比率でGaPと
InPとが生成する。それを成長核として以後のエピタ
キシャル層が成長するので、GaPの比率が丁度50at
%となる。The ratio of GaCl molecules to InCl molecules adsorbed on the surface of a substrate or the like depends on the reactivity between P 2 molecules and GaCl molecules, the reactivity between P 2 molecules and InCl molecules,
Gas and InC determined according to the size of
Since the ratio is substantially the same as the ratio according to the supply amount of the 1 gas to the substrate or the like, for example, one GaCl molecule corresponds to one InCl molecule.
It means that 0 to 20 pieces are adsorbed. That is, since GaCl molecules are surrounded by InCl molecules on the surface of the substrate or the like, GaCl molecules scattered on the surface of the substrate or the like substantially filled with the InCl molecules are used.
The P 2 molecule does not selectively reach only the molecule and only GaP is not continuously generated, but GaP and InP are generated at a ratio of exactly 1: 1. Since the subsequent epitaxial layer grows with the growth nuclei as the growth nuclei, the GaP ratio is just 50 at.
%.
【0012】[0012]
【実施例】以下に、具体例及び比較例並びに従来例を挙
げて本発明の特徴とするところを明かとする。なお、具
体例及び比較例並びに従来例においては、GaAs基板
上にInGaP層をハイドライド気相成長法によりエピ
タキシャル成長させた。The features of the present invention will now be described with reference to specific examples, comparative examples, and conventional examples. In the specific example, the comparative example, and the conventional example, an InGaP layer was epitaxially grown on a GaAs substrate by a hydride vapor phase epitaxy method.
【0013】(具体例)GaAs単結晶基板を成長装置
の反応容器内の反応領域に設置し、その反応領域に水素
ガスを1000ml/分の流量で供給しながら基板の温度
を650℃に昇温した。同時に、反応容器内に独立して
置かれたIn及びGaの2つのメタルソースを夫々80
0℃に昇温した。それらの温度が安定してから、図1に
示すタイムチャートのように、In及びGaのメタルソ
ースにHClガスを夫々30ml/分及び5ml/分の流量
で供給して、Ga原料ガスとなるGaClガス及びIn
原料ガスとなるInClガスを夫々反応領域に流した
(時刻t0)。その状態を30分間保持して反応容器内
を定常状態とし、続いて反応領域にPH3ガスを30ml
/分の流量で供給して(時刻t1)、InGaP層のエ
ピタキシャル成長を2時間行った。(Specific Example) A GaAs single crystal substrate is placed in a reaction region in a reaction vessel of a growth apparatus, and the temperature of the substrate is raised to 650 ° C. while supplying hydrogen gas to the reaction region at a flow rate of 1000 ml / min. did. At the same time, two metal sources of In and Ga independently placed in the reaction
The temperature was raised to 0 ° C. After the temperatures are stabilized, HCl gas is supplied to the In and Ga metal sources at a flow rate of 30 ml / min and 5 ml / min, respectively, as shown in the time chart of FIG. Gas and In
InCl gas as a source gas was flowed into the respective reaction regions (time t 0 ). This state was maintained for 30 minutes to bring the inside of the reaction vessel into a steady state, and then 30 ml of PH 3 gas was supplied to the reaction area.
/ Minute (time t 1 ), and the InGaP layer was epitaxially grown for 2 hours.
【0014】得られたエピタキシャル成長層の組成は目
標とする混晶組成であるIn0.5Ga0.5P、即ちInG
aPに占めるGaPの比率が50at%のものであり、G
aAs基板に格子整合する組成であった。また、図2に
示した断面の拡大写真の模式図のように、GaAs基板
1とInGaP層2との成長界面は平坦であった。さら
に、InGaP層2の厚さaは約30μmであった。The composition of the obtained epitaxially grown layer has a target mixed crystal composition of In 0.5 Ga 0.5 P, that is, InG.
The ratio of GaP to aP is 50 at%, and G
The composition was lattice-matched to the aAs substrate. The growth interface between the GaAs substrate 1 and the InGaP layer 2 was flat as shown in the schematic diagram of the enlarged photograph of the cross section shown in FIG. Further, the thickness a of the InGaP layer 2 was about 30 μm.
【0015】(比較例)反応領域に水素ガスを供給し、
昇温した基板及び2つのメタルソース(In及びGa)
の温度が安定してから、それら各メタルソースにHCl
ガスを供給して、GaClガス及びInClガスを夫々
反応領域に流すと同時に、PH3ガスも供給し、InG
aP層のエピタキシャル成長を2時間行った。なお、各
ガスの流量や、基板及びメタルソースの温度など、他の
条件は上記具体例と同じであった。得られたエピタキシ
ャル成長層の組成は、InGaPに占めるGaPの比率
が85at%のものであった。また、成長界面は平坦であ
り、約5μmの厚さのInGaP層が形成されていた。(Comparative Example) Hydrogen gas was supplied to the reaction zone,
Heated substrate and two metal sources (In and Ga)
After the temperature is stabilized, HCl is added to each of these metal sources.
At the same time, the gas is supplied to flow the GaCl gas and the InCl gas to the respective reaction regions, and at the same time, the PH 3 gas is also supplied.
The epitaxial growth of the aP layer was performed for 2 hours. The other conditions, such as the flow rate of each gas and the temperatures of the substrate and the metal source, were the same as in the above specific example. The composition of the obtained epitaxial growth layer was such that the ratio of GaP to InGaP was 85 at%. The growth interface was flat, and an InGaP layer having a thickness of about 5 μm was formed.
【0016】(従来例)図3に示したタイムチャートの
ように、水素ガスの供給開始と同時に反応領域にPH3
ガスを供給した(時刻t0’)。そして、昇温した基板
及び2つのメタルソース(In及びGa)の温度が安定
してから、それら各メタルソースにHClガスを供給し
て、GaClガス及びInClガスを夫々反応領域に流
し(時刻t1’)、InGaP層のエピタキシャル成長
を2時間行った。なお、各ガスの流量や、基板及びメタ
ルソースの温度など、他の条件は上記具体例と同じであ
った。得られたエピタキシャル成長層の組成は、InG
aPに占めるGaPの比率が90at%のものであった。
また、図4に示した断面の拡大写真の模式図のように、
GaAs基板1とInGaP層2との成長界面は平坦で
なく凹凸状に乱れていた。さらに、InGaP層2の厚
さa’は約2μmであった。[0016] As in the time chart shown in (conventional example) Fig. 3, PH 3 at the same time reaction zone supply start and hydrogen gas
Gas was supplied (time t 0 ′). Then, after the temperatures of the heated substrate and the two metal sources (In and Ga) are stabilized, HCl gas is supplied to each of the metal sources, and the GaCl gas and the InCl gas flow into the reaction region, respectively (time t). 1 '), the epitaxial growth of the InGaP layer was performed for 2 hours. The other conditions, such as the flow rate of each gas and the temperatures of the substrate and the metal source, were the same as in the above specific example. The composition of the obtained epitaxial growth layer is InG
The ratio of GaP to aP was 90 at%.
Also, as shown in the schematic diagram of the enlarged photograph of the cross section shown in FIG.
The growth interface between the GaAs substrate 1 and the InGaP layer 2 was not flat but was irregularly disturbed. Further, the thickness a ′ of the InGaP layer 2 was about 2 μm.
【0017】上述した具体例を比較例及び従来例と較べ
ることにより、反応容器内の基板に、先にInClガス
及びGaClガスを供給してからPH3ガスを遅れて供
給することが、基板とエピタキシャル成長層との成長界
面の状態を良好にするとともに、その成長層の組成の制
御性をよくし、しかも厚く成長させるのに、極めて有効
であることがわかる。By comparing the above specific example with the comparative example and the conventional example, it is possible to supply the substrate in the reaction vessel with the InCl gas and the GaCl gas first and then supply the PH 3 gas with a delay. It can be seen that it is extremely effective in improving the condition of the growth interface with the epitaxially grown layer, improving the controllability of the composition of the grown layer, and growing the layer thicker.
【0018】なお、上記実施例ではInGaP/GaA
sのヘテロ構造を例として挙げて説明したが、これに限
らず、構成元素としてAsを含む化合物半導体結晶基板
上に、構成元素としてPを含んでなる化合物半導体結晶
をエピタキシャル成長する場合にも同様の効果、即ち成
長層の組成の制御性がよく、しかも良好な成長界面でも
って厚い成長層が形成されるという効果が得られるのは
いうまでもない。例えば、基板材料としてInAs、G
aAsP、InGaAs、又はInAsPを用いたり、
InGaAsP層をエピタキシャル成長させたりする場
合でも同様の効果が得られる。また、基板上に直接エピ
タキシャル成長させる場合に限らず、基板上に積層した
GaAs、InAs、GaAsP、InGaAs、又は
InAsPなどからなる化合物半導体層上にエピタキシ
ャル成長させる場合にも同様の効果が得られるのは勿論
である。In the above embodiment, InGaP / GaAs is used.
The heterostructure of s has been described as an example, but the present invention is not limited to this. The same applies to the case where a compound semiconductor crystal containing P as a constituent element is epitaxially grown on a compound semiconductor crystal substrate containing As as a constituent element. Needless to say, the effect, that is, the controllability of the composition of the growth layer is good, and the effect that a thick growth layer is formed with a good growth interface can be obtained. For example, InAs, G
using aAsP, InGaAs, or InAsP,
The same effect can be obtained even when the InGaAsP layer is epitaxially grown. The same effect is naturally obtained not only in the case of epitaxial growth directly on the substrate but also in the case of epitaxial growth on a compound semiconductor layer made of GaAs, InAs, GaAsP, InGaAs or InAsP laminated on the substrate. It is.
【0019】さらに、上記実施例では本発明をハイドラ
イド気相成長法に適用した場合を例として挙げて説明し
たが、本発明は他の気相成長方法にも適用可能であるの
はいうまでもない。Further, in the above embodiment, the case where the present invention is applied to a hydride vapor phase epitaxy method has been described as an example. However, it goes without saying that the present invention can be applied to other vapor phase epitaxy methods. Absent.
【0020】[0020]
【発明の効果】本発明に係る気相成長方法によれば、反
応容器内の基板等に、先にIn原料ガス及びGa原料ガ
スを供給してからP原料ガスを供給するようにしたた
め、P原料ガスの供給開始時点においては基板等の表面
は吸着In及び吸着Gaにより被われた状態となってお
り、P原料ガスはそれら吸着In及び吸着Gaと反応す
るので、成長開始段階においてP原料ガスにより基板等
の表面にGaPやGaAsPなどが不均一に生成してし
まうのが防止される。それにより、平坦な成長界面が得
られるとともに、エピタキシャル層が厚く成長する。ま
た、基板等の表面における吸着In及び吸着Gaの存在
比率は、In原料ガス及びGa原料ガスの基板等への供
給量に応じた比率(即ち、Pとの反応性の低いInがそ
の反応性の低さを補い得るくらい多くなるような比率)
となるため、GaPとInPとの比率が丁度1:1であ
るような成長核が基板等の表面に生成し、以後その成長
核と同じ組成のエピタキシャル層が成長するので、Ga
Pの比率が丁度50at%である目標組成のエピタキシャ
ル層が得られる。従って、Asを構成元素として含む化
合物半導体基板等の上に、InGaP層又はInGaA
sP層を、組成比の制御性がよく、しかも成長界面が良
好な状態で、厚く成長させることができる。According to the vapor phase growth method of the present invention, an In source gas and a Ga source gas are first supplied to a substrate or the like in a reaction vessel, and then a P source gas is supplied. At the start of the supply of the source gas, the surface of the substrate or the like is covered with the adsorption In and the adsorption Ga, and the P source gas reacts with the adsorption In and the adsorption Ga. This prevents non-uniform generation of GaP, GaAsP, etc. on the surface of the substrate or the like. Thereby, a flat growth interface is obtained and the epitaxial layer grows thick. In addition, the ratio of the In and Ga adsorbed on the surface of the substrate or the like depends on the supply amount of the In raw material gas and the Ga raw material gas to the substrate or the like (that is, In having low reactivity with P has high reactivity with In Ratio that is large enough to compensate for the low
Therefore, a growth nucleus in which the ratio of GaP to InP is exactly 1: 1 is generated on the surface of a substrate or the like, and thereafter an epitaxial layer having the same composition as the growth nucleus grows.
An epitaxial layer having a target composition in which the ratio of P is just 50 at% is obtained. Therefore, an InGaP layer or an InGaAs layer is formed on a compound semiconductor substrate or the like containing As as a constituent element.
The sP layer can be grown thick with good controllability of the composition ratio and good growth interface.
【図1】本発明に係る気相成長方法を適用した一具体例
における各原料ガスの供給タイミングを表すタイムチャ
ートである。FIG. 1 is a time chart showing a supply timing of each source gas in a specific example to which a vapor phase growth method according to the present invention is applied.
【図2】その具体例におけるエピタキシャル成長層の断
面の拡大写真を模式的に示した図である。FIG. 2 is a diagram schematically showing an enlarged photograph of a cross section of an epitaxial growth layer in the specific example.
【図3】比較として挙げた従来例における各原料ガスの
供給タイミングを表すタイムチャートである。FIG. 3 is a time chart showing a supply timing of each source gas in a conventional example given as a comparison.
【図4】その従来例におけるエピタキシャル成長層の断
面の拡大写真を模式的に示した図である。FIG. 4 is a diagram schematically showing an enlarged photograph of a cross section of an epitaxial growth layer in the conventional example.
t0 In原料ガス及びGa原料ガスの供給開始時刻 t1 P原料ガスの供給開始時刻 1 GaAs基板(Asを構成元素として含む化合物半
導体よりなる基板) 2 InGaP層Supply start time of t 0 In source gas and Ga source gas t 1 Start time of supply of P source gas 1 GaAs substrate (substrate made of compound semiconductor containing As as a constituent element) 2 InGaP layer
Claims (2)
よりなる基板又は層の上に、InGaP層又はInGa
AsP層をハイドライド気相成長法によりエピタキシャ
ル成長させるにあたり、反応容器内にIn原料ガス及び
Ga原料ガスをPH 3 ガスよりも先に供給し、反応容器
内が定常状態となった後、反応容器内にPH 3 ガスを供
給することを特徴とする気相成長方法。An InGaP layer or an InGaP layer is formed on a substrate or a layer made of a compound semiconductor containing As as a constituent element.
The AsP layer Upon is epitaxially <br/> Le grown by hydride vapor phase epitaxy, an In source gas and Ga material gas into the reaction vessel was fed before the PH 3 gas, the reaction vessel was a steady state after the vapor phase growth method characterized in that supplying PH 3 gas into the reaction vessel.
導体は、GaAs、InAs、GaAsP、InGaA
s、又はInAsPであることを特徴とする請求項1記
載の気相成長方法。2. The compound semiconductor containing As as a constituent element includes GaAs, InAs, GaAsP, and InGaAs.
2. The vapor phase growth method according to claim 1, wherein s or InAsP is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05164735A JP3101753B2 (en) | 1993-07-02 | 1993-07-02 | Vapor growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05164735A JP3101753B2 (en) | 1993-07-02 | 1993-07-02 | Vapor growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0722336A JPH0722336A (en) | 1995-01-24 |
JP3101753B2 true JP3101753B2 (en) | 2000-10-23 |
Family
ID=15798911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05164735A Expired - Fee Related JP3101753B2 (en) | 1993-07-02 | 1993-07-02 | Vapor growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3101753B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0193745A (en) * | 1987-10-05 | 1989-04-12 | Fuji Photo Film Co Ltd | Picture signal processing device |
-
1993
- 1993-07-02 JP JP05164735A patent/JP3101753B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0722336A (en) | 1995-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3101753B2 (en) | Vapor growth method | |
McIntosh et al. | Epitaxial deposition of GaInN and InN using the rotating susceptor ALE system | |
JPH0684805A (en) | Compound semiconductor crystalline growth method | |
Soga et al. | Epitaxial growth of a two-dimensional structure of GaP on a Si substrate by metalorganic chemical vapor deposition | |
JP2687371B2 (en) | Vapor growth of compound semiconductors | |
JP3090232B2 (en) | Compound semiconductor thin film formation method | |
JP2549835B2 (en) | Method for manufacturing compound semiconductor thin film | |
JPS61106497A (en) | Method for growing epitaxial film of gallium phosphide and arsenide | |
JPH02221196A (en) | Formation of thin film of iii-v compound semiconductor | |
JP2743351B2 (en) | Vapor phase epitaxy growth method | |
JPH03119721A (en) | Crystal growth | |
JP2625416B2 (en) | Method for manufacturing compound semiconductor crystal | |
JPS5895696A (en) | Vapor-phase growing method with controlled vapor pressure | |
JP2952831B2 (en) | Method for manufacturing semiconductor device | |
JPS63227007A (en) | Vapor growth method | |
JP2576127B2 (en) | Method for growing III-V compound semiconductor crystal on Si substrate | |
JP2662470B2 (en) | Compound semiconductor epitaxial growth method | |
JP3645952B2 (en) | Liquid phase growth method | |
JP2000049104A (en) | Crystal growth method of compound semiconductor and compound semiconductor device | |
JP3202405B2 (en) | Epitaxial growth method | |
JPH0613323A (en) | Vapor phase epitaxy method for compound semiconductor mixed crystal | |
JPH04124098A (en) | Process for vapor-phase growth of compound semiconductor mixed crystal | |
JPS61205696A (en) | Vapor-phase crystal growth system for group iii-v compounds | |
JPH0510319B2 (en) | ||
JPH0753632B2 (en) | Semiconductor epitaxial growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |