JP2549835B2 - Method for manufacturing compound semiconductor thin film - Google Patents

Method for manufacturing compound semiconductor thin film

Info

Publication number
JP2549835B2
JP2549835B2 JP60016744A JP1674485A JP2549835B2 JP 2549835 B2 JP2549835 B2 JP 2549835B2 JP 60016744 A JP60016744 A JP 60016744A JP 1674485 A JP1674485 A JP 1674485A JP 2549835 B2 JP2549835 B2 JP 2549835B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
gas
compound semiconductor
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60016744A
Other languages
Japanese (ja)
Other versions
JPS61176111A (en
Inventor
英明 岩野
弘之 大島
博志 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60016744A priority Critical patent/JP2549835B2/en
Publication of JPS61176111A publication Critical patent/JPS61176111A/en
Application granted granted Critical
Publication of JP2549835B2 publication Critical patent/JP2549835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体薄膜の製造方法に関するもの
である。
The present invention relates to a method for producing a compound semiconductor thin film.

〔従来の技術〕[Conventional technology]

近年、ガリウムひ素(GaAs)等のIII−V族化合物半
導体薄膜、硫化亜鉛(ZnS)等のII−VI族化合物半導体
薄膜の製造方法として、有機金属化合物(例えばトリメ
チルガリウム(TMGa)、ジエチル亜鉛(DEZn)等)の原
料と、アルシン(AsH3)、硫化水素(H2S)等の水素化
物を所定量混合し、格子定数の合う基板上に、薄膜成長
させる化学気相成長法(以下MOCVD法と称する)が活発
に研究されている。このMOCVD法は、大面積の薄膜形成
が可能であり量産性に優れているため、従来半導体レー
ザの製造に使用されている液相エピタキシャル法(LPE
法)に比べて、歩留りやコストの面で有利であると考え
られている。従来のMO−CVD法は高周波による加熱ある
いは抵抗熱源による加熱、あるいは赤外線ランプによる
加熱等により、600℃〜800℃程度に加熱された基板上に
原料ガスを流して、エピタキシャル成長させるものであ
った。
In recent years, as a method for producing a III-V group compound semiconductor thin film such as gallium arsenide (GaAs) and a II-VI group compound semiconductor thin film such as zinc sulfide (ZnS), an organometallic compound (eg, trimethylgallium (TMGa), diethylzinc ( DEZn) etc.) and a predetermined amount of hydrides such as arsine (AsH 3 ) and hydrogen sulfide (H 2 S) are mixed, and a thin film is grown on a substrate having a matching lattice constant (hereinafter referred to as MOCVD). The law is called) is being actively researched. Since this MOCVD method is capable of forming large-area thin films and is excellent in mass productivity, it has been used for liquid phase epitaxial method (LPE
Method) is considered to be advantageous in terms of yield and cost. In the conventional MO-CVD method, a source gas is caused to flow on a substrate heated to about 600 ° C to 800 ° C by heating with a high frequency, heating with a resistance heat source, heating with an infrared lamp, or the like to perform epitaxial growth.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、前述の従来技術では、基板周囲のガスも加熱
され、ガスが気相中で分解反応をしながら基板表面に到
達するので、気相中での中間生成物の種類、量が一定せ
ず、膜質の再現性が悪いという問題点を有している。
However, in the above-described conventional technique, the gas around the substrate is also heated, and the gas reaches the substrate surface while undergoing a decomposition reaction in the gas phase, so the type and amount of intermediate products in the gas phase are not constant. However, there is a problem that the reproducibility of the film quality is poor.

更に、例えば、GaAs/AlGaAs等のヘテロ接合を形成す
る場合には、反応炉中に導入する原料ガスの交換に時間
がかかり、その間には、反応管、ガス配管中の残留ガス
が、膜質の異なる成膜を行なってしまうため、急峻な組
成変化のある膜形成は困難であるという問題点を有して
いる。
Furthermore, for example, when forming a heterojunction such as GaAs / AlGaAs, it takes time to exchange the raw material gas to be introduced into the reaction furnace, and during that time, the residual gas in the reaction tube and the gas pipe is of a film quality. Since different films are formed, it is difficult to form a film having a sharp composition change.

そこで本発明はこのような問題点を解決するもので、
その目的とするところは、良質の化合物半導体薄膜を再
現性よく製造し得る方法を提供し、更に半導体レーザ等
の光学素子に用いられる超格子構造等を形成する為に必
要な急峻な組成変化のあるヘテロ界面を有する化合物半
導体薄膜の製造を可能にする方法を提供するところにあ
る。
Therefore, the present invention solves such a problem,
The purpose thereof is to provide a method capable of producing a high-quality compound semiconductor thin film with good reproducibility, and further, to make a sharp composition change necessary for forming a superlattice structure used for an optical element such as a semiconductor laser. It is an object of the present invention to provide a method that enables production of a compound semiconductor thin film having a certain hetero interface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化合物半導体薄膜の製造方法は、(a)基板
が載置された反応炉中に第1の有機金属化合物を含む第
1の原料ガスを導入するとともに、前記基板裏面には冷
却ガスを流しかつ前記基板表面には可視域の波長範囲を
有する光源からの光を照射することによって、前記基板
表面上に第1の化合物半導体薄膜を形成する工程、
(b)前記(a)工程に引き続いて前記基板裏面に冷却
ガスを流すと共に、前記光源からの光が前記基板表面へ
照射されるのを遮断することによって、前記第1の化合
物半導体薄膜の形成を中止する工程、(c)前記(b)
工程の後、前記反応炉中に第2の有機金属化合物を含む
第2の原料ガスを導入するとともに、前記(b)工程に
引き続いて前記基板裏面に冷却ガスを流し、かつ前記光
源からの光を前記第1の化合物半導体薄膜が設けられた
前記基板表面に照射することによって、前記第1の化合
物半導体薄膜上に、前記第1の化合物半導体薄膜との界
面をヘテロ接合と成す第2の化合物半導体薄膜を形成す
る工程、を有することを特徴とする。
In the method for producing a compound semiconductor thin film of the present invention, (a) a first source gas containing a first organometallic compound is introduced into a reaction furnace on which a substrate is placed, and a cooling gas is supplied to the back surface of the substrate. Forming a first compound semiconductor thin film on the substrate surface by irradiating the substrate surface with light from a light source having a visible wavelength range;
(B) Forming the first compound semiconductor thin film by flowing a cooling gas to the back surface of the substrate subsequent to the step (a) and blocking irradiation of light from the light source to the front surface of the substrate. (C) above (b)
After the step, a second source gas containing a second organometallic compound is introduced into the reaction furnace, a cooling gas is caused to flow to the back surface of the substrate subsequent to the step (b), and light from the light source is emitted. And irradiating the surface of the substrate on which the first compound semiconductor thin film is provided with a second compound having a heterojunction at the interface with the first compound semiconductor thin film on the first compound semiconductor thin film. And a step of forming a semiconductor thin film.

〔作用〕 本発明の上記の構成によれば、加熱源となる可視域波
長の光は、基板表面に吸収される以外には原料ガス、反
応炉材料とほとんど相互作用をしないため、基板表面の
みが加熱される。その為、薄膜成長は、基板表面上での
ガス分解、再配列、結晶化の素過程を得るため、表面上
の温度条件、原料ガスの流量、ガス圧力などの条件を一
定にすれば一定の特性の薄膜が得られるのである。
[Operation] According to the above-described configuration of the present invention, light in the visible region serving as a heating source hardly interacts with the source gas and the reactor material other than being absorbed by the substrate surface, and thus only the substrate surface Is heated. Therefore, in order to obtain the elementary processes of gas decomposition, rearrangement, and crystallization on the substrate surface, thin film growth is constant if the conditions such as the temperature condition on the surface, the flow rate of the source gas, and the gas pressure are constant. A characteristic thin film can be obtained.

また、ヘテロ結合を形成するためには、第1の組成の
薄膜が形成された後、加熱光源の光を遮蔽すれば、基板
裏面からの冷却により原料ガスの分解は起こらなくな
り、ガス成分の変更をし、残留ガス成分を充分排気した
後、第2の組成の薄膜の形成を、加熱光源の光を基板表
面に照射して再開すれば、ヘテロ接合界面に特性の異な
る膜は形成されず、急峻なヘテロ結合を形成できるので
ある。
Further, in order to form the hetero-bond, if the light of the heating light source is shielded after the thin film of the first composition is formed, the decomposition of the raw material gas does not occur due to the cooling from the back surface of the substrate, and the gas component is changed. Then, after exhausting the residual gas component sufficiently, if the formation of the thin film of the second composition is resumed by irradiating the surface of the substrate with the light of the heating light source, a film having different characteristics is not formed at the heterojunction interface, It is possible to form a steep heterojunction.

〔実施例〕〔Example〕

第1図は本発明の実施例における化合物半導体薄膜製
造装置の概略図であって、102の反応炉中には108の基板
ホルダーがあり、基板ホルダー上には109の基板が設置
されている。反応炉102の外壁の一部には光学窓103があ
り、この窓から105の光源からの光が、104のビームエキ
スパンダーで適当な大きさに変換され、基板109の表面
上に照射される。基板ホルダーの内部は中空構造になっ
ており、内部のパイプ111を通して、基板109の裏面に、
106のガス系を通して不活性な冷却ガスを吹きつけるこ
とができる。101は反応炉102に有機金属化合物を導入す
るガス系を、110は他の原料ガス、キャリアガスを導入
するガス系を示す。107は、反応ガスを所定の圧力に保
つ排気系である。次に具体的に、ガリウムひ素(GaAs)
化合物半導体薄膜を製造する実施例を示す。基板ホルダ
ーの上にGaAs単結晶基板を設置し、107で高真空状態に
排気する。その後、110よりキャリアガスとして水素ガ
スを、1〜5SLMの流量流し、アルシン(AsH3)ガスを20
〜50SccM流す。この状態で105の光源に用いたアルゴン
イオンレーザのスイッチをオンして基板表面にレーザー
光(波長は457.9〜514.5mmのマルチライン)を照射して
GaAs基板表面の極薄の酸化膜を除去し清浄表面を露出す
る。レーザ光の出力は18W、基板表面は900〜1000℃に上
昇する。次に、レーザ光を切り、101からトリメチルガ
リウム(TMGa)、トリエチルガリウム(TEGa)等の有機
金属化合物を一定温度に保ちその蒸気を、水素ガスをバ
ブリングガスとして反応炉中に導入し、ガス圧力を1〜
100Torrに一定に保つように排気速度を調節する。ガス
流量、ガス圧力が安定になったところで、105のアルゴ
ンイオンレーザのスイッチをオンする。レーザ光の波長
は457.9〜514.5mmのマルチラインで、可視光領域である
ため、ガス分子による吸収はまったくなく、出力のほと
んどは109のGaAs基板の表面に吸収され、基板表面の温
度を900〜1000℃に上昇させる。その温度はアルゴンレ
ーザの出力を調節すれば、一定に保たれる。また、レー
ザ光照射と同時に106より窒素ガスを111のパイプを通し
て基板裏面に吹きつけ、熱伝導により基板ホルダーの温
度が上昇することを防ぐ。この方法により、基板表面の
みが高温状態となり、AsH3ガスおよびTMGaなどの有機金
属は基板表面に到達するまで分解、化学反応をまったく
おこさず、基板表面上で次の反応によりGaSa単結晶が成
長していく。
FIG. 1 is a schematic view of a compound semiconductor thin film manufacturing apparatus in an embodiment of the present invention, in which a reaction furnace 102 has 108 substrate holders, and 109 substrates are installed on the substrate holder. An optical window 103 is provided on a part of the outer wall of the reaction furnace 102, and light from a light source 105 is converted into an appropriate size by a beam expander 104 and is irradiated onto the surface of a substrate 109 through the window. The inside of the substrate holder has a hollow structure, and through the internal pipe 111, on the back surface of the substrate 109,
An inert cooling gas may be blown through the 106 gas system. Reference numeral 101 denotes a gas system for introducing an organometallic compound into the reaction furnace 102, and 110 denotes a gas system for introducing another raw material gas and a carrier gas. 107 is an exhaust system that keeps the reaction gas at a predetermined pressure. Next, specifically, gallium arsenide (GaAs)
An example of producing a compound semiconductor thin film will be described. A GaAs single crystal substrate is placed on the substrate holder and evacuated to a high vacuum state at 107. After that, hydrogen gas as a carrier gas is flowed from 110 at a flow rate of 1 to 5 SLM, and arsine (AsH 3 ) gas is supplied to 20
Flow ~ 50SccM. In this state, the switch of the argon ion laser used as the light source of 105 is turned on and the substrate surface is irradiated with laser light (wavelength is 457.9 to 514.5 mm multi-line).
The ultrathin oxide film on the GaAs substrate surface is removed to expose the clean surface. The output of laser light is 18W, and the substrate surface rises to 900-1000 ℃. Next, the laser beam was turned off, and organometallic compounds such as trimethylgallium (TMGa) and triethylgallium (TEGa) were kept at a constant temperature from 101, and the vapor was introduced into the reaction furnace by using hydrogen gas as bubbling gas, and the gas pressure was changed. 1 to
Adjust pumping speed to keep constant at 100 Torr. When the gas flow rate and gas pressure have stabilized, the switch of the argon ion laser 105 is turned on. The wavelength of the laser light is multiline of 457.9 to 514.5 mm, and since it is in the visible light region, there is no absorption by gas molecules, most of the output is absorbed by the surface of 109 GaAs substrate, and the temperature of the substrate surface is 900 ~ Raise to 1000 ℃. The temperature is kept constant by adjusting the output of the argon laser. Simultaneously with the laser light irradiation, nitrogen gas is blown from 106 through the pipe 111 to the back surface of the substrate to prevent the temperature of the substrate holder from rising due to heat conduction. By this method, only the substrate surface becomes a high temperature state, AsH 3 gas and organic metal such as TMGa do not decompose and chemically react until reaching the substrate surface, and GaSa single crystal grows on the substrate surface by the following reaction. I will do it.

Ga(CH3+AsH3→GaAs+3CH4↑ CH4が吸着係数が小さいので、ほとんどガスとなって
飛んでいく。従って、従来の高周波加熱や抵抗加熱で行
なった場合の、基板周囲のガス温度がある範囲にわたっ
て、500〜600℃程度となり、ガス中でAsH3とTMGaが気相
反応をおこし、更に基板表面上で化学反応を起こして単
結晶成長していく条件と比べて、膜質の再現性が数倍良
くなるのである。更に他のIII族元素を含む有機金属化
合物、あるいは他のV族元素を含む原料ガスを適当量混
合すればAlGaAs,InGaAs,InGaAsPなどの混晶系を製造で
きる。
Ga (CH 3 ) 3 + AsH 3 → GaAs + 3CH 4 ↑ Since CH 4 has a small adsorption coefficient, almost all of it will fly as gas. Therefore, when using conventional high-frequency heating or resistance heating, the temperature of the gas around the substrate is around 500 to 600 ° C over a certain range, and AsH 3 and TMGa undergo a gas phase reaction in the gas, and The reproducibility of the film quality is several times better than that under the condition that a single crystal is grown by causing a chemical reaction. A mixed crystal system of AlGaAs, InGaAs, InGaAsP or the like can be manufactured by mixing an appropriate amount of an organometallic compound containing another group III element or a source gas containing another group V element.

次に、GaAs/AlGaAsのヘテロ接合を製造する場合を述
べる。GaAs薄膜を前述の方法で製造した後、レーザ光10
5を遮断する。その時点より基板裏面からの冷却によ
り、基板表面温度は直ちに低下し、薄膜の成長は止ま
る。そのあと、トリメチルアルミニウム(TMAl)等の有
機金属化合物を導入し、AlGaAs薄膜を製造するガス流量
条件に調節をする。ガス流量、ガス圧力が安定した後、
AlGaAs薄膜成長条件の基板温度となるように出力調整し
たレーザ光の照射を行なう。その結果GaAs/AlGaAsの界
面は、完全に制御されたヘテロ接合が形成される。
Next, a case of manufacturing a GaAs / AlGaAs heterojunction will be described. After manufacturing the GaAs thin film by the method described above, laser light 10
Shut off 5. From that point, the temperature of the substrate surface immediately drops due to cooling from the back surface of the substrate, and the growth of the thin film stops. Then, an organometallic compound such as trimethylaluminum (TMAl) is introduced to adjust the gas flow rate conditions for producing an AlGaAs thin film. After the gas flow rate and gas pressure have stabilized,
Irradiation with laser light whose output has been adjusted to reach the substrate temperature under the AlGaAs thin film growth conditions. As a result, a completely controlled heterojunction is formed at the GaAs / AlGaAs interface.

不純物をドーピングして多層膜を形成する場合にも、
全く同一の手順により、良好なP−N接合を得ることも
可能である。
Even when doping impurities to form a multilayer film,
It is also possible to obtain a good PN junction by the exact same procedure.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、基板表面のみが加
熱され、基板表面上の分解、結晶化反応を制御すればよ
く、従来のMO−CVD法に比較して膜質の再現性が飛躍的
に向上するという効果を有する。
As described above, according to the present invention, only the substrate surface is heated, and it is sufficient to control the decomposition and crystallization reaction on the substrate surface, and the reproducibility of the film quality is dramatically improved as compared with the conventional MO-CVD method. Has the effect of improving.

更に、ヘテロ接合界面の形成には、積層膜の製作を個
々に制御でき、余分な膜ができないので、組成変化の急
峻なヘテロ接合を製造できる。
Further, in forming the heterojunction interface, the production of the laminated film can be individually controlled, and no extra film can be formed. Therefore, a heterojunction having a sharp composition change can be manufactured.

つまり、光を可視域の波長範囲とする特徴により、こ
のような光は、紫外光や赤外光の場合に発生する問題が
生じない。つまり、紫外光や赤外光は、原料ガス自身の
分解や加熱を気相中で起こし、気相中での中間生成物を
作成し、これにより欠陥密度が高い結晶の膜をつくる。
また、紫外光や赤外光は、基板表面だけではなく、基板
の深い位置まで加熱するので、原料ガス切り換えによる
ヘテロ接合が形成されにくい。
In other words, due to the feature that the light is in the visible wavelength range, such light does not have the problem that occurs in the case of ultraviolet light or infrared light. That is, ultraviolet light or infrared light causes decomposition or heating of the raw material gas itself in the gas phase to form an intermediate product in the gas phase, thereby forming a crystalline film having a high defect density.
Further, since the ultraviolet light and the infrared light heat not only the surface of the substrate but also a deep position of the substrate, it is difficult to form a heterojunction by switching the source gas.

しかし、本願発明のように、光を可視域の波長範囲の
ものとすれば、上記問題は生じず、欠陥密度の低い結晶
を有する膜の形成ができ、急峻な制御されたヘテロ接合
の形成ができる。
However, if the light is in the visible wavelength range as in the present invention, the above problem does not occur, a film having a crystal with a low defect density can be formed, and a steep controlled heterojunction can be formed. it can.

また、基板裏面を冷却するという特徴により、急峻な
ヘテロ接合界面が製造でき、その結果、数原子程度の量
子井戸構造の製造が可能となる。
In addition, a steep heterojunction interface can be manufactured due to the feature of cooling the back surface of the substrate, and as a result, a quantum well structure of about several atoms can be manufactured.

このような効果により本発明の化合物半導体薄膜の製
造方法は、半導体レーザ、受光素子あるいは、超格子構
造を利用した低閾値レーザ、短波長レーザ等の光学素子
の製造、及び高速FETなどの電気素子の製造に有用であ
る。
Due to such effects, the method for producing a compound semiconductor thin film of the present invention is a semiconductor laser, a light receiving element, or a low threshold laser utilizing a superlattice structure, an optical element such as a short wavelength laser, and an electrical element such as a high-speed FET. Is useful in the manufacture of

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に基づく化合物半導体薄膜製造装置の
概略図を示す。 101……有機金属化合物導入ガス系 102……反応炉断面図 103……光学窓断面図 104……ビーム径調節光学系 105……可視光光源 106……冷却ガス導入系 107……ガス排気系 108……基板ホルダー断面図 109……基板 110……原料ガス導入系 111……冷却ガス導入パイプ
FIG. 1 shows a schematic view of a compound semiconductor thin film manufacturing apparatus according to the present invention. 101 …… Organometallic compound introduction gas system 102 …… Reactor cross section 103 …… Optical window cross section 104 …… Beam diameter adjusting optical system 105 …… Visible light source 106 …… Cooling gas introduction system 107 …… Gas exhaust system 108 …… Cross section of substrate holder 109 …… Substrate 110 …… Raw gas introduction system 111 …… Cooling gas introduction pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 博志 諏訪市大和3丁目3番5号 株式会社諏 訪精工舎内 (56)参考文献 特開 昭56−37633(JP,A) 特公 昭38−15279(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Komatsu 3-3-5 Yamato, Suwa City Inside Suwa Seikosha Co., Ltd. (56) References Japanese Patent Publication No. -15279 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)基板が載置された反応炉中に第1の
有機金属化合物を含む第1の原料ガスを導入するととも
に、前記基板裏面には冷却ガスを流しかつ前記基板表面
には可視域の波長範囲を有する光源からの光を照射する
ことによって、前記基板表面上に第1の化合物半導体薄
膜を形成する工程、 (b)前記(a)工程に引き続いて前記基板裏面に冷却
ガスを流すと共に、前記光源からの光が前記基板表面へ
照射されるのを遮断することによって、前記第1の化合
物半導体薄膜の形成を中止する工程、 (c)前記(b)工程の後、前記反応炉中に第2の有機
金属化合物を含む第2の原料ガスを導入するとともに、
前記(b)工程に引き続いて前記基板裏面に冷却ガスを
流し、かつ前記光源からの光を前記第1の化合物半導体
薄膜が設けられた前記基板表面に照射することによっ
て、前記第1の化合物半導体薄膜上に、前記第1の化合
物半導体薄膜との界面をヘテロ接合と成す第2の化合物
半導体薄膜を形成する工程、 を有することを特徴とする化合物半導体薄膜の製造方
法。
1. (a) A first source gas containing a first organometallic compound is introduced into a reaction furnace on which a substrate is placed, a cooling gas is caused to flow on the back surface of the substrate, and a gas is supplied to the front surface of the substrate. Is a step of forming a first compound semiconductor thin film on the front surface of the substrate by irradiating light from a light source having a wavelength range in the visible range, (b) The back surface of the substrate is cooled after the step (a). Stopping the formation of the first compound semiconductor thin film by blocking the irradiation of light from the light source onto the substrate surface while flowing gas, (c) after the step (b), While introducing a second source gas containing a second organometallic compound into the reaction furnace,
Following the step (b), a cooling gas is caused to flow on the back surface of the substrate, and the light from the light source is applied to the front surface of the substrate on which the first compound semiconductor thin film is provided, whereby the first compound semiconductor is obtained. Forming a second compound semiconductor thin film having a heterojunction at the interface with the first compound semiconductor thin film on the thin film, and manufacturing the compound semiconductor thin film.
JP60016744A 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film Expired - Lifetime JP2549835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016744A JP2549835B2 (en) 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016744A JP2549835B2 (en) 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS61176111A JPS61176111A (en) 1986-08-07
JP2549835B2 true JP2549835B2 (en) 1996-10-30

Family

ID=11924774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016744A Expired - Lifetime JP2549835B2 (en) 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2549835B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721888B2 (en) * 1987-10-01 1998-03-04 アネルバ株式会社 Low pressure vapor phase growth equipment
JP3378758B2 (en) * 1997-03-19 2003-02-17 三洋電機株式会社 Method of forming amorphous carbon-based coating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637633A (en) * 1979-09-03 1981-04-11 Mitsubishi Electric Corp Formation of oxide film

Also Published As

Publication number Publication date
JPS61176111A (en) 1986-08-07

Similar Documents

Publication Publication Date Title
JP2587623B2 (en) Epitaxial crystal growth method for compound semiconductor
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
JPH05144744A (en) Formation of semiconductor thin film
US6334901B1 (en) Apparatus for forming semiconductor crystal
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JPH0782991B2 (en) Method of growing compound semiconductor single crystal thin film
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
Usui et al. Atomic layer epitaxy of III-V electronic materials
JPH11135436A (en) Formation of compound semiconductor film
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH0684805A (en) Compound semiconductor crystalline growth method
JPH04187597A (en) Production of thin film of gallium nitride
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP3242571B2 (en) Vapor growth method
JP3182584B2 (en) Compound thin film forming method
JP2952831B2 (en) Method for manufacturing semiconductor device
JP3047523B2 (en) Selective epitaxial growth method
JP3101753B2 (en) Vapor growth method
JPH01215014A (en) Growth of semiconductor crystal
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPH0753632B2 (en) Semiconductor epitaxial growth method
JPH01215019A (en) Formation of ohmic electrode
JPH03119721A (en) Crystal growth
JPH05206028A (en) Method of growing semiconductor crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term