JPH04187597A - Production of thin film of gallium nitride - Google Patents

Production of thin film of gallium nitride

Info

Publication number
JPH04187597A
JPH04187597A JP31872890A JP31872890A JPH04187597A JP H04187597 A JPH04187597 A JP H04187597A JP 31872890 A JP31872890 A JP 31872890A JP 31872890 A JP31872890 A JP 31872890A JP H04187597 A JPH04187597 A JP H04187597A
Authority
JP
Japan
Prior art keywords
substrate
thin film
gallium nitride
gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31872890A
Other languages
Japanese (ja)
Inventor
Akira Ueno
明 上野
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31872890A priority Critical patent/JPH04187597A/en
Publication of JPH04187597A publication Critical patent/JPH04187597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve uniformity, flatness and electrical characteristics of thin film of gallium nitride by changing heating temperature of substrate at two stages and irradiating the surface of the substrate with light rays at the first stage. CONSTITUTION:A substrate 3 is set in a substrate holder 4 and a vacuum container 1 is evacuated into <=10<-7>Torr by a vacuum pump 2. Then the substrate 3 is heated to 500-750 deg.C by a heater 5, a lamp 9 is it, light rays 10a containing >=336nm are made into parallel rays by a collimator 11, divided into two parts by a half mirror 12, the substrate is irradiated with light rays 10 passing through a window 14 and a power meter 13 is irradiated with light rays 10c to measure intensity. Then a Ga(CH3)3 gas 6a and a NH3 gas 6b are fed through mass flow controllers 7a and 7b and nozzles 8a and 8b to the surface of the substrate 3. Simultaneously, a H2 gas 6c is fed from a nozzle 8c to the container 1 to form a thin film of GaN on the substrate 3. Then feed of the raw material gas is stopped, the container 1 is evacuated into <=10-7Torr by the pump 2, the substrate 3 is heated to 900-1,100 deg.C and the gases 6a, 6b and 6c are fed from the nozzles 8a, 8b and 8c to grow crystal of the thin film of GaN.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は青色発光ダイオードや青色半導体レーザへの応
用か期待される窒化ガリウム薄膜の製造方法に関し、特
に均一で平坦性のよい窒化ガリウム薄膜を製造する方法
に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing a gallium nitride thin film, which is expected to be applied to blue light emitting diodes and blue semiconductor lasers, and particularly relates to a method for producing a gallium nitride thin film that is uniform and has good flatness. It relates to a manufacturing method.

「従来の技術] 窒化ガリウム(G a N)は、約3.4eVの塩エネ
ルギーギャップをもつ直接遷移型の化合物半導体で青色
から紫外領域にわたる発光素子として有望な材料である
"Prior Art" Gallium nitride (G a N) is a direct transition type compound semiconductor with a salt energy gap of about 3.4 eV, and is a promising material as a light emitting element in the blue to ultraviolet region.

従来、GaN薄膜の製造法として有機金属気相成長(M
OCVD)法が知られている。これは、トリメチルガリ
ウム(G a (CH3) 3 )とアンモニア(NH
3)を1000℃程度に加熱した基板(通常、サファイ
ア(α−A1203))表面上で分解、反応させ、Ga
N薄膜を製造しようとするものである。
Conventionally, metal organic vapor phase epitaxy (M
OCVD) method is known. This is trimethylgallium (G a (CH3) 3 ) and ammonia (NH
3) is decomposed and reacted on the surface of a substrate (usually sapphire (α-A1203)) heated to about 1000°C,
The purpose is to manufacture an N thin film.

[発明が解決しようとする課題] しかし、GaNとα−A1203の格子定数の整合性は
悪く、また熱膨張係数の差も大きいため、製造したGa
N薄膜にはピットやクラックが入りやすく、均一で平坦
性のよいGaN薄膜の製造が困難であった。
[Problems to be solved by the invention] However, since the lattice constants of GaN and α-A1203 have poor matching, and the difference in thermal expansion coefficient is large, the produced Ga
N thin films are prone to pits and cracks, making it difficult to produce uniform and flat GaN thin films.

本発明は、前記課題を解決するため、加熱された基板表
面にガリウムを含む原料及び窒素を含む原料を供給して
窒化ガリウム薄膜を製造する方法において、特定の製造
条件を採用することにより、均一で平坦性のよい窒化ガ
リウム(G a N)薄膜の製造方法を提供することを
目的とする。
In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a gallium nitride thin film by supplying a gallium-containing raw material and a nitrogen-containing raw material to the surface of a heated substrate, by adopting specific manufacturing conditions. An object of the present invention is to provide a method for manufacturing a gallium nitride (GaN) thin film with good flatness.

[課題を解決するための手段] 前記目的を達成するため、本発明の窒化ガリウム薄膜の
製造方法は、加熱された基板表面にガリウムを含む原料
及び窒素を含む原料を供給して窒化ガリウム薄膜を製造
する方法において、前記基板の加熱温度を2段階に変化
させ、第1段階の基板温度を第2段階の基板温度より低
温にするとともに、少なくとも第1段階において前記基
板表面に光を照射させることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for producing a gallium nitride thin film of the present invention supplies a gallium-containing raw material and a nitrogen-containing raw material to a heated substrate surface to form a gallium nitride thin film. In the manufacturing method, the heating temperature of the substrate is changed in two stages, the substrate temperature in the first stage is lower than the substrate temperature in the second stage, and the surface of the substrate is irradiated with light in at least the first stage. It is characterized by

前記本発明の構成においては、第1段階における照射光
が、366 nm以下の波長を含む光であることが好ま
しい。
In the configuration of the present invention, it is preferable that the irradiation light in the first stage is light containing a wavelength of 366 nm or less.

また、前記本発明の構成においては、第1段階の基板温
度を、500℃〜750°Cの範囲に設定することが好
ましい。
Further, in the configuration of the present invention, it is preferable that the substrate temperature in the first stage is set in a range of 500°C to 750°C.

また、前記本発明の構成においては、第2段階の基板温
度を、900℃〜11000Cの範囲に設、定すること
か好ましい。
Further, in the configuration of the present invention, it is preferable that the substrate temperature in the second stage is set within a range of 900°C to 11000°C.

また、前記本発明の構成においては、第2段階の窒化ガ
リウム薄膜成長中に、Se、  Si、  Ge。
Furthermore, in the configuration of the present invention, Se, Si, and Ge are added during the second stage of growing the gallium nitride thin film.

Snから選ばれる少なくとも1種類を含む原料を基板表
面に供給することが好ましい。
It is preferable to supply a raw material containing at least one type selected from Sn to the substrate surface.

また、前記本発明の構成においては、第2段階の窒化ガ
リウム薄膜成長中に、Cd、  Ge、  Be。
Furthermore, in the configuration of the present invention, Cd, Ge, and Be are added during the second stage of growing the gallium nitride thin film.

Mg、Zn、Liから選ばれる少なくとも1種類を含む
原料を基板表面に供給することが好ましい。
It is preferable to supply a raw material containing at least one selected from Mg, Zn, and Li to the surface of the substrate.

[作用] 前記本発明方法の構成によれば、基板の加熱温度を2段
階に変化させ、第1段階の基板温度を第2段階の基板温
度より低温にして積層するので、これによって得られる
積層構造のGaN薄膜は、基板の影響を受けに<<、表
面モフォロジーおよび結晶性が良好で、優れた電気的光
学的特性を示す薄膜とすることができる。また、少なく
とも第1段階において前記基板表面に光を照射させるの
で、光を照射して形成されたGaN薄膜はその後の真空
中での加熱においても非常に安定で鏡面を維持すること
ができる。
[Function] According to the configuration of the method of the present invention, the heating temperature of the substrate is changed in two stages, and the lamination is performed with the substrate temperature in the first stage being lower than the substrate temperature in the second stage, so that the laminated layer obtained thereby The GaN thin film of this structure has good surface morphology and crystallinity under the influence of the substrate, and can be made into a thin film that exhibits excellent electrical and optical properties. Furthermore, since the substrate surface is irradiated with light in at least the first step, the GaN thin film formed by irradiation with light is very stable and can maintain its mirror surface even during subsequent heating in vacuum.

また、第1段階における照射光が、366 nm以下の
波長を含む光であるという本発明の好ましい構成によれ
ば、成長中のGaN薄膜に吸収され、原料の分解、反応
を促進して低温においても結晶性の良好なGaN薄膜が
形成できる。
Furthermore, according to a preferred configuration of the present invention in which the irradiation light in the first stage is light containing a wavelength of 366 nm or less, it is absorbed by the growing GaN thin film, promotes the decomposition and reaction of the raw material, and is heated at low temperatures. Also, a GaN thin film with good crystallinity can be formed.

また、第1段階の基板温度を、500℃〜750°Cの
範囲に設定するという本発明の構成によれば、得られる
膜の結晶性および平坦性を良好なものとすることができ
る。
Further, according to the configuration of the present invention in which the substrate temperature in the first stage is set in the range of 500° C. to 750° C., the obtained film can have good crystallinity and flatness.

また、第2段階の基板温度を、900℃〜1100°C
の範囲に設定するという本発明の構成によれば、得られ
る膜の電気的光学特性を良好なものとすることができ、
空孔も少なく不純物ドーピングに悪影響を与えることも
少ない。
In addition, the substrate temperature in the second stage was set to 900°C to 1100°C.
According to the configuration of the present invention in which the temperature is set within the range of , the obtained film can have good electrical and optical properties,
There are few vacancies, and there is little adverse effect on impurity doping.

また、第2段階の窒化ガリウム薄膜成長中に、Se、S
i、Ge、Snから選ばれる少なくとも1種類を含む原
料を基板表面に供給するという本発明の構成によれば、
n型伝導のGaN薄膜(キャリヤ密度1018以上)を
得ることができる。
Also, during the second stage of gallium nitride thin film growth, Se, S
According to the configuration of the present invention in which a raw material containing at least one selected from i, Ge, and Sn is supplied to the substrate surface,
A GaN thin film with n-type conductivity (carrier density of 1018 or more) can be obtained.

また、第2段階の窒化ガリウム薄膜成長中に、Cd、G
e、Be、Mg、Zn、Liから選ばれる少なくとも1
種類を含む原料を基板表面に供給するという本発明の好
ましい構成によれば、p型伝導のGaN薄膜(キャリヤ
密度1018以上)を得ることかできる。
Also, during the second stage of gallium nitride thin film growth, Cd, G
At least one selected from e, Be, Mg, Zn, and Li
According to the preferred configuration of the present invention, in which a raw material containing various types of materials is supplied to the substrate surface, it is possible to obtain a p-type conductive GaN thin film (carrier density of 10 18 or more).

[実施例] 以下、本発明を実施例により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

本実施例では、GaN薄膜を製造する場合、まず、従来
の方法より低い温度(例えば500℃〜750℃)に加
熱された基板表面にガリウム原料及び窒素原料を同時に
供給しつつ、基板表面に光(例えばキセノン(Xe)ラ
ンプ光)を照射してGaN薄膜を形成する。この光を照
射して形成されたGaN薄膜は従来法に比べてかなり低
温で形成されたにもかかわらず結晶性に優れかつ鏡面の
表面モフォロジーを示した。さらには、光を照射しない
で同じ温度で形成されたGaN薄膜がその後の真空中で
の加熱(1000℃程度)によって基板から剥がれるの
に対し、光を照射して形成されたGaN薄膜はその後の
真空中での加熱においても非常に安定で鏡面を維持する
ことを本発明者らは確認した。
In this example, when manufacturing a GaN thin film, first, a gallium raw material and a nitrogen raw material are simultaneously supplied to a substrate surface heated to a temperature lower than that in the conventional method (for example, 500°C to 750°C), and light is applied to the substrate surface. (For example, xenon (Xe) lamp light) is irradiated to form a GaN thin film. The GaN thin film formed by irradiation with this light had excellent crystallinity and a mirror surface morphology, even though it was formed at a much lower temperature than in conventional methods. Furthermore, while a GaN thin film formed at the same temperature without irradiation with light peels off from the substrate by subsequent heating in vacuum (approximately 1000°C), a GaN thin film formed with light irradiation peels off from the substrate afterward. The present inventors have confirmed that the material is extremely stable and maintains a mirror surface even when heated in a vacuum.

しかしながら、この光を照射しつつ低温で形成されたG
aN薄膜のままでは従来法に比べ電気的光学的特性が劣
るため、本発明者らは、光を照射して低温で形成された
GaN薄膜の上に従来法と同程度の温度(例えば900
℃〜11006C)でGaN薄膜を積層することを試み
た。
However, while irradiating this light, G formed at low temperature
Since the electro-optical properties of an aN thin film are inferior to those of conventional methods, the present inventors applied heat treatment to a GaN thin film formed at a low temperature by irradiation with light at a temperature similar to that of the conventional method (for example, 900°C).
An attempt was made to deposit GaN thin films at a temperature of 11,006°C.

その結果、この積層構造のGa・N薄膜は基板の影響を
受けることなく表面モフオロジー、結晶性か非常に良好
で、優れた電気的光学的特性を示すことを本発明者らは
確認した。
As a result, the present inventors confirmed that the Ga/N thin film with this laminated structure has very good surface morphology and crystallinity without being affected by the substrate, and exhibits excellent electrical and optical properties.

第1図は本発明の製造方法の一実施例で用いられるMO
CVD装置の構造を示す概略図である。
FIG. 1 shows an MO used in an embodiment of the manufacturing method of the present invention.
1 is a schematic diagram showing the structure of a CVD apparatus.

同図において、1は真空容器、2は真空ポンプ、3は基
板、4は基板ホルダ、5はヒータ、6aはGa’(CH
3) 3ガス、6bはNH3ガス、6CはH2ガス、7
a、b、cはマスフローコントローラ、8a、b、cは
ノズル、9はXeランプ、lQa、b、C,はXeラン
プ光、11はコリメータ、12はハーフミラ−113は
パワーメータ、14は窓である。
In the figure, 1 is a vacuum container, 2 is a vacuum pump, 3 is a substrate, 4 is a substrate holder, 5 is a heater, and 6a is Ga' (CH
3) 3 gas, 6b is NH3 gas, 6C is H2 gas, 7
a, b, c are mass flow controllers, 8a, b, c are nozzles, 9 is a Xe lamp, lQa, b, C, are Xe lamp lights, 11 is a collimator, 12 is a half mirror, 113 is a power meter, 14 is a window be.

実際の薄膜成長は次のような手順で行なう。まず表面を
清浄にした基板3を基板ホルダ4に装着する。この場合
基板3は例えばα−AI203とする。次に真空容器1
を真空ポンプ2により例えば10’Torr以下程度の
高真空まで排気する。
Actual thin film growth is performed in the following steps. First, the substrate 3 whose surface has been cleaned is mounted on the substrate holder 4. In this case, the substrate 3 is made of α-AI203, for example. Next, vacuum container 1
is evacuated by the vacuum pump 2 to a high vacuum of, for example, 10' Torr or less.

次に基板3をヒータ5により第1の結晶成長に適切な温
度にする。この場合には例えば700°Cとする。次に
Xeランプ9を点灯する。Xeランプ光10aはコリメ
ータ11により平行光にされ、その後、ハーフミラ−1
2により同強度の二つの光10b、10cとなり、光1
0bは窓14を通って基板3に照射される。光10cの
強度をパワーメータ13により測定することにより、基
板3に照射される光10bの強度を知る。光10bの強
度をXeランプ9を調節することにより、第1の結晶成
長に必要な強度にする。この場合例えは500mW/a
lとする。次にGa (CH3)3カス6a及びNH3
カス6bの流量をマスフローコントローラ7a、bによ
り適当な流量比になるよう調節し、ノズル8a、bによ
り基板3表面に供給する。また、同時にノズル8cより
H2ガス6Cを真空容器1内に導入する。この場合の流
量は、例えばG a (CH3) 3ガス6aが0.3
secm、NHガス6bが270secm、H2ガス6
cが50secmとする。用いたXeランプ光は第2図
に示すようにGaNのバンドギャップに相当する波長(
室温で366nm)以下の波長の光を含んでいるため、
成長中のGaN薄膜に吸収され、原料の分解、反応を促
進して低温においても結晶性の良好なGaN薄膜が形成
できる。
Next, the substrate 3 is brought to a temperature suitable for the first crystal growth using the heater 5. In this case, the temperature is set to 700°C, for example. Next, the Xe lamp 9 is turned on. The Xe lamp light 10a is made into parallel light by a collimator 11, and then a half mirror 1
2 results in two lights 10b and 10c with the same intensity, and light 1
0b is irradiated onto the substrate 3 through the window 14. By measuring the intensity of the light 10c with the power meter 13, the intensity of the light 10b irradiated onto the substrate 3 is known. By adjusting the intensity of the light 10b using the Xe lamp 9, the intensity required for the first crystal growth is made. In this case, the example is 500mW/a
Let it be l. Next, Ga (CH3)3 residue 6a and NH3
The flow rate of the waste 6b is adjusted to an appropriate flow rate ratio by mass flow controllers 7a, b, and is supplied to the surface of the substrate 3 through nozzles 8a, b. At the same time, H2 gas 6C is introduced into the vacuum container 1 from the nozzle 8c. In this case, the flow rate is, for example, 0.3 for Ga (CH3) 3 gas 6a.
secm, NH gas 6b is 270sec, H2 gas 6
Assume that c is 50 seconds. The Xe lamp light used has a wavelength corresponding to the bandgap of GaN (as shown in Figure 2).
Because it contains light with a wavelength of 366 nm or less at room temperature,
It is absorbed into the growing GaN thin film, accelerates the decomposition and reaction of the raw material, and allows the formation of a GaN thin film with good crystallinity even at low temperatures.

ここで、原料ガスの供給をいったん中止し、真空容器1
を真空ポンプ2により例えば10 ’T 。
At this point, the supply of raw material gas is temporarily stopped, and the
for example 10'T by vacuum pump 2.

rr以下程度の高真空まで排気する。次に基板3をヒー
タ5により第2の結晶成長に適切な温度にする。この場
合には例えば10000Cとする。次にGa (CH3
)3ガス6a及びNH3ガス6bの流量をマスフローコ
ントローラ7a、bl:より適当な流量比になるよう調
節し、ノズル8a、bにより基板3表面に供給する。ま
た、同時にノズル8CよりH2ガス6cを真空容器1内
に導入する。この場合の流量は、例えばG a (CH
3) 3ガス6aが0.3 s c cmXNH3ガス
6bが270sccm、H2ガス6Cが50s+ccm
とする。この場合、Xeランプ9は点灯してもしなくて
もよい。このように第1のGaN薄膜の上に第2のGa
N薄膜を積層させて結晶成長を行なった。
Evacuate to a high vacuum of about rr or less. Next, the substrate 3 is brought to a temperature suitable for second crystal growth using the heater 5. In this case, it is set to 10000C, for example. Next, Ga (CH3
) The flow rates of the NH3 gas 6a and the NH3 gas 6b are adjusted to a more appropriate flow rate ratio between the mass flow controllers 7a and bl, and are supplied to the surface of the substrate 3 through the nozzles 8a and 8b. At the same time, H2 gas 6c is introduced into the vacuum container 1 from the nozzle 8C. The flow rate in this case is, for example, G a (CH
3) 3 gas 6a is 0.3 s c cmX NH3 gas 6b is 270 sccm, H2 gas 6C is 50 s + ccm
shall be. In this case, the Xe lamp 9 may or may not be lit. In this way, the second GaN film is placed on top of the first GaN thin film.
Crystal growth was performed by stacking N thin films.

以上のような方法で製造したGaN薄膜は、均一で平坦
性がよく、また優れた電気的光学的特性を示した。また
、第2の結晶成長中にCd、Ge。
The GaN thin film produced by the method described above was uniform and had good flatness, and exhibited excellent electrical and optical properties. In addition, Cd and Ge are added during the second crystal growth.

Be、Mg、Zn、Liの内の1種類を含む原料気体分
子を基板表面に供給することによって、n型伝導のGa
N薄膜(キャリヤ密度1018以上)が製造できること
を、また、GaN薄膜製造中にSe、Si、Ge、Sn
の内の1種類を含む原料気体分子を基板表面に供給する
ことによって、n型伝導のGaN薄膜(キャリヤ密度1
018以上)が製造できることを確認した。
By supplying raw material gas molecules containing one of Be, Mg, Zn, and Li to the substrate surface, n-type conduction Ga
It was also confirmed that N thin films (carrier density of 1018 or more) can be produced, and that Se, Si, Ge, Sn, etc.
By supplying raw material gas molecules containing one type of
018 or higher) was confirmed to be able to be manufactured.

なお上述の実施例では、H2ガス6Cを用いたが、必ず
しも必要ではないが、H2は反応の促進とGaN薄膜へ
中の炭素原子の混入を防ぐ効果かある。また、原料ガス
は上述の実施例に限らず、ガリウム、窒素を含むもので
あればよい。
Although H2 gas 6C was used in the above embodiment, H2 has the effect of accelerating the reaction and preventing the inclusion of carbon atoms into the GaN thin film, although this is not necessarily necessary. Further, the raw material gas is not limited to the above-mentioned embodiments, and may be any gas containing gallium and nitrogen.

また、上述の実施例では基板としてα−AI。Further, in the above embodiment, α-AI is used as the substrate.

03を用いたがGaAs、Si、SiC等他の基板を用
いてもよい。
Although 03 was used, other substrates such as GaAs, Si, and SiC may also be used.

さらに、光源はXeランプに限らず、GaNのバンドギ
ャップに相当する波長以下の光を含むものであれば同様
の効果が得られる。
Furthermore, the light source is not limited to a Xe lamp, and the same effect can be obtained as long as it contains light with a wavelength equal to or less than the bandgap of GaN.

また、第1の結晶成長の基板温度は、500℃以上75
0℃以下が好適である。500℃以下では膜の結晶性が
悪化する傾向となり、また750℃以上では平坦性が悪
化するする傾向となる。
Further, the substrate temperature for the first crystal growth is 500°C or higher and 75°C.
The temperature is preferably 0°C or lower. At temperatures below 500° C., the crystallinity of the film tends to deteriorate, and at temperatures above 750° C., the flatness tends to deteriorate.

また、第2の結晶成長の基板温度は、900°C以上1
100’Cが好適である。900℃以下では電気的光学
的特性が悪化する傾向となり、1100℃以上では膜中
の窒素の空孔が多くなり不純物ドーピングに悪影響を及
ぼす傾向となる。
Further, the substrate temperature for the second crystal growth is 900°C or higher.
100'C is preferred. Below 900°C, the electrical and optical properties tend to deteriorate, and above 1100°C, the number of nitrogen vacancies in the film increases, which tends to adversely affect impurity doping.

[発明の効果] 以上説明したように、本発明によれば、均一で平坦性の
よい、電気的光学的特性の優れたGaN薄膜を製造する
ことかでき、青色発光ダイオードや青色半導体レーザ製
造に極めて有用である。
[Effects of the Invention] As explained above, according to the present invention, it is possible to manufacture a GaN thin film that is uniform, has good flatness, and has excellent electrical and optical properties, and is suitable for manufacturing blue light emitting diodes and blue semiconductor lasers. Extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例で用いられる光C■D装置の
構造を示す概略図、第2図は本発明の一実施例で用いら
れるXeランプの分光分布図である。 1・・・真空容器、 2・・・真空ポンプ、 3・・・
基板、4・・・基板ホルダ、  5・・・ヒータ、  
6a・・・Ga(CH)  ガス、  6b・・・NH
3ガス、7B、b、c・・・マスフローコントローラ、
3a、b、c・・・ノズル、  9・・・Xeランプ、
lQa、b、c・・・Xeランプ光、 11 ・・・コ
リメータ、  12・・・ハーフミラ−113・・・パ
ワーメータ、  14・・・窓。
FIG. 1 is a schematic diagram showing the structure of an optical CD device used in one embodiment of the present invention, and FIG. 2 is a spectral distribution diagram of a Xe lamp used in one embodiment of the present invention. 1... Vacuum container, 2... Vacuum pump, 3...
Substrate, 4... Substrate holder, 5... Heater,
6a...Ga(CH) gas, 6b...NH
3 gases, 7B, b, c...mass flow controller,
3a, b, c... nozzle, 9... Xe lamp,
lQa, b, c...Xe lamp light, 11...collimator, 12...half mirror 113...power meter, 14...window.

Claims (1)

【特許請求の範囲】 (1)加熱された基板表面にガリウムを含む原料及び窒
素を含む原料を供給して窒化ガリウム薄膜を製造する方
法において、前記基板の加熱温度を2段階に変化させ、
第1段階の基板温度を第2段階の基板温度より低温にす
るとともに、少なくとも第1段階において前記基板表面
に光を照射させることを特徴とする窒化ガリウム薄膜の
製造方法。(2)第1段階における照射光が、366n
m以下の波長を含む光である特許請求の範囲第1項記載
の窒化ガリウム薄膜の製造方法。 (3)第1段階の基板温度を、500℃〜750℃の範
囲に設定した請求項1記載の窒化ガリウム薄膜の製造方
法。 (4)第2段階の基板温度を、900℃〜1100℃の
範囲に設定した請求項1記載の窒化ガリウム薄膜の製造
方法。 (5)第2段階の窒化ガリウム薄膜成長中に、Se、S
i、Ge、Snから選ばれる少なくとも1種類を含む原
料を基板表面に供給する請求項1または4記載の窒化ガ
リウム薄膜の製造方法。(6)第2段階の窒化ガリウム
薄膜成長中に、Cd、Ge、Be、Mg、Zn、Liか
ら選ばれる少なくとも1種類を含む原料を基板表面に供
給する請求項1、4または5記載の窒化ガリウム薄膜の
製造方法。
Scope of Claims: (1) A method for manufacturing a gallium nitride thin film by supplying a gallium-containing raw material and a nitrogen-containing raw material to the heated substrate surface, the heating temperature of the substrate being changed in two stages,
A method for manufacturing a gallium nitride thin film, characterized in that the substrate temperature in the first step is lower than the substrate temperature in the second step, and the surface of the substrate is irradiated with light in at least the first step. (2) The irradiation light in the first stage is 366n
2. The method for producing a gallium nitride thin film according to claim 1, wherein the light includes a wavelength of m or less. (3) The method for manufacturing a gallium nitride thin film according to claim 1, wherein the substrate temperature in the first step is set in a range of 500°C to 750°C. (4) The method for manufacturing a gallium nitride thin film according to claim 1, wherein the substrate temperature in the second stage is set in a range of 900°C to 1100°C. (5) During the second stage of gallium nitride thin film growth, Se, S
5. The method for producing a gallium nitride thin film according to claim 1, wherein a raw material containing at least one selected from i, Ge, and Sn is supplied to the substrate surface. (6) The nitriding method according to claim 1, 4 or 5, wherein a raw material containing at least one selected from Cd, Ge, Be, Mg, Zn, and Li is supplied to the substrate surface during the second step of growing the gallium nitride thin film. Method for manufacturing gallium thin film.
JP31872890A 1990-11-22 1990-11-22 Production of thin film of gallium nitride Pending JPH04187597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31872890A JPH04187597A (en) 1990-11-22 1990-11-22 Production of thin film of gallium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31872890A JPH04187597A (en) 1990-11-22 1990-11-22 Production of thin film of gallium nitride

Publications (1)

Publication Number Publication Date
JPH04187597A true JPH04187597A (en) 1992-07-06

Family

ID=18102295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31872890A Pending JPH04187597A (en) 1990-11-22 1990-11-22 Production of thin film of gallium nitride

Country Status (1)

Country Link
JP (1) JPH04187597A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496766A (en) * 1994-03-28 1996-03-05 Pioneer Electronic Corporation Method for producing a luminous element of III-group nitride
JPH0878728A (en) * 1994-08-22 1996-03-22 Korea Res Inst Of Chem Technol Growth of heteroepitaxial blue light-emitting gallium nitride
WO1997008356A3 (en) * 1995-08-18 1997-04-24 Steven P Denbaars Modified metalorganic chemical vapor deposition of group III-V thin layers
US7473316B1 (en) * 2000-04-12 2009-01-06 Aixtron Ag Method of growing nitrogenous semiconductor crystal materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496766A (en) * 1994-03-28 1996-03-05 Pioneer Electronic Corporation Method for producing a luminous element of III-group nitride
JPH0878728A (en) * 1994-08-22 1996-03-22 Korea Res Inst Of Chem Technol Growth of heteroepitaxial blue light-emitting gallium nitride
WO1997008356A3 (en) * 1995-08-18 1997-04-24 Steven P Denbaars Modified metalorganic chemical vapor deposition of group III-V thin layers
US7473316B1 (en) * 2000-04-12 2009-01-06 Aixtron Ag Method of growing nitrogenous semiconductor crystal materials

Similar Documents

Publication Publication Date Title
US4855249A (en) Process for growing III-V compound semiconductors on sapphire using a buffer layer
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US5300185A (en) Method of manufacturing III-V group compound semiconductor
US6334901B1 (en) Apparatus for forming semiconductor crystal
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH04187597A (en) Production of thin film of gallium nitride
JPH03196643A (en) Vapor phase epitaxy
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JP3000143B2 (en) Compound semiconductor film forming method
JP3743013B2 (en) Epitaxial wafer manufacturing method
JPS61260622A (en) Growth for gaas single crystal thin film
JPH0442891A (en) Production of semiconductor thin film
JPS61247686A (en) Preparation of semiconductor single crystal
JP3182584B2 (en) Compound thin film forming method
JPH04187598A (en) Production of thin film of gallium nitride
JP2793939B2 (en) Method for growing compound semiconductor crystal
JPH04170397A (en) Production of gallium nitride thin film
JPH01215014A (en) Growth of semiconductor crystal
JPH04170398A (en) Production of gallium nitride thin film
JP2853631B2 (en) Method for producing gallium nitride single crystal thin film
JPH0744154B2 (en) Light irradiation type low temperature MOCVD method and apparatus
JP4763011B2 (en) Method for producing gallium nitride single crystal
JPH0629228A (en) Crystal growth method
JPS63205921A (en) Manufacture of optical semiconductor element