JPH05144744A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPH05144744A
JPH05144744A JP32839291A JP32839291A JPH05144744A JP H05144744 A JPH05144744 A JP H05144744A JP 32839291 A JP32839291 A JP 32839291A JP 32839291 A JP32839291 A JP 32839291A JP H05144744 A JPH05144744 A JP H05144744A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
doping
type
substrate
substrate temperature
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32839291A
Other languages
Japanese (ja)
Inventor
Ryuzo Iga
Hideo Sugiura
Takeshi Yamada
龍三 伊賀
武 山田
英雄 杉浦
Original Assignee
Nippon Telegr & Teleph Corp <Ntt>
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To control the doping amount and the conductivity type of a film in the direction inside the face of a substrate by a method wherein a gas raw material for doping use is introduced during the growth operation of a semicon ductor thin film, two kinds of gas raw materials for doping use for different conductivity types are introduced and laser beam is applied simultaneously.
CONSTITUTION: When a GaAs film is grown on a GaAs substrate, diethyltellurium as an N-type dopant or diethylzinc as a P-type dopant is supplied. In the case of the diethyletellurium, its doping amount isincreased in terms of an exponential function as a substrate temperature is raised. This is caused because the pyrolysis of the diethyltellurium is promoted by a rise in the substrate temperature. In the case of the diethylzinc, the doping amount is increased because zinc atoms are evaporated again due to the rise in the substrate temperature. When two kinds of doping gas raw materials whose conductivity type is different are supplied simultaneously, the conductivity type of a film is of N-type, of P-type or semiinsulating according to the substrate temperature. Thereby, when the substrate temperature is changed by irradiation with a laser beam, the doping amount and the conductivity type can be controlled the face.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、半導体薄膜を形成する半導体基板の面内方向(半導体基板表面と水平方向) The present invention relates to a plane direction of the semiconductor substrate for forming a semiconductor thin film (semiconductor substrate surface and the horizontal direction)
に、ドーピング量が変化した、また面内方向に異なった電気伝導性を有する半導体薄膜を成長させる方法に関する。 , The doping amount was changed, also relates to a method of growing a semiconductor thin film having a different electrical conductivity in the in-plane direction.

【0002】 [0002]

【従来の技術】半導体ディバイスの高度化,高機能化に伴い、より高度な半導体薄膜の形成技術が望まれている。 Sophistication of semiconductor devices, become more sophisticated, more advanced semiconductor thin film forming technique has been desired. その1つに半導体薄膜のドーピング量を面内方向に変化させたり、面内方向に異なった伝導型の半導体薄膜を形成させる薄膜成長技術がある。 Or the doping amount of the semiconductor thin film is changed in-plane direction to one of them, there is a thin film growth techniques for forming a semiconductor thin film of different conductivity type in the in-plane direction.

【0003】従来の技術では、たとえばジャーナルオブクリスタルグロース(Journal of crys [0003] In the prior art, for example, Journal of Crystal Growth (Journal of crys
tal growth)105巻(1990年)383 tal growth) 105 Volume (1990) 383
頁にあるように、有機金属分子線エピタキシ(MOMB As in the page, the organic metal molecular beam epitaxy (MOMB
E)法などをもちいてGaAsあるいはInPの薄膜を成長させている最中に1種類のドーピング用有機金属材料を導入し、基板上で熱分解させP型あるいはN型の不純物原子を混入させることによってP型あるいはN型の半導体薄膜の形成を行っていた。 E) method using a like introducing one doping metal organic material in the middle of grown thin films of GaAs or InP, be mixed with P-type or N-type impurity atoms are thermally decomposed on the substrate It has been performed to form a semiconductor thin film of P-type or N-type by.

【0004】しかしながらこの方法では、導入するドーピング用有機金属材料の種類を変えたり、その供給量を変化させることによって、膜厚方向の伝導型とドーピング量の制御は可能であるが、面内方向のドーピング量や伝導型制御のためには、膜形成後に不純物イオンを打ち込みその後アニールで不純物原子を活性化することでドーピングしたり、高度なリソグラフィを用いて膜をエッチングした後にドーピング量や伝導型の異なった膜を埋め込み、再度膜を成長させることが必要であった。 [0004] However, this method, or changing the type of doping organometallic material to be introduced, by changing the supply quantity, control of the thickness direction of the conduction type and doping amount is possible, the in-plane direction for doping amount and conductivity type control of, or doping by activating the impurity atoms in the subsequent annealing implanted impurity ions after film formation, doping amount and conductivity type after the film was etched using an advanced lithography the different film buried, it was necessary to grow again film.

【0005】 [0005]

【発明が解決しようとする課題】しかしそれらの方法では、プロセスが複雑であったり膜質が劣化する等の問題があった。 In However, those methods The object of the invention is to be Solved, process the film quality or a complex there is a problem such as to deteriorate. そのため、例えば縦型トランジスタや電流の横注入型面発光レーザのような高機能な半導体ディバイスを製造するためには、多くのプロセスを経る必要があり、歩留りや再現性の向上が要求されていた。 Therefore, in order to produce high-performance semiconductor devices such as vertical transistors and horizontal injection type surface emitting laser current must go through many processes, improvement in yield and reproducibility has been required .

【0006】以上のことより本発明では、膜質の劣化につながる複雑なプロセス技術を用いること無く、基板面内方向の膜のドーピング量と伝導型とを制御可能とする事を目的とする。 [0006] In the present invention from the above that, without using a complicated process technology leading to deterioration of film quality, which aims to enable control of the doping amount of film on the substrate plane direction and a conduction type.

【0007】 [0007]

【課題を解決するための手段】本発明では、半導体薄膜成長中にドーピング用ガス原料を導入させ同時にレーザ光を膜を成長させている半導体基板上に照射して温度分布を形成する。 In the present invention SUMMARY OF], by irradiating onto the semiconductor substrate to form a temperature distribution that simultaneously laser light is introduced doping gas feed growing the film into the semiconductor film growth. また、異なった伝導型用の2種類のドーピング用ガス原料を導入させ同時にレーザ光を膜を成長させている半導体基板上に照射して温度分布を形成する。 Also, to form the two different types of temperature distribution by irradiating the doping simultaneously laser light is introduced to the gas feed on a semiconductor substrate which is grown a film for conduction.

【0008】 [0008]

【作用】半導体基板上でレーザ光を照射した部分としない部分で、成長した半導体薄膜へのドーピング用ガス原料のドーピング量に差が生じる。 In part [acting] on a semiconductor substrate without the portion irradiated with the laser beam, a difference in amount of doping doping gas feed to grown semiconductor thin film occurs.

【0009】 [0009]

【実施例】分子線エピタキシ装置を用いてGaAs基板上にGaAs膜を成長させる際に、N型ドーパントのジエチルテルル、あるいはP型ドーパントのジエチル亜鉛を供給する場合の、成長するGaAsの薄膜へのドーピング量の基板温度依存性を図1,2に示す。 When growing the EXAMPLES molecular beam epitaxy apparatus GaAs layer on a GaAs substrate using, in the case of supplying diethyl tellurium N-type dopant, or diethylzinc P-type dopant, the GaAs to grow to a thin film the substrate temperature dependence of the doping amount shown in FIGS.

【0010】図1のジエチルテルルの場合は基板温度が増加するにしたがってドーピング量は指数関数的に増加している。 [0010] doping amount in accordance with the substrate temperature is increased in the case of diethyl tellurium 1 is increasing exponentially. これは、基板温度上昇によるジエチルテルルの、熱分解の促進によるものである。 This diethyl tellurium due to the substrate temperature rise is due to the promotion of thermal decomposition. 図2のジエチル亜鉛の場合は、基板温度の上昇による亜鉛原子の基板からの再蒸発によるものである。 For diethylzinc 2, it is due to re-evaporation from the substrate of zinc atoms due to the increase in the substrate temperature.

【0011】次に分子線エピタキシ装置を用いて、In [0011] The next using a molecular beam epitaxy apparatus, In
P基板上にInP膜を成長させる際に、N型ドーパントのテトラエチル錫、あるいはP型ドーパントのジエチル亜鉛を供給したそれぞれの場合におけるドーピング量の基板温度依存性を図3,4に示す。 When growing the InP layer a P substrate, tetraethyl tin N-type dopant, or a substrate temperature dependence of the doping amount in each case of supplying the diethylzinc P-type dopant is shown in FIGS.

【0012】図3のテトラエチル錫,図4のジエチル亜鉛の両方の場合において、基板温度が増加するとドーピング量が減少している。 [0012] tetraethyl tin 3, in the case of both diethylzinc 4, the doping amount is decreased when the substrate temperature is increased. これは、基板温度の上昇による亜鉛原子あるいは錫原子の基板からの再蒸発によるものである。 This is due to re-evaporation from the substrate of zinc atom or a tin atom due to an increase in the substrate temperature.

【0013】有機金属気相成長法においても同様なドーピング量の基板温度依存性が得られている。 [0013] The substrate temperature dependence of the same doping amount in the metal organic chemical vapor deposition method is obtained. これらの内の1種類のドーピング用ガス原料を導入しながら、基板内にビームスキャン法や回折格子,フォトマスク等を用いてレーザ光照射を行い、面内方向にドーピング量が変化するだけの基板温度分布を作れば、レーザ光照射部においてドーピング量に分布ができる。 While introducing one doping gas feed of these, the substrate only beam scanning method or a diffraction grating in the substrate, by using a photomask or the like is performed with laser light irradiation, the amount of doping is varied in the plane direction if you make the temperature distribution, it is distributed to the doping amount in the laser beam irradiation unit.

【0014】なお、照射するレーザ光は、用いた基板または半導体膜が吸収する波長を有すればどの様なものでもよい。 [0014] The laser beam to be irradiated, a substrate or a semiconductor film may be one What kind if it has a wavelength to be absorbed using.

【0015】また伝導型の異なる2種類のドーピングガス原料を同時に供給した場合、基板温度によってN型の方が多くなり、あるいはP型のドーピング量の方が多くなり、また両者が等しくなり、膜の伝導型はN型あるいはP型、または半絶縁性になる。 Further in the case of supplying two kinds of doping gas feed having different conductivity types at the same time, towards the N-type by the substrate temperature is increased, or is higher in the P-type doping amount, also becomes equal both film becomes the conductivity type N-type or P-type, or semi-insulating. このことから、レーザ光照射により基板温度を変化させることでドーピング量と伝導型が面内で部分的に制御可能となることは明かである。 Therefore, the doping amount and conductivity type by changing the substrate temperature by the laser beam irradiation is partially controllable in a plane is clear.

【0016】以上はGaAs膜についてであるが、他の周期律表の III族−V族の半導体を始め、II族−VI族の半導体など全般においても同様な効果が得られることは言うまでもない。 [0016] The above is a for GaAs films, such as semiconductor of Group III -V group other periodic table, it is needless to say that similar effects in semiconductors such as General Group II -VI group is obtained.

【0017】以下本発明の具体的な実施例を説明する。 [0017] describing the specific examples below the present invention. (実施例1)有機金属分子線エピタキシャル装置を用いて、基板温度500℃のGaAs基板上にアルゴンレーザ(波長514.5nm、強度5W)をビームスキャン法により線状(スキャン長5cm)に照射しながらGa With (Example 1) organometallic molecular beam epitaxy apparatus, irradiating an argon laser (wavelength 514.5 nm, intensity 5W) on a GaAs substrate of a substrate temperature of 500 ° C. The linearized by beam scanning method (scanning length 5 cm) while Ga
As薄膜を成長させている最中にジエチルテルルを供給する。 Supplying diethyl tellurium while that grown As thin film.

【0018】レーザ光のスキャン速度を線上で一定の加速度で変化させることによって、基板上に温度分布をつける。 [0018] By varying the scanning speed of the laser beam at a constant acceleration on the line, giving a temperature distribution on the substrate. Ga源にはトリエチルガリウム、As源には熱分解したアルシンを用いる。 Ga source triethyl gallium in, the As source using arsine pyrolyzed.

【0019】レーザ照射部では図5(b)に示すように基板温度の分布が形成される。 [0019] In the laser irradiation unit distribution of the substrate temperature, as shown in FIG. 5 (b) is formed. その結果、レーザ照射部では図5(a)に示すように電子濃度に6×10 17 cm As a result, the electron concentration 6 × 10 17 to the laser irradiation unit shown in FIG. 5 (a) cm
-3から2×10 19 cm -3の分布をもつ膜が形成される。 Film from -3 having a distribution of 2 × 10 19 cm -3 is formed.

【0020】(実施例2)有機金属分子線エピタキシャル装置を用いて、基板温度500℃のInP基板上にアルゴンレーザ(波長514.5nm、強度10W)をスポット照射しながらジエチル亜鉛を供給する。 [0020] (Example 2) using a metal organic molecular beam epitaxial device, the argon laser (wavelength 514.5 nm, intensity 10 W) on an InP substrate of the substrate temperature 500 ° C. for supplying diethylzinc while the spotted illumination. In源にはトリメチルインジウム、P源には熱分解したホスフィンを用いる。 In source trimethyl indium, the P source using phosphine pyrolyzed.

【0021】レーザ照射部では100℃の温度上昇があり、その結果正孔濃度がレーザ照射部で3×10 17 cm [0021] There is a temperature rise of 100 ° C. In the laser irradiation unit, as a result a hole concentration in the laser irradiation unit 3 × 10 17 cm
-3 、非照射部で5×10 18 cm -3となる。 -3, in non-irradiated portion becomes 5 × 10 18 cm -3.

【0022】(実施例3)有機金属分子線エピタキシャル装置を用いて、基板温度500℃のInP基板上にアルゴンレーザ(波長514.5nm、強度10W)をスポット照射しながらトリエチル錫を供給する。 [0022] (Example 3) using the metal organic molecular beam epitaxial device, the argon laser (wavelength 514.5 nm, intensity 10 W) on an InP substrate of the substrate temperature 500 ° C. The supplying triethyl tin with spot irradiation. In源にはトリメチルインジウム、P源には熱分解したホスフィンを用いる。 In source trimethyl indium, the P source using phosphine pyrolyzed.

【0023】レーザ照射部では基板温度が100℃上昇し、その結果電子濃度は、レーザ照射部で4×10 17 The substrate temperature at the laser irradiation part is increased 100 ° C., resulting electron concentration, the laser irradiation unit 4 × 10 17 c
-3 、非照射部で2×10 18 cm -3となる。 m -3, with non-irradiated portion becomes 2 × 10 18 cm -3.

【0024】(実施例4)分子線エピタキシャル装置を用いて、基板温度500℃のGaAs基板上にYAGレーザ(波長1.08μm、強度5W)をスポットで照射しながら、GaAs薄膜を成長させている最中にジエチルテルルとジエチル亜鉛の2種類のドーピングガス原料を供給する。 [0024] with (Example 4) molecular beam epitaxial device, YAG laser (wavelength 1.08 .mu.m, strength 5W) on a GaAs substrate of a substrate temperature of 500 ° C. while the irradiated spot, and grown GaAs thin film supplying two kinds of doping gas feed diethyl tellurium and diethylzinc during.

【0025】Ga源には金属Ga、As源には金属As [0025] The metal in the Ga source Ga, the As source metal As
を用いる。 It is used. YAGレーザ照射部は約100℃温度上昇し、その結果、YAGレーザ照射部では、電子濃度1× YAG laser irradiation unit is raised to about 100 ° C. temperature, as a result, the YAG laser irradiation unit, an electron concentration of 1 ×
10 19 cm -3のN型となり、非照射部では正孔濃度2× It becomes 10 19 cm N-type -3, hole concentration 2 × a non-irradiated portion
10 16 cm -3のP型となる。 The P-type 10 16 cm -3.

【0026】(実施例5)有機金属エピタキシャル装置を用いて、基板温度500℃のInP基板上にアルゴンレーザ(波長514.5nm、強度5W)をスポットで照射しながらInP薄膜を成長させている最中にテトラエチル錫,ジエチルベリリウムの2種類のドーピングガス原料を供給する。 [0026] with (Example 5) organometallic epitaxial device, most have grown InP thin film while the argon laser (wavelength 514.5 nm, intensity 5W) on an InP substrate of the substrate temperature 500 ° C. was irradiated with a spot supplying tetraethyl tin, two kinds of doping gas feed diethyl beryllium in.

【0027】ジエチルベリリウムは、P型ドーパントでInPへのドーピング量は基板温度によらず一定で2× The diethyl beryllium, constant at 2 × regardless of the doping amount of the substrate temperature to InP with a P-type dopant
10 18 cm -3である。 It is 10 18 cm -3. インジウム源にはトリメチルインジウム、P源には熱分解したホスフィンを用いる。 Indium source trimethylindium is the P source using phosphine pyrolyzed.

【0028】レーザ照射部では100℃温度上昇し、その結果非照射部では半絶縁性となりレーザ照射部では正孔濃度1.5×10 18 cm -3のP型となる。 [0028] and 100 ° C. temperature rise in the laser irradiation part, a P-type hole concentration 1.5 × 10 18 cm -3 in the laser irradiation portion becomes semi-insulating at that result unirradiated portion.

【0029】(実施例6)有機金属気相成長装置を用いて、基板温度550℃のGaAs基板上にエキシマレーザ(波長293nm、強度10W)をビームスキャン法により線状に照射しながらGaAs薄膜を成長している最中に、ジエチルテルルとジエチル亜鉛の2種類のドーピングガス原料を供給する。 [0029] with (Example 6) MOCVD, excimer laser (wavelength 293 nm, intensity 10 W) on a GaAs substrate of a substrate temperature of 550 ° C. The GaAs thin film while irradiating linearized by a beam scanning method during the growing, supplies two kinds of doping gas feed diethyl tellurium and diethylzinc. Ga源にはトリメチルガリウム、As源にはアルシンを用いる。 Ga source trimethylgallium to, the As source used arsine.

【0030】レーザ照射部では一様に約50℃上昇し、 The rise uniformly to about 50 ° C. The laser irradiation unit,
その結果レーザ照射部の膜は一様に電子濃度1×10 19 The membrane results laser irradiation unit uniformly electron concentration 1 × 10 19
cm -3のN型となり非照射部ではP型とN型のドープ量がほぼ等しくなり半絶縁性となる。 The N-type and become non-irradiated portion of cm -3 becomes semi-insulating become approximately equal doping amount of P-type and N-type.

【0031】(実施例7)ガスソース分子線エピタキシ装置を用いて、基板温度450℃のInP基板上にYA [0031] (Example 7) using a gas source molecular beam epitaxy apparatus, YA on the substrate temperature 450 ° C. of InP substrate
Gレーザ(波長1.08μm、強度5W)をスポットで照射しながらInP薄膜を成長させている最中にP型ドーパントとして金属ベリリウムを原料とした分子線(分子線セルの温度1000℃)とN型ドーパントにジエチルテルルを供給する。 G laser (wavelength 1.08 .mu.m, strength 5W) molecular beam in which the metal beryllium as a raw material as a P-type dopant in the middle of the are grown InP thin film while irradiating a spot (the temperature 1000 ° C. of molecular beam cells) N supplies diethyl tellurium-type dopant.

【0032】ドーピング用有機金属ガス原料はジエチルテルル1種類であり、インジウム源には金属インジウム、P源には熱分解したホスフィンを用いる。 [0032] Doping organometallic gas feed is diethyl tellurium one, the indium source metal indium, the P source using phosphine pyrolyzed. 図6にジエチルテルルによるN型ドーピング量の基板温度依存性を示す。 It shows the substrate temperature dependence of the N-type doping amount of diethyl tellurium in FIG. レーザ照射部では約100℃の温度上昇がある。 In the laser irradiation unit there is a temperature increase of about 100 ° C..

【0033】金属ベリリウムの場合、ドーピング量は基板温度によらず1×10 19 cm -3で一定である。 In the case of the metal beryllium, the doping amount is constant at 1 × 10 19 cm -3 regardless of the substrate temperature. そのためレーザ照射部では、N型とP型のドーピング領域がほぼ等しくなり相殺され膜は半絶縁性となり、非照射部では正孔濃度1×10 19 cm -3のP型となる。 Therefore, in the laser irradiation unit, N-type and P-type substantially equal now-canceled film doped region of becomes semi-insulating, the P-type hole concentration of 1 × 10 19 cm -3 in the non-irradiated portion.

【0034】 [0034]

【発明の効果】以上のように本発明では、半導体薄膜へのドーピング量と伝導型を面内方向に制御することが可能となる。 In the present invention as described above, according to the present invention, it is possible to control the conduction type doping of the semiconductor thin film in-plane direction. したがって、縦型トランジスタ,横注入型面発光レーザ,縦型ドーピング超格子の製造に有用であるばかりでなく、OEICのような高機能な半導体ディバイスの製造にも有効であるという効果がある。 Therefore, the vertical transistor, horizontal injection type surface emitting laser not only useful vertical doping superlattice of production, there is an effect that is effective to the production of high-performance semiconductor devices such as OEIC.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】ジエチルテルルを用いてGaAsの薄膜中にN [1] N with diethyl tellurium in GaAs thin film
型ドーピングするときのドーピング量と基板温度の関係を示す相関図である。 It is a scatter diagram showing the relationship between the doping amount and the substrate temperature when the mold doping.

【図2】ジエチル亜鉛を用いてGaAsの薄膜中にP型ドーピングするときのドーピング量と基板温度の関係を示す相関図である。 2 is a correlation diagram showing the relationship between the doping amount and the substrate temperature when P-type doping in the GaAs thin film with diethyl zinc.

【図3】テトラエチル錫を用いてInPの薄膜中にN型ドーピングするときのドーピング量と基板温度の関係を示す相関図である。 3 is a correlation diagram showing the relationship between the doping amount and the substrate temperature when N-type doping in InP thin film using tetraethyl tin.

【図4】ジエチル亜鉛を用いてInPの薄膜中にP型ドーピングするときのドーピング量と基板温度の関係を示す相関図である。 4 is a correlation diagram showing the relationship between the doping amount and the substrate temperature when P-type doping in InP thin film with diethyl zinc.

【図5】基板温度500℃のGaAs基板上にGaAs GaAs in Figure 5 the substrate temperature 500 ° C. of the GaAs substrate
の薄をの成長させている最中にジエチルテルルを供給しながらその基板上にアルゴンレーザを線状に照射し、基板温度に分布を形成したときのレーザ照射部の位置と基板温度及び電子濃度の関係を示す相関図である。 Position and the substrate temperature and the electron density of the laser irradiation portion when irradiated with argon laser on the substrate linearly, to form a distribution in the substrate temperature while supplying diethyl tellurium while that is a thin growth of is a scatter diagram showing the relationship.

【図6】ジエチルテルルを用いてInPの薄膜中にN型ドーピングするときのドーピング量と基板温度の関係を示す相関図である。 6 is a correlation diagram showing the relationship between the doping amount and the substrate temperature when N-type doping in InP thin film with diethyl tellurium.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 半導体薄膜の形成方法において、 前記半導体薄膜を半導体基板上に成長させている最中にドーピング用ガス原料を導入し、 前記ドーピング用ガス原料を導入するのと同時に前記半導体基板上にレーザ光を照射して温度分布を形成することを特徴とする半導体薄膜形成方法。 1. A method of forming a semiconductor thin film, the semiconductor thin film by introducing a doping gas feed in the midst of grown on a semiconductor substrate, on the same time the semiconductor substrate and to introduce the doping gas feed the semiconductor thin film forming method and forming a temperature distribution is irradiated with a laser beam to.
  2. 【請求項2】 請求項1記載の半導体薄膜形成方法において、前記ドーピング用ガス原料の導入は、異なった伝導型用の2種類のドーピングガス原料を導入することを特徴とする半導体薄膜形成方法。 2. A semiconductor thin film forming method according to claim 1, wherein the introduction of the doping gas raw material, two different types of semiconductor thin film forming method characterized by introducing a doping gas feed for conduction.
JP32839291A 1991-11-18 1991-11-18 Formation of semiconductor thin film Pending JPH05144744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32839291A JPH05144744A (en) 1991-11-18 1991-11-18 Formation of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32839291A JPH05144744A (en) 1991-11-18 1991-11-18 Formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH05144744A true true JPH05144744A (en) 1993-06-11

Family

ID=18209744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32839291A Pending JPH05144744A (en) 1991-11-18 1991-11-18 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH05144744A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046708B2 (en) 2002-11-28 2006-05-16 Sharp Kabushiki Kaisha Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JP2009255013A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd photocatalyst
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8803203B2 (en) 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046708B2 (en) 2002-11-28 2006-05-16 Sharp Kabushiki Kaisha Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JP2009255013A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd photocatalyst
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US8803203B2 (en) 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US9337828B2 (en) 2010-02-26 2016-05-10 Eastman Kodak Company Transistor including reentrant profile
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance

Similar Documents

Publication Publication Date Title
Akiyama et al. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD
Akasaki et al. Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1− xAlxN (0< x≦ 0.4) films grown on sapphire substrate by MOVPE
US4885614A (en) Semiconductor device with crystalline silicon-germanium-carbon alloy
US5082798A (en) Crystal growth method
US5270247A (en) Atomic layer epitaxy of compound semiconductor
US5250148A (en) Process for growing GaAs monocrystal film
US5888886A (en) Method of doping gan layers p-type for device fabrication
US4962057A (en) Method of in situ photo induced evaporation enhancement of compound thin films during or after epitaxial growth
US5476811A (en) Method of growing epitaxial layers
US5425860A (en) Pulsed energy synthesis and doping of silicon carbide
US4767494A (en) Preparation process of compound semiconductor
US5098850A (en) Process for producing substrate for selective crystal growth, selective crystal growth process and process for producing solar battery by use of them
US5458689A (en) Apparatus and method for growing semiconductor crystal
US5168077A (en) Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
US4960720A (en) Method of growing compound semiconductor thin film using multichamber smoothing process
US6261931B1 (en) High quality, semi-insulating gallium nitride and method and system for forming same
US4800173A (en) Process for preparing Si or Ge epitaxial film using fluorine oxidant
US4843031A (en) Method of fabricating compound semiconductor laser using selective irradiation
US6033972A (en) Growing method of GaAs quantum dots using chemical beam epitaxy
US5063166A (en) Method of forming a low dislocation density semiconductor device
US5686738A (en) Highly insulating monocrystalline gallium nitride thin films
US4422888A (en) Method for successfully depositing doped II-VI epitaxial layers by organometallic chemical vapor deposition
US4632710A (en) Vapor phase epitaxial growth of carbon doped layers of Group III-V materials
US5107317A (en) Semiconductor device with first and second buffer layers