JPS61247686A - Preparation of semiconductor single crystal - Google Patents

Preparation of semiconductor single crystal

Info

Publication number
JPS61247686A
JPS61247686A JP8882885A JP8882885A JPS61247686A JP S61247686 A JPS61247686 A JP S61247686A JP 8882885 A JP8882885 A JP 8882885A JP 8882885 A JP8882885 A JP 8882885A JP S61247686 A JPS61247686 A JP S61247686A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
gas
light
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8882885A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kokubu
国分 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8882885A priority Critical patent/JPS61247686A/en
Publication of JPS61247686A publication Critical patent/JPS61247686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily add N2 to a desired concentration at low temp. in a process for the epitaxial growth of a semiconductor single crystal by a vapor growth method of an organometallic compd. by adding nitrogenous impurity generated by the decomposition of NH3-contg. gas by irradiating with light. CONSTITUTION:A susceptor 2 supported by a rotary shaft 5 is provided in a tubular reaction vessel 1 and a substrate 3 for growing a single crystal is placed on the susceptor 2; the substrate 3 is held at an appropriate temp. by heating with a high frequency coil 4. Then, an organometallic compd. and a metal hydride are fed as starting material gas from an introducing hole 6 for the starting material gas 7, which are thermally decomposed on the substrate 3 to form epitaxial growth layer. At the same time, gaseous NH3 10 is fed from an introducing hole 9 of the impurity starting material gas, and the NGH3 gas is irradiated with ultraviolet rays generated by an ultraviolet ray generator 11 through a light introducing window 12. Thus, the NH3 is decomposed and N2 is added to the epitaxial growth layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は有機金属気相成長(MOCVD)法(二より基
板上に不純物を含むエピタキシャル層を成長させる方法
(−関するものでらる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a metal organic chemical vapor deposition (MOCVD) method (a method for growing an epitaxial layer containing impurities on a substrate).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

育成金属化合物と金属水素化物の熱分解反応を利用する
エピタキシャル層の製造方法はMOCVD法として仰ら
れておシ、原料がすべてガス状で供給されるためエピタ
キシャル層の膜厚や組成などの制御が容易であシ、生産
上惚めて有力な方法として実用化が進められている。
The method for manufacturing epitaxial layers that utilizes the thermal decomposition reaction between a growing metal compound and a metal hydride is referred to as the MOCVD method, and since all raw materials are supplied in gaseous form, it is possible to control the thickness and composition of the epitaxial layer. It is easy to use, and as a promising method for production, it is being put into practical use.

ところで、宵色発光素子材料としてZnSやZn5e等
のn−via化合物が注目されているが、p型軍導を示
すものを得ることは離しくpn接合が央現されていない
。このため、尚効率の青色光光累子が実現されるまでに
は至っていない。この原因としてはアクセプタ性不純物
を添加しても欠111f3にj:9補償されてしまうこ
とが考えられている。そこで、低温成長が可能なMOC
VD法(二より欠陥の発生を抑えて■−■族化合物結晶
の成長が試みられている。そして、アンモニアガスを用
いてアクセプタ性不純物として窒素を添加することが試
みられている。しかし、窒素は浅いアクセプタ準位を形
成することは確かめられているが、p型竜導を得るまで
には至っていない。この原因としては300〜400’
C程度の低い成長温度ではアンモニアガスの分解が充分
でなく、成長層中(=取込ま、Bる滋累の量が少量であ
るためと考えられる。
By the way, n-via compounds such as ZnS and Zn5e are attracting attention as materials for emitting light-emitting devices, but it is difficult to obtain compounds exhibiting p-type conductivity, and p-n junctions have not been widely developed. For this reason, an efficient blue light photoconductor has yet to be realized. The reason for this is thought to be that even if an acceptor impurity is added, the j:9 deficiency is compensated for by 111f3. Therefore, MOC that can be grown at low temperature
Attempts have been made to grow ■-■ group compound crystals by suppressing the generation of defects using the VD method (2).An attempt has also been made to add nitrogen as an acceptor impurity using ammonia gas. Although it has been confirmed that a shallow acceptor level is formed in
This is thought to be due to the fact that ammonia gas is not decomposed sufficiently at a growth temperature as low as C, and the amount of B accumulated in the growth layer is small.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題点を解決するため(二成されたも
ので、低温成長(二おいても高濃贋の窒素不純物の添加
を可能とし、4!(二■−■族化合物(二あってはp型
電導を示すエピタキシャルJ−を製造する方法を提供す
るものである。
In order to solve the above-mentioned problems, the present invention has been developed by making it possible to add nitrogen impurities of high concentration in low-temperature growth (2). The object of the present invention is to provide a method for manufacturing epitaxial J- exhibiting p-type conductivity.

〔発明の概要〕[Summary of the invention]

本発明は有機金属気相成長法によシ単結晶をエピタキシ
ャル成長させる方法において、アンモニアを含むガス(
−光照射すること(二よりアンモニアの分解反応を促進
し、エピタキシャル成長層に所望の濃度の窒素を添加す
ることを特徴とする半導体単結晶の製造方法である。
The present invention relates to a method for epitaxially growing single crystals by metal organic vapor phase epitaxy, in which a gas containing ammonia (
- A method for manufacturing a semiconductor single crystal characterized by light irradiation (secondarily promoting the decomposition reaction of ammonia and adding a desired concentration of nitrogen to the epitaxial growth layer).

〔発明の効果〕〔Effect of the invention〕

本発明の方法(二よシ、高温にすることなく所望のm度
の窒素を添加できるよう(二なり欠陥の発生も抑えられ
るのでII−VI族化合物結晶(−オいてp型電導を得
ることが可能となQ、高効率の首色覚元素子な実現する
うえで有効である。
The method of the present invention (Secondly, it is possible to add a desired degree of nitrogen without raising the temperature (secondarily, the generation of defects can be suppressed, so it is possible to obtain p-type conductivity by adding a II-VI group compound crystal (-)). This is effective in realizing a highly efficient neck color vision element.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を用いて実施例(二より説明する。 Hereinafter, the present invention will be explained from the second embodiment using the drawings.

第1図は本発明の方法の来IJ麺例(二用いられる成長
装置の例を示す図である。図(二おいて管状の反応容器
1円(二回転IIIIII5(皿支持されたサセプタ2
が設置され、サセプタ2上(二は単結晶基板3が直かれ
ている。サセプタ2は尚周波コイル4によシ加熱され、
基板3を適当な温度に保持する。原料ガス導入孔6より
原料ガス7として有機金属化合物と金属水素化物を供給
すると、基板3上で熱分解反応が生じ、エピタキシャル
層が成長する。
Figure 1 is a diagram showing an example of a growth apparatus used in the method of the present invention.
is placed on the susceptor 2 (the single crystal substrate 3 is fixed on the susceptor 2).The susceptor 2 is heated by the frequency coil 4,
The substrate 3 is maintained at an appropriate temperature. When an organometallic compound and a metal hydride are supplied as a source gas 7 through the source gas introduction hole 6, a thermal decomposition reaction occurs on the substrate 3, and an epitaxial layer grows.

これと同時(二不純物原料ガス導入孔9よυアンモニア
ガスIOを供給する。不純物原料ガス導入孔9(=は光
導入窓12がぼけである。この窓12は諏外線の透過し
やすい材質、例えば透明石英等よシ成っている。そして
、紫外線発生装置11で発生させた紫外線を光導入窓1
2を通してアンモニアガス(二層射する。
At the same time, υ ammonia gas IO is supplied through the impurity raw material gas introduction hole 9.The impurity raw material gas introduction hole 9 (= is a blur of the light introduction window 12.This window 12 is made of a material through which ultraviolet rays easily pass through. For example, it is made of transparent quartz or the like.
Ammonia gas (double-layer injection) through 2.

第1図(二示す装置を用いGaAs基板上(二Zn5e
のエピタキシャル層を成長させた。2![ii板mWを
350℃とし、原料ガスとして(CHs )tZnおよ
びH2Seを供給するととも(二NH,ガスを添加不純
物原料として供給してZn5e層を4μm成長させた。
Figure 1 (2) using the apparatus shown on a GaAs substrate (2 Zn5e
An epitaxial layer was grown. 2! [ii] The plate mW was set at 350° C., (CHs)tZn and H2Se were supplied as raw material gases, and (2NH) gas was supplied as additive impurity raw materials to grow a Zn5e layer of 4 μm.

成長したZn5e層の電気的特性を評価したところ、光
照射をしない場合は高抵抗であったが、300 nm 
 よシ短波長成分を含む光を照射し′fc場合にはp型
の電導を示すものが得られた。しかし、300 nm 
より長波長成分のみを貧む光を照射した場合は光照射し
ない場合と同様高抵抗のままであった。
When the electrical properties of the grown Zn5e layer were evaluated, it was found that it had high resistance without light irradiation, but at 300 nm
In the case of irradiation with light containing short wavelength components, a material exhibiting p-type conductivity was obtained. However, 300 nm
When irradiated with light that only contained longer wavelength components, the resistance remained high, similar to when no light was irradiated.

また第2図は前記第1図の装置(=おいて、光照射を基
板近傍のガス(二行なうよう(ニした!l!直であり、
反応容器13(二光導入慝14が設けである。第2図の
atを用いて前記と同様の成長を行なったところ、全く
同様の結果が得られた。
Furthermore, Fig. 2 shows the apparatus shown in Fig. 1 (=), and the light irradiation is performed on the gas near the substrate (2 times).
When the same growth as described above was carried out using the reaction vessel 13 (equipped with a two-light inlet 14), exactly the same results were obtained.

なお、本発明の詳細な説明にあたっては、Zn5e結晶
の製造なV/uにして説明したが、ZnS等の他の結晶
やそれらの混晶の製造(二進用できるのはもちろんであ
る。
In the detailed description of the present invention, V/u was used to explain the production of Zn5e crystals, but it goes without saying that the production of other crystals such as ZnS and mixed crystals thereof (binary use is also possible).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例(皿体る製造装置の概略断面
図、第2図は本発明の他の実施例(皿体る製造装置の概
略断面図である 1、13・・・反応容器、   2・・・サセプタ、3
・・・基板、       4・・・高周波コイル、5
・・・回転軸、      6・・・原料ガス導入孔、
7・・・原料ガス、     8・・・排気孔、9.1
5・・・不純物原料ガス導入孔、10・・・アンモニア
ガス、 11・・・紫外線発生装置、12・・・光導入
窓。 代理人 弁理士 則 近 憲 右(ほか1名)第1図 第2図
FIG. 1 is a schematic sectional view of an embodiment of the present invention (a schematic cross-sectional view of a plate manufacturing apparatus), and FIG. 2 is a schematic cross-sectional view of another embodiment of the present invention (a plate body manufacturing apparatus 1, 13, etc.) Reaction container, 2... Susceptor, 3
...Substrate, 4...High frequency coil, 5
...rotating shaft, 6...raw material gas introduction hole,
7... Raw material gas, 8... Exhaust hole, 9.1
5... Impurity raw material gas introduction hole, 10... Ammonia gas, 11... Ultraviolet generator, 12... Light introduction window. Agent: Patent Attorney Noriyoshi Chika Right (and 1 other person) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)有機金属気相成長法により、半導体単結晶をエピ
タキシャル成長させる方法において、少なくともアンモ
ニアを含むガスに光照射することにより窒素不純物を添
加することを特徴とする半導体単結晶の製造方法。
(1) A method for producing a semiconductor single crystal, which is characterized in that a semiconductor single crystal is epitaxially grown by organometallic vapor phase epitaxy, the method comprising adding a nitrogen impurity to a gas containing at least ammonia by irradiating it with light.
(2)照射する光は300nmより短い波長成分を含む
光である特許請求の範囲第1項記載の半導体単結晶の製
造方法。
(2) The method for manufacturing a semiconductor single crystal according to claim 1, wherein the irradiated light is light containing a wavelength component shorter than 300 nm.
(3)半導体単結晶はII−VI族化合物単結晶あるいはそ
れらの混晶である特許請求の範囲第1項記載の半導体単
結晶の製造方法。
(3) The method for producing a semiconductor single crystal according to claim 1, wherein the semiconductor single crystal is a II-VI group compound single crystal or a mixed crystal thereof.
JP8882885A 1985-04-26 1985-04-26 Preparation of semiconductor single crystal Pending JPS61247686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8882885A JPS61247686A (en) 1985-04-26 1985-04-26 Preparation of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8882885A JPS61247686A (en) 1985-04-26 1985-04-26 Preparation of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS61247686A true JPS61247686A (en) 1986-11-04

Family

ID=13953797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8882885A Pending JPS61247686A (en) 1985-04-26 1985-04-26 Preparation of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS61247686A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008355A1 (en) * 1992-09-28 1994-04-14 Aixtron Gmbh Method of producing p-doped layers, particularly in ii-vi semiconductors
US5587330A (en) * 1994-10-20 1996-12-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5772759A (en) * 1992-09-28 1998-06-30 Aixtron Gmbh Process for producing p-type doped layers, in particular, in II-VI semiconductors
KR20190076011A (en) * 2016-10-28 2019-07-01 루미레즈 엘엘씨 Methods for growing light emitting devices under ultraviolet irradiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008355A1 (en) * 1992-09-28 1994-04-14 Aixtron Gmbh Method of producing p-doped layers, particularly in ii-vi semiconductors
US5772759A (en) * 1992-09-28 1998-06-30 Aixtron Gmbh Process for producing p-type doped layers, in particular, in II-VI semiconductors
US5587330A (en) * 1994-10-20 1996-12-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20190076011A (en) * 2016-10-28 2019-07-01 루미레즈 엘엘씨 Methods for growing light emitting devices under ultraviolet irradiation

Similar Documents

Publication Publication Date Title
JPH06103757B2 (en) Diamond electronic device
JPS61247686A (en) Preparation of semiconductor single crystal
JPH0553759B2 (en)
JPH04187597A (en) Production of thin film of gallium nitride
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPH08335555A (en) Fabrication of epitaxial wafer
JP3107646U (en) Compound semiconductor epitaxial wafer
JP2803353B2 (en) Semiconductor crystal growth method
US3746943A (en) Semiconductor electronic device
JPS62271438A (en) Semiconductor device and manufacture thereof
KR960019761A (en) Method for producing p-type semiconductor crystal
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JPS6247174A (en) Manufacture of semiconductor light emitting device
JPS63205921A (en) Manufacture of optical semiconductor element
JPH04139097A (en) Growth method for organic metal
JPH04170397A (en) Production of gallium nitride thin film
JPS61224332A (en) Manufacture of semiconductor device
JPH0442891A (en) Production of semiconductor thin film
JPH0334534A (en) Manufacture of phosphorus-doped ii-vi compound semiconductor
JPS63190326A (en) Organo metallic chemical vapor deposition method
JPS62118532A (en) Manufacture of znsxse1-x semiconductor device
JPH01318268A (en) Manufacture of semiconductor light emitting element
JPH06101432B2 (en) Semiconductor thin film manufacturing method
JPS59103329A (en) Vapor growth of compound semiconductor layer
JPH06103755B2 (en) Method of manufacturing electronic device using diamond