JPH05144744A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPH05144744A
JPH05144744A JP32839291A JP32839291A JPH05144744A JP H05144744 A JPH05144744 A JP H05144744A JP 32839291 A JP32839291 A JP 32839291A JP 32839291 A JP32839291 A JP 32839291A JP H05144744 A JPH05144744 A JP H05144744A
Authority
JP
Japan
Prior art keywords
doping
type
substrate
substrate temperature
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32839291A
Other languages
Japanese (ja)
Inventor
Ryuzo Iga
龍三 伊賀
Takeshi Yamada
武 山田
Hideo Sugiura
英雄 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32839291A priority Critical patent/JPH05144744A/en
Publication of JPH05144744A publication Critical patent/JPH05144744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To control the doping amount and the conductivity type of a film in the direction inside the face of a substrate by a method wherein a gas raw material for doping use is introduced during the growth operation of a semicon ductor thin film, two kinds of gas raw materials for doping use for different conductivity types are introduced and laser beam is applied simultaneously. CONSTITUTION:When a GaAs film is grown on a GaAs substrate, diethyltellurium as an N-type dopant or diethylzinc as a P-type dopant is supplied. In the case of the diethyletellurium, its doping amount isincreased in terms of an exponential function as a substrate temperature is raised. This is caused because the pyrolysis of the diethyltellurium is promoted by a rise in the substrate temperature. In the case of the diethylzinc, the doping amount is increased because zinc atoms are evaporated again due to the rise in the substrate temperature. When two kinds of doping gas raw materials whose conductivity type is different are supplied simultaneously, the conductivity type of a film is of N-type, of P-type or semiinsulating according to the substrate temperature. Thereby, when the substrate temperature is changed by irradiation with a laser beam, the doping amount and the conductivity type can be controlled the face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体薄膜を形成する
半導体基板の面内方向(半導体基板表面と水平方向)
に、ドーピング量が変化した、また面内方向に異なった
電気伝導性を有する半導体薄膜を成長させる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-plane direction of a semiconductor substrate on which a semiconductor thin film is formed (horizontal direction to the semiconductor substrate surface).
In particular, the present invention relates to a method for growing a semiconductor thin film having a different doping amount and different electrical conductivity in the in-plane direction.

【0002】[0002]

【従来の技術】半導体ディバイスの高度化,高機能化に
伴い、より高度な半導体薄膜の形成技術が望まれてい
る。その1つに半導体薄膜のドーピング量を面内方向に
変化させたり、面内方向に異なった伝導型の半導体薄膜
を形成させる薄膜成長技術がある。
2. Description of the Related Art As semiconductor devices become more sophisticated and more sophisticated, more advanced semiconductor thin film forming techniques are desired. One of them is a thin film growth technique for changing the doping amount of the semiconductor thin film in the in-plane direction or forming semiconductor thin films of different conductivity types in the in-plane direction.

【0003】従来の技術では、たとえばジャーナルオブ
クリスタルグロース(Journal of crys
tal growth)105巻(1990年)383
頁にあるように、有機金属分子線エピタキシ(MOMB
E)法などをもちいてGaAsあるいはInPの薄膜を
成長させている最中に1種類のドーピング用有機金属材
料を導入し、基板上で熱分解させP型あるいはN型の不
純物原子を混入させることによってP型あるいはN型の
半導体薄膜の形成を行っていた。
In the prior art, for example, Journal of crystals is known.
tal growh) Volume 105 (1990) 383
As shown on the page, metalorganic molecular beam epitaxy (MOMB
E) Introducing one kind of doping organometallic material while growing a GaAs or InP thin film using the method etc., and thermally decomposing on the substrate to mix P-type or N-type impurity atoms. A P-type or N-type semiconductor thin film has been formed by.

【0004】しかしながらこの方法では、導入するドー
ピング用有機金属材料の種類を変えたり、その供給量を
変化させることによって、膜厚方向の伝導型とドーピン
グ量の制御は可能であるが、面内方向のドーピング量や
伝導型制御のためには、膜形成後に不純物イオンを打ち
込みその後アニールで不純物原子を活性化することでド
ーピングしたり、高度なリソグラフィを用いて膜をエッ
チングした後にドーピング量や伝導型の異なった膜を埋
め込み、再度膜を成長させることが必要であった。
However, according to this method, the conductivity type in the film thickness direction and the doping amount can be controlled by changing the type of the doping organometallic material to be introduced or the supply amount thereof, but the in-plane direction can be controlled. In order to control the doping amount and conductivity type of the film, doping is performed by implanting impurity ions after film formation and then activating the impurity atoms by annealing, or after doping the film using advanced lithography, the doping amount and conductivity type are controlled. It was necessary to bury the different films of and to grow the films again.

【0005】[0005]

【発明が解決しようとする課題】しかしそれらの方法で
は、プロセスが複雑であったり膜質が劣化する等の問題
があった。そのため、例えば縦型トランジスタや電流の
横注入型面発光レーザのような高機能な半導体ディバイ
スを製造するためには、多くのプロセスを経る必要があ
り、歩留りや再現性の向上が要求されていた。
However, these methods have problems such as complicated process and deterioration of film quality. Therefore, in order to manufacture a highly functional semiconductor device such as a vertical transistor or a lateral current injection type surface emitting laser, it is necessary to go through many processes, and it is required to improve the yield and the reproducibility. .

【0006】以上のことより本発明では、膜質の劣化に
つながる複雑なプロセス技術を用いること無く、基板面
内方向の膜のドーピング量と伝導型とを制御可能とする
事を目的とする。
In view of the above, it is an object of the present invention to be able to control the doping amount and conduction type of a film in the in-plane direction of a substrate without using a complicated process technique that leads to deterioration of film quality.

【0007】[0007]

【課題を解決するための手段】本発明では、半導体薄膜
成長中にドーピング用ガス原料を導入させ同時にレーザ
光を膜を成長させている半導体基板上に照射して温度分
布を形成する。また、異なった伝導型用の2種類のドー
ピング用ガス原料を導入させ同時にレーザ光を膜を成長
させている半導体基板上に照射して温度分布を形成す
る。
According to the present invention, a temperature distribution is formed by introducing a doping gas source during the growth of a semiconductor thin film, and at the same time irradiating laser light onto the semiconductor substrate on which the film is being grown. Further, two types of doping gas raw materials for different conductivity types are introduced, and at the same time, laser light is irradiated onto the semiconductor substrate on which the film is grown to form a temperature distribution.

【0008】[0008]

【作用】半導体基板上でレーザ光を照射した部分としな
い部分で、成長した半導体薄膜へのドーピング用ガス原
料のドーピング量に差が生じる。
The difference in the doping amount of the doping gas raw material into the grown semiconductor thin film is produced between the portion irradiated with the laser beam and the portion not irradiated with the laser beam on the semiconductor substrate.

【0009】[0009]

【実施例】分子線エピタキシ装置を用いてGaAs基板
上にGaAs膜を成長させる際に、N型ドーパントのジ
エチルテルル、あるいはP型ドーパントのジエチル亜鉛
を供給する場合の、成長するGaAsの薄膜へのドーピ
ング量の基板温度依存性を図1,2に示す。
EXAMPLE When a GaAs film is grown on a GaAs substrate by using a molecular beam epitaxy apparatus, diethyl tellurium as an N-type dopant or diethylzinc as a P-type dopant is supplied to a growing GaAs thin film. The substrate temperature dependence of the doping amount is shown in FIGS.

【0010】図1のジエチルテルルの場合は基板温度が
増加するにしたがってドーピング量は指数関数的に増加
している。これは、基板温度上昇によるジエチルテルル
の、熱分解の促進によるものである。図2のジエチル亜
鉛の場合は、基板温度の上昇による亜鉛原子の基板から
の再蒸発によるものである。
In the case of diethyl tellurium shown in FIG. 1, the doping amount increases exponentially as the substrate temperature increases. This is due to the promotion of thermal decomposition of diethyl tellurium due to the rise in the substrate temperature. In the case of diethylzinc in FIG. 2, this is due to re-evaporation of zinc atoms from the substrate due to a rise in substrate temperature.

【0011】次に分子線エピタキシ装置を用いて、In
P基板上にInP膜を成長させる際に、N型ドーパント
のテトラエチル錫、あるいはP型ドーパントのジエチル
亜鉛を供給したそれぞれの場合におけるドーピング量の
基板温度依存性を図3,4に示す。
Next, using a molecular beam epitaxy apparatus, In
3 and 4 show the dependence of the doping amount on the substrate temperature when the N-type dopant tetraethyl tin or the P-type dopant diethyl zinc was supplied when the InP film was grown on the P substrate.

【0012】図3のテトラエチル錫,図4のジエチル亜
鉛の両方の場合において、基板温度が増加するとドーピ
ング量が減少している。これは、基板温度の上昇による
亜鉛原子あるいは錫原子の基板からの再蒸発によるもの
である。
In both cases of tetraethyltin in FIG. 3 and diethylzinc in FIG. 4, the doping amount decreases as the substrate temperature increases. This is due to re-evaporation of zinc atoms or tin atoms from the substrate due to the rise in substrate temperature.

【0013】有機金属気相成長法においても同様なドー
ピング量の基板温度依存性が得られている。これらの内
の1種類のドーピング用ガス原料を導入しながら、基板
内にビームスキャン法や回折格子,フォトマスク等を用
いてレーザ光照射を行い、面内方向にドーピング量が変
化するだけの基板温度分布を作れば、レーザ光照射部に
おいてドーピング量に分布ができる。
A similar dependency of the doping amount on the substrate temperature is obtained also in the metal organic chemical vapor deposition method. A substrate in which the doping amount changes only in the in-plane direction by introducing laser light irradiation using a beam scanning method, a diffraction grating, a photomask, or the like into the substrate while introducing one of these doping gas raw materials. If the temperature distribution is created, the doping amount can be distributed in the laser light irradiation portion.

【0014】なお、照射するレーザ光は、用いた基板ま
たは半導体膜が吸収する波長を有すればどの様なもので
もよい。
Any laser light may be used as long as it has a wavelength absorbed by the substrate or semiconductor film used.

【0015】また伝導型の異なる2種類のドーピングガ
ス原料を同時に供給した場合、基板温度によってN型の
方が多くなり、あるいはP型のドーピング量の方が多く
なり、また両者が等しくなり、膜の伝導型はN型あるい
はP型、または半絶縁性になる。このことから、レーザ
光照射により基板温度を変化させることでドーピング量
と伝導型が面内で部分的に制御可能となることは明かで
ある。
Further, when two kinds of doping gas raw materials having different conductivity types are simultaneously supplied, the N-type becomes larger or the P-type doping becomes larger depending on the substrate temperature, and both become equal to each other. The conductivity type is N type, P type, or semi-insulating. From this, it is clear that the doping amount and the conductivity type can be partially controlled in-plane by changing the substrate temperature by laser light irradiation.

【0016】以上はGaAs膜についてであるが、他の
周期律表の III族−V族の半導体を始め、II族−VI族の
半導体など全般においても同様な効果が得られることは
言うまでもない。
The above is the GaAs film, but it is needless to say that the same effect can be obtained not only in the III-V group semiconductors of the periodic table but also in the II-VI group semiconductors in general.

【0017】以下本発明の具体的な実施例を説明する。 (実施例1)有機金属分子線エピタキシャル装置を用い
て、基板温度500℃のGaAs基板上にアルゴンレー
ザ(波長514.5nm、強度5W)をビームスキャン
法により線状(スキャン長5cm)に照射しながらGa
As薄膜を成長させている最中にジエチルテルルを供給
する。
Specific examples of the present invention will be described below. (Example 1) Argon laser (wavelength 514.5 nm, intensity 5 W) was linearly irradiated (scan length 5 cm) on a GaAs substrate having a substrate temperature of 500 ° C. by a beam scanning method using an organometallic molecular beam epitaxial apparatus. While Ga
Diethyl tellurium is supplied during the growth of the As thin film.

【0018】レーザ光のスキャン速度を線上で一定の加
速度で変化させることによって、基板上に温度分布をつ
ける。Ga源にはトリエチルガリウム、As源には熱分
解したアルシンを用いる。
A temperature distribution is provided on the substrate by changing the scanning speed of the laser light on the line at a constant acceleration. Triethylgallium is used as the Ga source, and thermally decomposed arsine is used as the As source.

【0019】レーザ照射部では図5(b)に示すように
基板温度の分布が形成される。その結果、レーザ照射部
では図5(a)に示すように電子濃度に6×1017cm
-3から2×1019cm-3の分布をもつ膜が形成される。
In the laser irradiation part, a substrate temperature distribution is formed as shown in FIG. 5 (b). As a result, in the laser irradiation part, the electron concentration was 6 × 10 17 cm as shown in FIG.
A film with a distribution of -3 to 2 x 10 19 cm -3 is formed.

【0020】(実施例2)有機金属分子線エピタキシャ
ル装置を用いて、基板温度500℃のInP基板上にア
ルゴンレーザ(波長514.5nm、強度10W)をス
ポット照射しながらジエチル亜鉛を供給する。In源に
はトリメチルインジウム、P源には熱分解したホスフィ
ンを用いる。
Example 2 Using an organometallic molecular beam epitaxial apparatus, diethyl zinc is supplied onto an InP substrate having a substrate temperature of 500 ° C. while spot-irradiating an argon laser (wavelength 514.5 nm, intensity 10 W). Trimethylindium is used as the In source, and thermally decomposed phosphine is used as the P source.

【0021】レーザ照射部では100℃の温度上昇があ
り、その結果正孔濃度がレーザ照射部で3×1017cm
-3、非照射部で5×1018cm-3となる。
There is a temperature rise of 100 ° C. in the laser irradiation part, and as a result, the hole concentration is 3 × 10 17 cm in the laser irradiation part.
-3, in non-irradiated portion becomes 5 × 10 18 cm -3.

【0022】(実施例3)有機金属分子線エピタキシャ
ル装置を用いて、基板温度500℃のInP基板上にア
ルゴンレーザ(波長514.5nm、強度10W)をス
ポット照射しながらトリエチル錫を供給する。In源に
はトリメチルインジウム、P源には熱分解したホスフィ
ンを用いる。
Example 3 Using an organometallic molecular beam epitaxial apparatus, triethyltin is supplied onto an InP substrate having a substrate temperature of 500 ° C. while spot-irradiating an argon laser (wavelength 514.5 nm, intensity 10 W). Trimethylindium is used as the In source, and thermally decomposed phosphine is used as the P source.

【0023】レーザ照射部では基板温度が100℃上昇
し、その結果電子濃度は、レーザ照射部で4×1017
-3、非照射部で2×1018cm-3となる。
The substrate temperature rises by 100 ° C. in the laser irradiation part, and as a result, the electron concentration is 4 × 10 17 c in the laser irradiation part.
m -3, with non-irradiated portion becomes 2 × 10 18 cm -3.

【0024】(実施例4)分子線エピタキシャル装置を
用いて、基板温度500℃のGaAs基板上にYAGレ
ーザ(波長1.08μm、強度5W)をスポットで照射
しながら、GaAs薄膜を成長させている最中にジエチ
ルテルルとジエチル亜鉛の2種類のドーピングガス原料
を供給する。
Example 4 A GaAs thin film is grown on a GaAs substrate having a substrate temperature of 500 ° C. by spot irradiation with a YAG laser (wavelength 1.08 μm, intensity 5 W) using a molecular beam epitaxial apparatus. During the process, two types of doping gas raw materials, diethyl tellurium and diethyl zinc, are supplied.

【0025】Ga源には金属Ga、As源には金属As
を用いる。YAGレーザ照射部は約100℃温度上昇
し、その結果、YAGレーザ照射部では、電子濃度1×
1019cm-3のN型となり、非照射部では正孔濃度2×
1016cm-3のP型となる。
Metal Ga is used for the Ga source and metal As is used for the As source.
To use. The temperature of the YAG laser irradiation section rises by about 100 ° C. As a result, the YAG laser irradiation section has an electron concentration of 1 ×.
10 19 cm -3 N-type, hole concentration 2 × in non-irradiated area
It becomes a P-type of 10 16 cm -3 .

【0026】(実施例5)有機金属エピタキシャル装置
を用いて、基板温度500℃のInP基板上にアルゴン
レーザ(波長514.5nm、強度5W)をスポットで
照射しながらInP薄膜を成長させている最中にテトラ
エチル錫,ジエチルベリリウムの2種類のドーピングガ
ス原料を供給する。
(Embodiment 5) An InP thin film is grown on an InP substrate having a substrate temperature of 500 ° C. by spot irradiation with an argon laser (wavelength 514.5 nm, intensity 5 W) using an organic metal epitaxial device. Two kinds of doping gas raw materials, tetraethyltin and diethyl beryllium, are supplied into the inside.

【0027】ジエチルベリリウムは、P型ドーパントで
InPへのドーピング量は基板温度によらず一定で2×
1018cm-3である。インジウム源にはトリメチルイン
ジウム、P源には熱分解したホスフィンを用いる。
Diethyl beryllium is a P-type dopant, and the doping amount of InP is constant at 2 × regardless of the substrate temperature.
It is 10 18 cm -3 . Trimethylindium is used as the indium source, and thermally decomposed phosphine is used as the P source.

【0028】レーザ照射部では100℃温度上昇し、そ
の結果非照射部では半絶縁性となりレーザ照射部では正
孔濃度1.5×1018cm-3のP型となる。
The temperature of the laser irradiated portion rises by 100 ° C., and as a result, the non-irradiated portion becomes semi-insulating and becomes a P type with a hole concentration of 1.5 × 10 18 cm −3 .

【0029】(実施例6)有機金属気相成長装置を用い
て、基板温度550℃のGaAs基板上にエキシマレー
ザ(波長293nm、強度10W)をビームスキャン法
により線状に照射しながらGaAs薄膜を成長している
最中に、ジエチルテルルとジエチル亜鉛の2種類のドー
ピングガス原料を供給する。Ga源にはトリメチルガリ
ウム、As源にはアルシンを用いる。
Example 6 Using a metal-organic vapor phase epitaxy apparatus, a GaAs thin film was formed on a GaAs substrate having a substrate temperature of 550 ° C. while linearly irradiating an excimer laser (wavelength 293 nm, intensity 10 W) by a beam scanning method. During the growth, two types of doping gas raw materials, diethyl tellurium and diethyl zinc, are supplied. Trimethylgallium is used for the Ga source and arsine is used for the As source.

【0030】レーザ照射部では一様に約50℃上昇し、
その結果レーザ照射部の膜は一様に電子濃度1×1019
cm-3のN型となり非照射部ではP型とN型のドープ量
がほぼ等しくなり半絶縁性となる。
At the laser irradiation part, the temperature rises uniformly by about 50 ° C.,
As a result, the film in the laser irradiation part has a uniform electron concentration of 1 × 10 19.
The N-type and become non-irradiated portion of cm -3 becomes semi-insulating become approximately equal doping amount of P-type and N-type.

【0031】(実施例7)ガスソース分子線エピタキシ
装置を用いて、基板温度450℃のInP基板上にYA
Gレーザ(波長1.08μm、強度5W)をスポットで
照射しながらInP薄膜を成長させている最中にP型ド
ーパントとして金属ベリリウムを原料とした分子線(分
子線セルの温度1000℃)とN型ドーパントにジエチ
ルテルルを供給する。
Example 7 Using a gas source molecular beam epitaxy apparatus, YA was formed on an InP substrate having a substrate temperature of 450 ° C.
During the growth of the InP thin film while irradiating a spot with a G laser (wavelength 1.08 μm, intensity 5 W), a molecular beam (temperature of molecular beam cell 1000 ° C.) and N made of metal beryllium as a P-type dopant are used. Provide diethyl tellurium as a mold dopant.

【0032】ドーピング用有機金属ガス原料はジエチル
テルル1種類であり、インジウム源には金属インジウ
ム、P源には熱分解したホスフィンを用いる。図6にジ
エチルテルルによるN型ドーピング量の基板温度依存性
を示す。レーザ照射部では約100℃の温度上昇があ
る。
One kind of diethyl tellurium is used as the starting material for the organometallic gas for doping, metallic indium is used for the indium source, and thermally decomposed phosphine is used for the P source. FIG. 6 shows the substrate temperature dependence of the N-type doping amount by diethyl tellurium. There is a temperature rise of about 100 ° C. in the laser irradiation part.

【0033】金属ベリリウムの場合、ドーピング量は基
板温度によらず1×1019cm-3で一定である。そのた
めレーザ照射部では、N型とP型のドーピング領域がほ
ぼ等しくなり相殺され膜は半絶縁性となり、非照射部で
は正孔濃度1×1019cm-3のP型となる。
In the case of metal beryllium, the doping amount is constant at 1 × 10 19 cm -3 regardless of the substrate temperature. Therefore, in the laser irradiation unit, N-type and P-type substantially equal now-canceled film doped region of becomes semi-insulating, the P-type hole concentration of 1 × 10 19 cm -3 in the non-irradiated portion.

【0034】[0034]

【発明の効果】以上のように本発明では、半導体薄膜へ
のドーピング量と伝導型を面内方向に制御することが可
能となる。したがって、縦型トランジスタ,横注入型面
発光レーザ,縦型ドーピング超格子の製造に有用である
ばかりでなく、OEICのような高機能な半導体ディバ
イスの製造にも有効であるという効果がある。
As described above, according to the present invention, it is possible to control the doping amount and the conductivity type of the semiconductor thin film in the in-plane direction. Therefore, it is not only useful for manufacturing vertical transistors, lateral injection type surface emitting lasers, and vertical doping superlattices, but also effective for manufacturing high-performance semiconductor devices such as OEICs.

【図面の簡単な説明】[Brief description of drawings]

【図1】ジエチルテルルを用いてGaAsの薄膜中にN
型ドーピングするときのドーピング量と基板温度の関係
を示す相関図である。
FIG. 1 shows N in a thin film of GaAs using diethyl tellurium.
FIG. 4 is a correlation diagram showing the relationship between the doping amount and the substrate temperature when performing type doping.

【図2】ジエチル亜鉛を用いてGaAsの薄膜中にP型
ドーピングするときのドーピング量と基板温度の関係を
示す相関図である。
FIG. 2 is a correlation diagram showing a relationship between a doping amount and a substrate temperature when P-type doping is performed on a GaAs thin film using diethylzinc.

【図3】テトラエチル錫を用いてInPの薄膜中にN型
ドーピングするときのドーピング量と基板温度の関係を
示す相関図である。
FIG. 3 is a correlation diagram showing a relationship between a doping amount and a substrate temperature when N-type doping is performed on a thin film of InP using tetraethyltin.

【図4】ジエチル亜鉛を用いてInPの薄膜中にP型ド
ーピングするときのドーピング量と基板温度の関係を示
す相関図である。
FIG. 4 is a correlation diagram showing a relationship between a doping amount and a substrate temperature when P-type doping is performed on a thin film of InP using diethylzinc.

【図5】基板温度500℃のGaAs基板上にGaAs
の薄をの成長させている最中にジエチルテルルを供給し
ながらその基板上にアルゴンレーザを線状に照射し、基
板温度に分布を形成したときのレーザ照射部の位置と基
板温度及び電子濃度の関係を示す相関図である。
FIG. 5: GaAs on a GaAs substrate with a substrate temperature of 500 ° C.
The position of the laser irradiation part and the substrate temperature and electron concentration when the substrate temperature was distributed by linearly irradiating the substrate with argon laser while supplying diethyl tellurium during the growth of It is a correlation diagram showing the relationship of.

【図6】ジエチルテルルを用いてInPの薄膜中にN型
ドーピングするときのドーピング量と基板温度の関係を
示す相関図である。
FIG. 6 is a correlation diagram showing the relationship between the doping amount and the substrate temperature when N-type doping is performed on an InP thin film using diethyl tellurium.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体薄膜の形成方法において、 前記半導体薄膜を半導体基板上に成長させている最中に
ドーピング用ガス原料を導入し、 前記ドーピング用ガス原料を導入するのと同時に前記半
導体基板上にレーザ光を照射して温度分布を形成するこ
とを特徴とする半導体薄膜形成方法。
1. A method for forming a semiconductor thin film, wherein a doping gas raw material is introduced during the growth of the semiconductor thin film on the semiconductor substrate, and the doping gas raw material is introduced at the same time as the doping gas raw material is introduced on the semiconductor substrate. A method for forming a semiconductor thin film, which comprises irradiating a laser beam on the substrate to form a temperature distribution.
【請求項2】 請求項1記載の半導体薄膜形成方法にお
いて、前記ドーピング用ガス原料の導入は、異なった伝
導型用の2種類のドーピングガス原料を導入することを
特徴とする半導体薄膜形成方法。
2. The method for forming a semiconductor thin film according to claim 1, wherein the doping gas raw materials are introduced by introducing two types of doping gas raw materials for different conductivity types.
JP32839291A 1991-11-18 1991-11-18 Formation of semiconductor thin film Pending JPH05144744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32839291A JPH05144744A (en) 1991-11-18 1991-11-18 Formation of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32839291A JPH05144744A (en) 1991-11-18 1991-11-18 Formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH05144744A true JPH05144744A (en) 1993-06-11

Family

ID=18209744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32839291A Pending JPH05144744A (en) 1991-11-18 1991-11-18 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH05144744A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046708B2 (en) 2002-11-28 2006-05-16 Sharp Kabushiki Kaisha Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JP2009255013A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd Photocatalyst
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8803203B2 (en) 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046708B2 (en) 2002-11-28 2006-05-16 Sharp Kabushiki Kaisha Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JP2009255013A (en) * 2008-04-21 2009-11-05 Fuji Electric Holdings Co Ltd Photocatalyst
US8803203B2 (en) 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US9337828B2 (en) 2010-02-26 2016-05-10 Eastman Kodak Company Transistor including reentrant profile
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance

Similar Documents

Publication Publication Date Title
JPH05144744A (en) Formation of semiconductor thin film
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
US5061643A (en) Method of doping a growing crystalline semiconductor film
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
US3941624A (en) Sn-Doped group III(a)-v(a) Ga-containing layers grown by molecular beam epitaxy
US4847216A (en) Process for the deposition by epitaxy of a doped material
JPH1053497A (en) Production of zinc selenide crystal doped at high concentration
KR960004591B1 (en) Doped crystal growing method
JP2946280B2 (en) Semiconductor crystal growth method
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
Iga et al. Selective growth of III-V semiconductor compounds by laser-assisted epitaxy
JPH0337186A (en) Method for forming compound semiconductor thin film
JP2651751B2 (en) Compound semiconductor crystal growth method
JPH04306821A (en) Compound semiconductor crystal growth method
JP3047523B2 (en) Selective epitaxial growth method
JP2646966B2 (en) Method for growing thin film of III-V compound semiconductor
JPS63143810A (en) Vapor growth of compound semiconductor
JPH0590160A (en) Growing method of crystal
JPH0581197B2 (en)
JPH0267721A (en) Manufacture of compound semiconductor thin film
JP3396317B2 (en) Compound semiconductor crystal growth method and impurity doping method
JPH0722344A (en) Vapor growth method
JPS62137871A (en) Manufacture of compound semiconductor device
JPH04317320A (en) Manufacture of semiconductor device containing aluminum
JPH07326576A (en) Thin film formation of iii-v compound semiconductor