JPH04139097A - Growth method for organic metal - Google Patents

Growth method for organic metal

Info

Publication number
JPH04139097A
JPH04139097A JP25833090A JP25833090A JPH04139097A JP H04139097 A JPH04139097 A JP H04139097A JP 25833090 A JP25833090 A JP 25833090A JP 25833090 A JP25833090 A JP 25833090A JP H04139097 A JPH04139097 A JP H04139097A
Authority
JP
Japan
Prior art keywords
group
gaseous
nitrogen
substrate
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25833090A
Other languages
Japanese (ja)
Other versions
JP2965653B2 (en
Inventor
Gokou Hatano
波多野 吾紅
Toshihide Izumitani
敏英 泉谷
Yasuo Oba
康夫 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25833090A priority Critical patent/JP2965653B2/en
Publication of JPH04139097A publication Critical patent/JPH04139097A/en
Application granted granted Critical
Publication of JP2965653B2 publication Critical patent/JP2965653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To decrease the taking in of N into a nitride crystal and to obtain a short wavelength light emitting element having high quality by using a specific org. metal compd. in the production of III to V compd. semiconductor layers contg. N. CONSTITUTION:A substrate (e.g. GaP) 15 subjected to surface cleaning by chemical etching is imposed on a susceptor 14 made of carbon and high-purity H2 is introduced from a gas introducing port 12 to substitute the atmosphere in a reaction tube 11 made of quartz. A gas discharge port 13 is then connected to a rotary pump and the pressure in the reaction tube 11 is set at 20 to 300Torr. Gaseous PH3 is introduced from the introducing port 12. The susceptor 14 and a substrate 15 are heated by a high-frequency coil 16 to clean the substrate 15. The gaseous PH3 is then substd. with gaseous NH3 or gaseous H2 and an org. metal compd. [e.g. (CH3)2GaN3] having at least one N having no H-N bond in one molecule is introduced to grow the semiconductor layers.

Description

【発明の詳細な説明】 本発明は■−v族化合物半導体の有機金属成長法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an organometallic growth method for a ■-v group compound semiconductor.

(従来の技術) 近年、高速度、高密度情報処理システムの発展に伴い、
短波長レーザの実現が望まれている。
(Conventional technology) In recent years, with the development of high-speed, high-density information processing systems,
The realization of short wavelength lasers is desired.

特に小型、軽量、省電力という応用上の要求から半導体
素子による実現が不可欠である。
In particular, realization using semiconductor elements is essential due to application requirements such as small size, light weight, and power saving.

本発明者らは先に短波長発光素子として、BPとGaA
INの超格子層またはBPとGaAINの混晶を用いた
■−V族化合物半導体素子を発明している。その際、ナ
イトライド層のNの原料としてはアンモニアを用いてい
た。また、一般にGaNなどのナイトライド層の成長に
もアンモニアが使われている。
The present inventors previously developed BP and GaA as short wavelength light emitting elements.
He has invented a -V group compound semiconductor device using a superlattice layer of IN or a mixed crystal of BP and GaAIN. At that time, ammonia was used as the raw material for N in the nitride layer. Ammonia is also generally used to grow nitride layers such as GaN.

Nを含む層を成長する場合、高温で成長を行うとNが蒸
発し結晶中から抜けてしまうので、できるだけ低温で成
長を行うことが望ましい。しかし、アンモニアは分解温
度が非常に高く、低温で成長を行うには、極めて大量の
アンモニアが必要であつた・ (発明が解決しようとする課題) 上記従来の技術によれば、ナイトライド層の結晶成長に
その窒素の原料としてアンモニアを用いるため、比較的
低温度で成長を行うことができなかった。
When growing a layer containing N, it is desirable to grow it at as low a temperature as possible because if it is grown at a high temperature, N will evaporate and come out of the crystal. However, ammonia has a very high decomposition temperature, and an extremely large amount of ammonia is required for growth at low temperatures. Because ammonia is used as the nitrogen source for crystal growth, growth cannot be performed at relatively low temperatures.

本発明は上記アンモニアに代わる窒素原料を提供し、制
御性に優れた結晶成長を可能にして良質のナイトライド
層を得ることを目的とする。
The object of the present invention is to provide a nitrogen raw material to replace the ammonia mentioned above, to enable crystal growth with excellent controllability, and to obtain a high-quality nitride layer.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の骨子は、ナイトライド層を具備する■−■族化
合物半導体素子を有機金属成長法により製造する際に、
水素−窒素結合を持たない窒素原子を有する有機金属化
合物を用いることにより、結晶中への窒素の取り込まれ
を促進し良質のナイトライド層を形成し高品質のm−v
族化合物半導体素子を提供することにある。
(Means for Solving the Problems) The gist of the present invention is that when manufacturing a ■-■ group compound semiconductor device having a nitride layer by an organometallic growth method,
By using an organometallic compound that has a nitrogen atom that does not have a hydrogen-nitrogen bond, it promotes the incorporation of nitrogen into the crystal and forms a high-quality nitride layer, resulting in high-quality m-v.
An object of the present invention is to provide a group compound semiconductor device.

(作 用) 従来の方法で、結晶中に窒素の取込まれが低いのはアン
モニアの分解温度が高いことに原因があり、このアンモ
ニアの分解温度が高いのは、H−N結合の結合エネルギ
ーが93.4kcal/ molと非常に高いことによ
る。それに対してC−N結合の結合エネルギーが69.
7kcal/ mol、N−N結合では38.4kca
l/ molと低く、低温での分解か可能となり、結晶
中への窒素の取り込まれが促進される。
(Function) In the conventional method, the low incorporation of nitrogen into the crystal is due to the high decomposition temperature of ammonia, and the high decomposition temperature of ammonia is due to the bond energy of the H-N bond. This is because the amount is extremely high at 93.4 kcal/mol. On the other hand, the bond energy of the C-N bond is 69.
7kcal/mol, 38.4kca for N-N bond
It is low in l/mol and can be decomposed at low temperatures, promoting the incorporation of nitrogen into the crystal.

そこで、窒素の原料として水素−窒素結合を持たない窒
素原子を有する有機金属化合物を用いることにより、結
晶中への窒素の取り込まれを促進し良質のナイトライド
層を得ることが可能になり、高品質のm−v族化合物半
導体素子を提供できる。
Therefore, by using an organometallic compound containing a nitrogen atom without a hydrogen-nitrogen bond as a raw material for nitrogen, it is possible to promote the incorporation of nitrogen into the crystal and obtain a high-quality nitride layer. A high quality m-v group compound semiconductor device can be provided.

また、■族−窒素結合を有する場合には、結晶中への■
族の取り込まれと同時に窒素が効率的に取り込まれる。
In addition, when it has a group ■ nitrogen bond,
Nitrogen is efficiently taken up at the same time as the group is taken up.

特にアジド基を有する場合には、1分子中に含まれる窒
素原子の数が多く、結晶中に窒素はより取り込まれやす
い。
In particular, when it has an azide group, the number of nitrogen atoms contained in one molecule is large, and nitrogen is more easily incorporated into the crystal.

このように、本発明による方法であれば結晶中への窒素
の取り込まれを増大することが可能であり、高品質の短
波長発光素子が得られ、産業上の要求に十分応えられる
As described above, the method according to the present invention makes it possible to increase the incorporation of nitrogen into the crystal, thereby providing a high quality short wavelength light emitting device, which satisfactorily meets industrial requirements.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図に本発明の一実施例方法に使用した成長装置を断
面図で示す。図中11は石英製の反応管(反応炉)であ
り、この反応管ll内にはガス導入口12から原料混合
ガスが導入される。そして、反応管II内のガスはガス
排気口13から排気されるものとなっている。反応管1
1内には、カーボン製のサセプタ14が配置されており
、試料基板15はこのサセプタ14上に載置される。ま
たサセプタ14は高周波コイル16により誘導加熱され
、これに埋設された熱電対17によって試料基板15が
測温されるようになっている。
FIG. 3 shows a cross-sectional view of a growth apparatus used in a method according to an embodiment of the present invention. In the figure, reference numeral 11 denotes a reaction tube (reactor) made of quartz, into which a raw material mixed gas is introduced from a gas inlet 12. The gas in the reaction tube II is then exhausted from the gas exhaust port 13. Reaction tube 1
A susceptor 14 made of carbon is placed inside the susceptor 1 , and the sample substrate 15 is placed on this susceptor 14 . Further, the susceptor 14 is heated by induction by a high frequency coil 16, and the temperature of the sample substrate 15 is measured by a thermocouple 17 embedded therein.

次に、上記装置を用いた結晶成長方法について説明する
Next, a crystal growth method using the above apparatus will be explained.

まず、化学エツチングにより表面清浄化したGaP基板
15を前記サセプタ14上に載置する。ガス導入管12
から高純度水素を毎分2.5Q導入し1反応管11内の
大気を置換する。次いで、ガス排気口13をロータリー
ポンプに接続し、反応管II内を減圧し、内部の圧力を
20〜300torrの範囲に設定する。
First, a GaP substrate 15 whose surface has been cleaned by chemical etching is placed on the susceptor 14 . Gas introduction pipe 12
2.5 Q/min of high-purity hydrogen is introduced from the reactor tube 11 to replace the atmosphere inside one reaction tube 11. Next, the gas exhaust port 13 is connected to a rotary pump, the pressure inside the reaction tube II is reduced, and the internal pressure is set in the range of 20 to 300 torr.

その後ガス導入口12からPH,ガスを導入し、高周波
コイル16によりサセプタ及び基板15を加熱し基板温
度550〜1150℃で30分間′保持して基板の清浄
化を行う。
Thereafter, PH and gas are introduced from the gas inlet 12, the susceptor and the substrate 15 are heated by the high frequency coil 16, and the substrate temperature is maintained at 550 to 1150 DEG C. for 30 minutes to clean the substrate.

次いで、pH,ガスをNH3ガスまたはH2ガスに切り
替えると共に(CH3)2[1aN3をI X 10−
5mol/ min導入して成長を行なった6 上記有機金属化合物は、本発明でいう水素−窒素結合を
持たない窒素原子を一分子中に少なくとも一個有する有
機金属化合物、■族−窒素結合を有する有機金属化合物
、アジド基を有する有機金属化合物、R2MN、(R;
アルキル基、M;■族元素)である有機金属化合物の一
例として挙げたものである。
Next, while changing the pH and gas to NH3 gas or H2 gas, (CH3)2[1aN3 is
The above organometallic compound is an organometallic compound having at least one nitrogen atom in one molecule that does not have a hydrogen-nitrogen bond as defined in the present invention, an organic compound having a group Metal compound, organometallic compound having an azide group, R2MN, (R;
This is an example of an organometallic compound that is an alkyl group (M; group ■ element).

なお1本発明に係る上記■族−窒素結合を有する有機金
属化合物については次にあげる一般式と構造式を例示す
る。
The following general formula and structural formula are exemplified as examples of the organometallic compound having a group (1)-nitrogen bond according to the present invention.

(a) R2M−N ; (b) 83M−NR,; (C) 82M−NR2; (d) 82N−NR2; 本発明者等が上記実施例方法により行なったGaN成長
の一連の結果について示す。第1図は成長速度の成長温
度依存性である。成長速度はある温度(ここでは臨界温
度と呼ぶ)を越えるとほぼ一定となるが、臨界温度以下
では急速に減少する。
(a) R2M-N; (b) 83M-NR; (C) 82M-NR2; (d) 82N-NR2; A series of results of GaN growth carried out by the present inventors using the method of the above embodiment will be shown. FIG. 1 shows the dependence of growth rate on growth temperature. The growth rate remains approximately constant above a certain temperature (here referred to as the critical temperature), but rapidly decreases below the critical temperature.

(CH3)、GaN、を原料として使用した場合の臨界
温度は500℃であり、NH3を用いたときの700°
Cと比べ200℃も低く、低温成長が可能になる。Ga
Nの低温成長が可能となると、GaAs等のパッシベー
ション膜としての用途も開けることになる。
(CH3), GaN, is used as a raw material, the critical temperature is 500°C, and when NH3 is used, the critical temperature is 700°C.
It is 200°C lower than C, making low-temperature growth possible. Ga
If low-temperature growth of N becomes possible, it will also be used as a passivation film for materials such as GaAs.

(CH3)2GaN3を原料として使用した場合にはキ
ャリアガスである水素ガスと(CH,)、GaN3を流
すだけでGaNの成長を行うことができるが、NH,を
同時に流すことによりV/III比の制御を行うことが
可能となる。第2図にキャリア濃度のV/m比依存性を
示す。原料としてGa(CH3)3とNH3を用いた場
合(第2図のA)、Ga (CH,)、とR2N2 (
CH3)2を用いた場合(第2図のB)、(CH,)z
 GaN (CH,)zとNH3を用いた場合(第2図
のC)、(CH3)2 にaN3とNH3を用いた場合
(第2図のD)について示した。図によって明らかなよ
うに、ca (CH3)3とNH,を用いた上記Aの場
合、lQl’IC,−J以下のキャリア濃度の結晶を得
るためにはV/m比を10000以上に設定せねばなら
ず実用的な素子の作成には不向きである。■族の利用効
率は、NH3から82 N2 (CH3)2、(CH3
)2 GaN (CH,)2(CF+3 )2 GaN
、の順に向上するが、特に(CH,)z GaN、を用
いた場合、V/m比が同じならばNH3のみを用いた場
合に比較してl/100以下のキャリア濃度の結晶を得
ることができる。このことは、単にNの取り込まれが良
くなりNの空孔が少なく良好な結晶が得られるだけでな
く、NH3の使用景が飛躍的に少くなることからNO,
からの不純物の取り込まれが減少すること、 Ga (
C13)3を使用する必要が4いことから炭素の取り込
まれが軽減するなどの効果も同時に反映している。
When (CH3)2GaN3 is used as a raw material, GaN can be grown by simply flowing carrier gas hydrogen gas, (CH,), and GaN3, but by simultaneously flowing NH, the V/III ratio is It becomes possible to control the FIG. 2 shows the dependence of the carrier concentration on the V/m ratio. When Ga(CH3)3 and NH3 are used as raw materials (A in Figure 2), Ga (CH,) and R2N2 (
When using CH3)2 (B in Figure 2), (CH,)z
The case where GaN (CH,)z and NH3 are used (C in Fig. 2) and the case where aN3 and NH3 are used in (CH3)2 (D in Fig. 2) are shown. As is clear from the figure, in the case of A above using ca (CH3)3 and NH, the V/m ratio must be set to 10,000 or more in order to obtain a crystal with a carrier concentration of less than lQl'IC,-J. It is unsuitable for producing practical devices. ■The utilization efficiency of the group is NH3 to 82 N2 (CH3)2, (CH3
)2 GaN (CH,)2(CF+3)2 GaN
However, especially when (CH,)zGaN is used, it is possible to obtain a crystal with a carrier concentration of 1/100 or less compared to when only NH3 is used if the V/m ratio is the same. I can do it. This not only improves the uptake of N and provides good crystals with fewer N vacancies, but also dramatically reduces the use of NH3, which results in NO,
The incorporation of impurities from Ga (
This also reflects the effect of reducing carbon uptake since there is no need to use C13)3.

以上より、本発明による方法が高品質のGaNJ@の成
長において十分有効であることが実証され力なお、本発
明は上述した実施例方法に限定さするものではない−(
CH3)2AIN3を用いた場合にはAとNの結合が強
いため、より効果的にNが結晶時に取り込まれる。その
他あらゆるナイトライド層の製造方法において特許請求
の範囲を逸脱しない範囲で種々変形して実施できる。
From the above, it has been demonstrated that the method according to the present invention is sufficiently effective in growing high-quality GaNJ@. Note that the present invention is not limited to the method of the embodiments described above.
When CH3)2AIN3 is used, the bond between A and N is strong, so N is incorporated more effectively during crystallization. Any other method for producing a nitride layer may be modified in various ways without departing from the scope of the claims.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、ナイトライド結晶
中への窒素の取り込まれを増大することが可能であり、
高品質の短波長発光素子が得られ、産業上の要求に十分
応えられる。
As detailed above, according to the present invention, it is possible to increase the incorporation of nitrogen into the nitride crystal,
A high quality short wavelength light emitting device can be obtained and can fully meet industrial requirements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaN成長の成長速度と成長温度依存性の相関
を示す線図、第2図はGaN成長におけるキャリア濃度
のV/m比依存性を説明す°るための線図、第3図は有
機金属気相成長に用いた気相成長装置の要部を示す断面
図である。 代理人 弁理士 大 胡 典 夫 (0C) 第 凶 11−、田烏看 13  ガ゛ス#FIAJ口 +5: GaAs 影に 17:脅I記対 12; ゴス淳入口 14  サ【ブタ 16: &1ffi;皮:+1+I/ 第 3図
Fig. 1 is a diagram showing the correlation between the growth rate and growth temperature dependence of GaN growth, Fig. 2 is a diagram explaining the dependence of carrier concentration on the V/m ratio in GaN growth, and Fig. 3 1 is a cross-sectional view showing the main parts of a vapor phase growth apparatus used for organometallic vapor phase growth. Agent Patent Attorney Norio Ogo (0C) No. 11-, Tagarasu Kan 13 Gaas #FIAJ mouth +5: GaAs Shadow 17: Intimidation I vs. 12; :+1+I/ Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)窒素を含むIII−V族化合物半導体層の製造方法
において、水素−窒素結合を持たない窒素原子を一分子
中に少なくとも一個有する有機金属化合物を原料に用い
ることを特徴とするIII−V族化合物半導体の有機金属
成長法。
(1) A method for manufacturing a III-V group compound semiconductor layer containing nitrogen, characterized in that an organometallic compound having at least one nitrogen atom in one molecule that does not have a hydrogen-nitrogen bond is used as a raw material. Organometallic growth method for group compound semiconductors.
(2)窒素を含むIII−V族化合物半導体層の製造方法
において、III族−窒素結合を有する有機金属化合物を
原料に用いることを特徴とするIII−V族化合物半導体
の有機金属成長法。
(2) A method for producing an III-V group compound semiconductor layer containing nitrogen, characterized in that an organometallic compound having a group III-nitrogen bond is used as a raw material.
(3)窒素を含むIII−V族化合物半導体層の製造方法
において、アジド基を有する有機金属化合物を原料に用
いることを特徴とするIII−V族化合物半導体の有機金
属成長法。
(3) A method for producing an III-V group compound semiconductor layer containing nitrogen, characterized in that an organometallic compound having an azide group is used as a raw material.
(4)有機金属化合物がR_2MN_3(R;アルキル
基、M;III族元素)であることを特徴とする請求項1
ないし3のいずれかに記載のIII−V族化合物半導体の
有機金属成長法。
(4) Claim 1, wherein the organometallic compound is R_2MN_3 (R: alkyl group, M: group III element)
4. The organometallic growth method of a III-V compound semiconductor according to any one of items 3 to 3.
JP25833090A 1990-09-27 1990-09-27 Organic metal growth method Expired - Fee Related JP2965653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25833090A JP2965653B2 (en) 1990-09-27 1990-09-27 Organic metal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25833090A JP2965653B2 (en) 1990-09-27 1990-09-27 Organic metal growth method

Publications (2)

Publication Number Publication Date
JPH04139097A true JPH04139097A (en) 1992-05-13
JP2965653B2 JP2965653B2 (en) 1999-10-18

Family

ID=17318750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25833090A Expired - Fee Related JP2965653B2 (en) 1990-09-27 1990-09-27 Organic metal growth method

Country Status (1)

Country Link
JP (1) JP2965653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204885A (en) * 1998-01-08 1999-07-30 Sony Corp Growing method of nitride iii-v group compound semiconductor layer and manufacture of semiconductor layer
US6017774A (en) * 1995-12-24 2000-01-25 Sharp Kabushiki Kaisha Method for producing group III-V compound semiconductor and fabricating light emitting device using such semiconductor
JP2008135768A (en) * 2007-12-28 2008-06-12 Sony Corp Growing method of nitride-based group iii-v compound semiconductor layer and manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017774A (en) * 1995-12-24 2000-01-25 Sharp Kabushiki Kaisha Method for producing group III-V compound semiconductor and fabricating light emitting device using such semiconductor
JPH11204885A (en) * 1998-01-08 1999-07-30 Sony Corp Growing method of nitride iii-v group compound semiconductor layer and manufacture of semiconductor layer
JP2008135768A (en) * 2007-12-28 2008-06-12 Sony Corp Growing method of nitride-based group iii-v compound semiconductor layer and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2965653B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP5378829B2 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor device
US9281180B2 (en) Method for producing gallium trichloride gas and method for producing nitride semiconductor crystal
JPH0856015A (en) Formation of semiconductor thin film
Ho et al. MOVPE of AlN and GaN by using novel precursors
JPH07235692A (en) Compound semiconductor device and forming method thereof
US6730611B2 (en) Nitride semiconductor growing process
JPS6065798A (en) Growing of gallium nitride single crystal
JP2008056499A (en) METHOD FOR MANUFACTURING Si SUBSTRATE HAVING NITRIDE SEMICONDUCTOR THIN FILM
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH08213326A (en) Manufacture of iii-v compound semiconductor crystal
JPH04139097A (en) Growth method for organic metal
JPH1012555A (en) Method of manufacturing nitride compd. semiconductor crystal
JP2002359198A (en) Method for manufacturing compound semiconductor
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JP2008153382A (en) Method of manufacturing nitride semiconductor
JP3946805B2 (en) Crystal growth method of gallium nitride compound semiconductor
JP4670206B2 (en) Manufacturing method of nitride semiconductor
JP7120598B2 (en) Aluminum nitride single crystal film and method for manufacturing semiconductor device
JP2004103745A (en) Epitaxial growth method for nitride semiconductor film by hot wire cvd method
JPH09186091A (en) Manufacture of iii-v compound semiconductor
JP2007042841A (en) Hydride vapor phase epitaxy equipment and process for producing semiconductor substrate
KR100594626B1 (en) Method for forming nitride layer using atomic layer deposition
KR100472630B1 (en) Apparatus for growing multi-substrate of Nitride chemical semiconductor
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JPH04187597A (en) Production of thin film of gallium nitride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees