JPH0442891A - Production of semiconductor thin film - Google Patents
Production of semiconductor thin filmInfo
- Publication number
- JPH0442891A JPH0442891A JP14823490A JP14823490A JPH0442891A JP H0442891 A JPH0442891 A JP H0442891A JP 14823490 A JP14823490 A JP 14823490A JP 14823490 A JP14823490 A JP 14823490A JP H0442891 A JPH0442891 A JP H0442891A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- semiconductor thin
- raw material
- material gas
- energy level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 68
- 239000004065 semiconductor Substances 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000002994 raw material Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 15
- 230000003647 oxidation Effects 0.000 claims abstract description 10
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 10
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- WWVNWQJKWKSDQM-UHFFFAOYSA-N triethylarsane Chemical compound CC[As](CC)CC WWVNWQJKWKSDQM-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000470 constituent Substances 0.000 claims abstract description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 229910002601 GaN Inorganic materials 0.000 claims description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 8
- -1 alkyl compound Chemical class 0.000 claims description 6
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 claims description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 4
- 229910021478 group 5 element Inorganic materials 0.000 claims description 4
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 claims description 2
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 claims description 2
- QTQRGDBFHFYIBH-UHFFFAOYSA-N tert-butylarsenic Chemical compound CC(C)(C)[As] QTQRGDBFHFYIBH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- HTDIUWINAKAPER-UHFFFAOYSA-N trimethylarsine Chemical compound C[As](C)C HTDIUWINAKAPER-UHFFFAOYSA-N 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims 1
- 229910052793 cadmium Inorganic materials 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 45
- 239000010408 film Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- VYQRBKCKQCRYEE-UHFFFAOYSA-N ctk1a7239 Chemical compound C12=CC=CC=C2N2CC=CC3=NC=CC1=C32 VYQRBKCKQCRYEE-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明!よ 青色発光ダイオードや青色半導体レーザ啄
各種の電子素子に用いられる半導体薄膜の製造方法に
関し 特に低温で高品質の半導体薄膜を製造する方法に
関すム
従来の技術
従来 半導体薄膜の製造方法として種々の方法が用いら
れている力丈 最遅 低温で高品質の薄膜を得る方法が
強く求められていも これは熱歪による欠陥の発生や不
要な不純物拡散を防ぎ、素子の微細化に対応するためで
あも このような低温薄膜製造法の一つとして光CVD
法が知られていも これは例えばガリウム砒素(GaA
s)半導体薄膜を製造する場合 原料ガスとしてトリエ
チルガリウム(Ca(C象Hs )s )とアルシン(
AsH* )を基板表面に供給しつつ紫外線を照射する
ことによりトリメチルガリウムを分解し 通常の熱分解
によるCVD法よりも低温で薄膜製造を行なうものであ
も発明が解決しようとする課題
このような従来の半導体薄膜の製造方法で(上葉外線照
射がトリメチルガリウムの分解のみに寄与するた八 紫
外線照射を行なわない通常の熱CVD法に比較して製造
温度の大幅な低減を実現することが困難であるという課
題があっ九 本発明は上記課題を解決するもので、低温
形成で高品質な半導体薄膜を提供することを目的として
いも課題を解決するための手段
本発明は上記目的を達成するために 半導体薄膜の構成
元素を含む原料気体分子を半導体薄膜と格子定数の近い
基板表面に供給しつつ光をその基板表面に照射して半導
体薄膜を製造する方法において、光の波長が半導体薄膜
の禁制帯幅に相当する波長よりも短い波長を含む光を用
いるとともに原料気体分子の吸着状態における酸化エネ
ルギー準位と還元エネルギー準位がともに半導体薄膜の
表面における伝導帯エネルギー準位と価電子帯エネルギ
ー準位の間にある原料気体分子を用いる構成よりなるも
のであム
作用
本発明は上記した構成により、光照射によって、半導体
薄膜中に光励起された電子、正孔を生じさせ、この電子
が吸着状態のIII族原料気体分子を還元し また正孔
が吸着状態の■族原料気体分子を酸化して分解・反応を
促進するという作用が生じる。[Detailed Description of the Invention] Industrial Application Field of the Invention! Blue light emitting diodes and blue semiconductor lasers Concerning methods for manufacturing semiconductor thin films used in various electronic devices, especially methods for manufacturing high-quality semiconductor thin films at low temperatures.Conventional techniquesConventional techniques Various methods for manufacturing semiconductor thin films Although there is a strong demand for a method to obtain high-quality thin films at low temperatures, this is in order to prevent defects caused by thermal strain and unnecessary diffusion of impurities, and to respond to the miniaturization of devices. Photo-CVD is one such low-temperature thin film manufacturing method.
Even if the method is known, for example, gallium arsenide (GaA
s) When manufacturing a semiconductor thin film Triethylgallium (Ca(C)) and arsine (S) are used as raw material gases.
The invention aims to solve these problems by decomposing trimethyl gallium by supplying AsH*) to the substrate surface and irradiating it with ultraviolet rays to produce thin films at a lower temperature than the conventional CVD method using thermal decomposition. With the conventional manufacturing method of semiconductor thin films (external irradiation only contributes to the decomposition of trimethylgallium), it is difficult to achieve a significant reduction in the manufacturing temperature compared to the normal thermal CVD method that does not use ultraviolet irradiation. The present invention solves the above-mentioned problems, and its purpose is to provide a high-quality semiconductor thin film formed at a low temperature. In a method of manufacturing a semiconductor thin film by supplying raw material gas molecules containing the constituent elements of the semiconductor thin film to the surface of a substrate whose lattice constant is similar to that of the semiconductor thin film, and irradiating the substrate surface with light, the wavelength of the light is prohibited by the wavelength of the semiconductor thin film. Using light with a wavelength shorter than the wavelength corresponding to the band width, the oxidation energy level and reduction energy level in the adsorbed state of the raw material gas molecules are both the conduction band energy level and valence band energy level at the surface of the semiconductor thin film. The present invention uses the above-described structure to generate photoexcited electrons and holes in the semiconductor thin film through light irradiation, and these electrons are brought into an adsorbed state. The effect is to reduce the Group III raw material gas molecules and to oxidize the Group III raw material gas molecules in which the holes are adsorbed, thereby promoting decomposition and reaction.
すなわ板 光照射によって半導体表面に励起された電子
は 吸着分子の還元エネルギー準位が半導体表面におけ
る伝導帯エネルギー準位と価電子帯エネルギー準位の間
にあるたべ 容易に吸着分子に移動して分解(還元)を
促進すも 光励起された正孔も同様に容易に吸着分子に
移動して分解(酸化)を促進すも
実施例
以下、本発明の一実施例について第1@ 第2図および
第3図を参照しながら説明すも 第1図において、 1
は真空容器 2は真空ポンプ、 3は目的とする半導体
薄膜の格子定数の近い基板(以抵 基板という)、4は
基板ホルタ′、 5はヒー久6aはCa(C2ns )
sガス等からなる原料気体分子、 6bはAs(Ce
Hs )sガス等からなる原料気体分子、 7a、7b
はマスフローコントローラ、 8 a、8 bはノズノ
L/、9はXeランプ、10a 、 10b 、 10
cはXeランプ九11はコリメー久 12はハーフミ
ラ−113はバワーメー久 14は窓であム 実際の薄
膜成長は次のような手順で行なう。まず表面を清浄にし
た基板3を基板ホルダ4に装着すム この場合、基板(
3)は例えばGaAsとする。次に真空容器1を真空ポ
ンプ2により] 0− ” Torr程度以下の超高真
空まで排気すム 次に基板3をヒータ5により600℃
程度に加熱してさらに表面をさらに清浄化すも その後
、基板3を結晶成長に適切な温度まで下げも この場合
には例えば450℃とすム 次にXeランプ9を点灯す
axeランプ光10aはコリメータ11により平行光に
され その後、ハーフミラ−12により同強度の二つの
光10b、10cとなり、光10bは窓14を通って基
板3に照射されも 光10cの強度をパワーメータ13
により測定することにより基板3に照射される光10b
の強度を知も 光10bの強度をXeランプ9を調節す
ることにより、薄膜成長に適当な強度にすム この場合
、例えば500!GW/Vがとす4次にGa(CaHs
)sガス等からなる原料気体分子6aおよびAs(C
aHs )sガス等からなる原料気体分子6bの流量を
マスフローコントローラ7a、7bにより適当な流量比
になるように調節し ノズル8a、8bにより基板3表
面に供給す4 この場合の流量(よ例えばGa(C2H
s)sガス等からなる原料気体分子6aが0.5sec
m、 As(Ca Hs )sガス等からナル原料気体
分子6bが1 secmとすム 用いたXeランプ光の
分光分布図は第2図に示すとおりであり、GaAsの禁
制帯幅(Eg(T)−1,519−5,405xlO−
’T”/(204+T)、T:温度(K)、723にの
時1.214eV)に相当する波長(723にの時10
1021nよりも短い波長の光を明らかに含んでいるた
敢 第3図に示すようにGaAs中に十分な量の光励起
された電子(15)、正孔(16)を生じさせ、その光
励起による電子で、原料気体分子(6a)吸着状態にお
ける還元エネルギー準位(17)がGaAs表面におけ
る伝導帯エネルギー準位(18)と価電子帯エネルギー
準位(19)の間にあるGa(CaHs)sガス等から
なる原料気体分子6aを、また光励起による正孔で、原
料気体分子(6b)の吸着状態における酸化エネルギー
準位(20)がGaAs表面における伝導帯エネルギー
準位(18)と価電子帯エネルギー準位(19)の間に
あるAs(CiHs )sガス等からなる原料気体分子
(6b)をそれぞれ還元 酸化し 分解・反応を促進す
ることができも 以上のような方法で製造したGaAs
薄膜&表 基板温度が450℃という低温であるにもか
かわら哄 極めて格子欠陥の少ない良質な単結晶膜とな
り、優れた電気的・光学的性質を示し丸 な耘上述の実
施例でC7Ga(Ce Hs )sガス等からなる原料
気体分子6aおよびAs(CaHs )*ガス等からな
る原料気体分子6bを同時に基板3表面に供給した力(
これらを交互に供給ヒ その流量と供給時阻 さらには
光(10b)の強度等を制御することによりGa層とA
s層が1原子層づつ並んだ原子層成長も可能でありな
また 上述の実施例では基板としてGaAsを用いた力
丈 他の基板を用いてもよLy Lかし膜の結晶性な
どの特性を向上させるためには格子定数の近いものを基
板として用いることが望まし一一 さらに 光源はXe
ランプに限らず、光の波長がGaAsの禁制帯幅に相当
する波長よりも短いものであれば同様の効果が得られも
また原料気体分子は上述の例に限らず、吸着、状態に
おける酸化エネルギー準位と還元エネルギー準位がとも
にGaAs表面における伝導帯エネルギー準位と価電子
帯エネルギー準位の間にある分子であれば同様の効果が
得られも 例えば半導体薄膜がIII−V族化合物の場
合 原料気体分子がIII族元素のアルキル化合物とし
て前述のGa(C++ Hs )sガス(トリエチルガ
リウムガス)のは力\ Ga(CHi )sガス(トリ
メチルガリウムガス)があり、v族元素のアルキル化合
物として前述のAs(Ca Hs )sガス(トリエチ
ル砒素ガス)のは力\ As(CHs )sガス(トリ
メチル砒素ガス)またはターシャリ−ブチル砒素等を用
いることもできもまた 薄膜製造中の基板温度i;i、
、 GaAs薄膜の場合400℃以上550℃以下が
好適であ4400℃未満では良好な結晶性の膜が得られ
ず、また550℃を超える温度ではAs原子の再蒸発が
過剰になり原子の空孔が生じも さらに 上述の実施例
ではGaAs薄膜の製造にって述べた力丈GaN(窒化
ガリウム)薄膜の場合も同様に考えることができも こ
の場合に(よIII族元素のアルキル化合物として17
GaAs薄膜の場合と同じく、 トリエチルガリウ
ムガスまたはトリメチルガリウムガスを用bx v族
元素のアルキル化合物として(友 メチルアミン、 ジ
メチルアミン、エチルアミン、ジエチルアミンまたはタ
ーシャリ−ブチルアミンを用いれ またGaN薄膜製造
中にcd、 Ge、 Be、 Mg、 Zn、 Liの
内の1種類を含む原料気体分子を基板表面に供給するこ
とによってn型伝導のGaN薄膜(キャリア密度101
m以上)が製造できることを、ま?Q GaN薄膜製
造中にSe、 Si、 Ge、 Snの内の1種類を含
む原料気体分子を基板表面に供給することによってn型
伝導のGaN薄膜(キャリア密度101以上)が製造で
きることを確認し九 まt= CaN薄膜製造中の基
板の温度は500℃〜75()℃の範囲が適しているこ
とを確認しな すなわち500℃未満では良好な結晶性
の膜が得られ哄750℃を超える温度ではGaN1膜の
N原子の空孔が生じた GaAs薄膜やGaN薄膜以外
のIII−V族化合物半導体やII−■族化合物の半導
体などの他の半導体薄膜を製造する場合に舷 光の波長
を半導体の禁制帯幅に相当する波長よりも短くするとと
も&ミ 原料気体分子として、吸着状態における酸化エ
ネルギー準位と還元エネルギー準位がともに半導体の表
面における伝導帯エネルギー準位と価電子帯エネルギー
準位の間にある分子を用いることによって従来よりもさ
らに低温で高品質な薄膜が製造できることを本発明者ら
は確認し九
発明の効果
以上の実施例から明らかなように本発明によれば 光の
波長が半導体薄膜の禁制帯幅に相当する波長よりも短い
波長を含む光を用いるととも番ミ原料気体分子の吸着状
態における酸化エネルギー準位と還元エネルギー準位が
ともに半導体薄膜の表面における伝導体帯エネルギーと
価電子帯エネルギー準位の間にある原料気体分子を用い
ているのて 低温形成で空孔のない高品質な半導体薄膜
を提供できもIn other words, electrons excited on the semiconductor surface by light irradiation easily move to the adsorbed molecules since the reduction energy level of the adsorbed molecules is between the conduction band energy level and the valence band energy level on the semiconductor surface. Photo-excited holes also easily move to adsorbed molecules and promote decomposition (oxidation). This will be explained with reference to Figure 3. In Figure 1, 1
is a vacuum container, 2 is a vacuum pump, 3 is a substrate with a lattice constant similar to that of the target semiconductor thin film (hereinafter referred to as the substrate), 4 is a substrate holder', 5 is a heater 6a is Ca (C2ns)
Raw material gas molecules consisting of s gas etc. 6b is As(Ce)
Hs) Raw material gas molecules consisting of s gas, etc., 7a, 7b
is a mass flow controller, 8a, 8b is a nozzle L/, 9 is a Xe lamp, 10a, 10b, 10
c is an Xe lamp 911 is a collimator, 12 is a half mirror, 113 is a bower meter, and 14 is a window.Actual thin film growth is performed by the following procedure. First, the board 3 whose surface has been cleaned is mounted on the board holder 4. In this case, the board (
3) is made of GaAs, for example. Next, the vacuum container 1 is evacuated to an ultra-high vacuum of about 0-'' Torr or less using the vacuum pump 2. Next, the substrate 3 is heated to 600°C using the heater 5.
After that, the substrate 3 is heated to a certain temperature to further clean the surface, and then the substrate 3 is lowered to a temperature suitable for crystal growth.In this case, for example, the temperature is 450°C. After that, the half mirror 12 turns the light into parallel light 10b and 10c with the same intensity.The light 10b passes through the window 14 and is irradiated onto the substrate 3.The intensity of the light 10c is measured by the power meter 13.
The light 10b irradiated onto the substrate 3 by measuring
By adjusting the intensity of the light 10b using the Xe lamp 9, the intensity can be adjusted to an appropriate intensity for thin film growth. GW/V is quaternary Ga (CaHs
)s gas etc. and As(C
The flow rate of raw material gas molecules 6b consisting of aHs)s gas, etc. is adjusted to an appropriate flow rate ratio using mass flow controllers 7a and 7b, and is supplied to the surface of the substrate 3 through nozzles 8a and 8b. (C2H
s) Raw material gas molecules 6a consisting of s gas etc. are 0.5 sec
The spectral distribution diagram of the Xe lamp light used is as shown in Figure 2, and the forbidden band width of GaAs (Eg(T )-1,519-5,405xlO-
'T'/(204+T), T: temperature (K), wavelength corresponding to 1.214 eV at 723 (10 at 723)
As shown in Figure 3, a sufficient amount of photoexcited electrons (15) and holes (16) are generated in GaAs, and the photoexcitation generates electrons. In the Ga(CaHs)s gas, the reduction energy level (17) in the adsorbed state of the raw material gas molecules (6a) is between the conduction band energy level (18) and the valence band energy level (19) on the GaAs surface. The oxidation energy level (20) of the raw material gas molecule (6b) in the adsorbed state is the same as the conduction band energy level (18) and the valence band energy of the raw material gas molecule (6b) in the adsorbed state. It is possible to reduce and oxidize the raw material gas molecules (6b) consisting of As(CiHs)s gas, etc. between the levels (19) and promote the decomposition and reaction.
Thin film & surface Although the substrate temperature is as low as 450°C, it becomes a high-quality single crystal film with extremely few lattice defects, and exhibits excellent electrical and optical properties. The force (
By alternately controlling the flow rate and supply time barrier of these, and the intensity of the light (10b), the Ga layer and A
Atomic layer growth in which the s-layers are arranged one atomic layer at a time is also not possible.
In addition, although GaAs was used as the substrate in the above embodiment, other substrates may be used.In order to improve the crystallinity and other properties of the LyL film, it is recommended to use a substrate with similar lattice constants. Desirable Kazuichi Furthermore, the light source is Xe
Not limited to lamps, similar effects can be obtained if the wavelength of the light is shorter than the wavelength corresponding to the forbidden band width of GaAs.Furthermore, raw material gas molecules are not limited to the above example, and the oxidation energy in the adsorption and state A similar effect can be obtained if the molecule has both energy level and reduction energy level between the conduction band energy level and the valence band energy level on the GaAs surface.For example, when the semiconductor thin film is a III-V compound. As an alkyl compound in which the source gas molecules are group III elements, there is the above-mentioned Ga(C++ Hs)s gas (triethylgallium gas) and Ga(CHi)s gas (trimethylgallium gas). The above-mentioned As(CaHs)s gas (triethyl arsenic gas), As(CHs)s gas (trimethyl arsenic gas) or tert-butyl arsenic gas, etc. may also be used. i,
In the case of a GaAs thin film, a temperature of 400°C or higher and 550°C or lower is preferable; at a temperature lower than 4400°C, a film with good crystallinity cannot be obtained, and at a temperature exceeding 550°C, re-evaporation of As atoms becomes excessive and vacancies of atoms are formed. Furthermore, in the above example, the same can be considered for the case of the strong GaN (gallium nitride) thin film described in the production of the GaAs thin film.
As in the case of GaAs thin films, triethylgallium gas or trimethylgallium gas is used as the alkyl compound of group V elements (methylamine, dimethylamine, ethylamine, diethylamine or tert-butylamine). , Be, Mg, Zn, and Li by supplying raw material gas molecules to the substrate surface to form an n-type conductive GaN thin film (with a carrier density of 101
m or more) can be manufactured? Q We confirmed that an n-type conductive GaN thin film (carrier density of 101 or more) can be produced by supplying raw material gas molecules containing one of Se, Si, Ge, and Sn to the substrate surface during GaN thin film production. Make sure that the temperature of the substrate during CaN thin film production is within the range of 500°C to 75()°C. In other words, a film with good crystallinity can be obtained at temperatures below 500°C, but at temperatures above 750°C. When manufacturing GaAs thin films and other semiconductor thin films other than GaN thin films, such as III-V compound semiconductors and II-■ group compound semiconductors, in which vacancies of N atoms in the GaN1 film are generated, the wavelength of the light beam is changed to the semiconductor thin film. When the wavelength is made shorter than the wavelength corresponding to the forbidden band width of &mi, the oxidation energy level and reduction energy level in the adsorbed state are both the conduction band energy level and valence band energy level at the surface of the semiconductor. The present inventors have confirmed that a high-quality thin film can be produced at a lower temperature than before by using molecules between the two. When using light with a wavelength shorter than the wavelength corresponding to the forbidden band width of the semiconductor thin film, the oxidation energy level and reduction energy level of the raw material gas molecules in the adsorbed state are both conductive at the surface of the semiconductor thin film. By using raw material gas molecules between the band energy and valence band energy levels, it is possible to provide high-quality semiconductor thin films with no vacancies by forming them at low temperatures.
第1図は本発明の一実施例の半導体薄膜の製造方法を実
施するための光CVD装置の概略構成医第2図は第1図
の本発明の一実施例で用いられるXeランプの分光分布
諷 第3図は半導体表面のエネルギー準位と吸着状態の
原料分子の酸化エネルギー準位および還元エネルギー準
位との関係を示す模式図であ4
3・・・・半導体薄膜と格子定数の近い基板、 6a・
・・・Ga(CaHs)sガス(トリエチルガリウムガ
ス)等からなる原料気体分子、 6b・・・・As(C
aHs )sガス(トリエチル砒素ガス)等からなる原
料気体分子、10a 、10b 、10c・・・・Xe
ランプ光 17・・・・原料気体分子の吸着状態におけ
る還元エネルギー準弘18・・・・伝導帯エネルギー準
仇19・・・・価電子帯エネルギー準仇20・・・・原
料気体分子の吸着状態における酸化エネルギー準仏
第
図
シ1【 1シ (引μ吟(ンFIG. 1 shows a schematic configuration of a photo-CVD apparatus for carrying out the method of manufacturing a semiconductor thin film according to an embodiment of the present invention. FIG. 2 shows the spectral distribution of the Xe lamp used in the embodiment of the present invention shown in FIG. Figure 3 is a schematic diagram showing the relationship between the energy level of the semiconductor surface and the oxidation energy level and reduction energy level of the raw material molecules in the adsorbed state. , 6a・
... Raw material gas molecules consisting of Ga(CaHs)s gas (triethyl gallium gas), etc., 6b...As(C
aHs) Raw material gas molecules consisting of s gas (triethyl arsenic gas), etc., 10a, 10b, 10c...Xe
Lamp light 17... Reduction energy level in adsorption state of raw material gas molecules 18... Conduction band energy level 19... Valence band energy level 20... Adsorption state of raw material gas molecules Oxidation energy quasi-French diagram 1
Claims (10)
半導体薄膜と格子定数の近い基板表面に供給しつつ光を
その基板表面に照射して半導体薄膜を製造する方法にお
いて、前記光の波長が前記半導体薄膜の禁制帯幅に相当
する波長よりも短い波長を含む光を用いるとともに前記
原料気体分子の吸着状態における酸化エネルギー準位と
還元エネルギー準位がともに前記半導体薄膜の表面にお
ける伝導帯エネルギー準位と価電子帯エネルギー準位の
間にある原料気体分子を用いる半導体薄膜の製造方法。(1) In a method of manufacturing a semiconductor thin film by supplying raw material gas molecules containing the constituent elements of the semiconductor thin film to the surface of a substrate whose lattice constant is similar to that of the semiconductor thin film, and irradiating the substrate surface with light, the wavelength of the light is By using light having a wavelength shorter than the wavelength corresponding to the forbidden band width of the semiconductor thin film, both the oxidation energy level and the reduction energy level in the adsorbed state of the raw material gas molecules are at the conduction band energy level at the surface of the semiconductor thin film. A method for manufacturing semiconductor thin films using raw material gas molecules between the energy levels of the valence band and the energy level of the valence band.
(1)記載の半導体薄膜の製造方法。(2) The method for producing a semiconductor thin film according to claim (1), wherein the semiconductor thin film is a III-V group compound thin film.
)薄膜またはGaN(窒化ガリウム)薄膜である請求項
(2)記載の半導体薄膜の製造方法。(3) The method for manufacturing a semiconductor thin film according to claim (2), wherein the III-V group compound thin film is a GaAs (gallium arsenide) thin film or a GaN (gallium nitride) thin film.
化合物である請求項(3)記載の半導体薄膜の製造方法
。(4) The method for producing a semiconductor thin film according to claim (3), wherein the raw material gas molecules are alkyl compounds of group III and group V elements.
リウムまたはトリエチルガリウムを用い、V族元素のア
ルキル化合物としてトリエチル砒素、トリメチル砒素ま
たはターシャリーブチル砒素を用いる請求項(4)記載
の半導体薄膜の製造方法。(5) The method for producing a semiconductor thin film according to claim (4), wherein trimethyl gallium or triethyl gallium is used as the alkyl compound of the group III element, and triethyl arsenic, trimethyl arsenic or tert-butyl arsenic is used as the alkyl compound of the group V element.
リウムまたはトリエチルガリウムを用い、V族元素のア
ルキル化合物としてメチルアミン、ジメチルアミン、エ
チルアミン、ジエチルアミンまたはターシャリーブチル
アミンを用いる請求項(4)記載の半導体薄膜の製造方
法。(6) The semiconductor thin film according to claim (4), wherein trimethylgallium or triethylgallium is used as the alkyl compound of the group III element, and methylamine, dimethylamine, ethylamine, diethylamine or tert-butylamine is used as the alkyl compound of the group V element. Production method.
℃〜550℃の範囲に設定した請求項(5)記載の半導
体薄膜の製造方法。(7) The temperature of the substrate with a similar lattice constant to that of the semiconductor thin film is set to 400°C.
The method for manufacturing a semiconductor thin film according to claim 5, wherein the temperature is set in a range of 550°C to 550°C.
℃〜750℃の範囲に設定した請求項(6)記載の半導
体薄膜の製造方法。(8) The temperature of the substrate with a similar lattice constant to that of the semiconductor thin film is set to 500°C.
7. The method for manufacturing a semiconductor thin film according to claim 6, wherein the temperature is set in a range of 750°C to 750°C.
内の1種類を加えた請求項(8)記載の半導体薄膜の製
造方法。(9) The method for producing a semiconductor thin film according to claim (8), wherein one of Se, Si, Ge, and Sn is added to the raw material gas molecules.
nおよびLiの内の1種類を加えた請求項(8)記載の
半導体薄膜の製造方法。(10) Cd, Ge, Be, Mg, Z in raw material gas molecules
9. The method for manufacturing a semiconductor thin film according to claim 8, wherein one of n and Li is added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14823490A JPH0442891A (en) | 1990-06-05 | 1990-06-05 | Production of semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14823490A JPH0442891A (en) | 1990-06-05 | 1990-06-05 | Production of semiconductor thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0442891A true JPH0442891A (en) | 1992-02-13 |
Family
ID=15448259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14823490A Pending JPH0442891A (en) | 1990-06-05 | 1990-06-05 | Production of semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0442891A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05234913A (en) * | 1992-02-20 | 1993-09-10 | Nippon Steel Corp | Organic metal chemical vapor growth equipment |
JP2009184836A (en) * | 2008-02-01 | 2009-08-20 | Sumitomo Electric Ind Ltd | Method for growing crystal of group iii-v compound semiconductor, method for producing light-emitting device and method for producing electronic device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241913A (en) * | 1985-04-18 | 1986-10-28 | Matsushita Electric Ind Co Ltd | Manufacture of gallium nitride film |
-
1990
- 1990-06-05 JP JP14823490A patent/JPH0442891A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61241913A (en) * | 1985-04-18 | 1986-10-28 | Matsushita Electric Ind Co Ltd | Manufacture of gallium nitride film |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05234913A (en) * | 1992-02-20 | 1993-09-10 | Nippon Steel Corp | Organic metal chemical vapor growth equipment |
JP2009184836A (en) * | 2008-02-01 | 2009-08-20 | Sumitomo Electric Ind Ltd | Method for growing crystal of group iii-v compound semiconductor, method for producing light-emitting device and method for producing electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6134929A (en) | Growing device of semiconductor device | |
US5300185A (en) | Method of manufacturing III-V group compound semiconductor | |
Ozeki | Atomic layer epitaxy of III–V compounds using metalorganic and hydride sources | |
Boutros et al. | High quality InGaN films by atomic layer epitaxy | |
US6334901B1 (en) | Apparatus for forming semiconductor crystal | |
JPH0782991B2 (en) | Method of growing compound semiconductor single crystal thin film | |
JP2008244011A (en) | Formation method of zinc oxide thin film | |
JPH0442891A (en) | Production of semiconductor thin film | |
JPH0647515B2 (en) | Compound semiconductor epitaxial growth method | |
JP2821557B2 (en) | Method for growing compound semiconductor single crystal thin film | |
JPH04187597A (en) | Production of thin film of gallium nitride | |
RU2366035C1 (en) | Way of realisation of structure of multilayered photo-electric converter | |
JP3182584B2 (en) | Compound thin film forming method | |
RU2023325C1 (en) | Process of growing diamond films | |
Irvine et al. | Epitaxial photochemical deposition of II–VI semiconductors | |
JPS61260622A (en) | Growth for gaas single crystal thin film | |
JPH04170398A (en) | Production of gallium nitride thin film | |
JPH0787179B2 (en) | Method for manufacturing superlattice semiconductor device | |
JPH01215014A (en) | Growth of semiconductor crystal | |
JPS6317293A (en) | Method for forming thin film of compound semiconductor and device therefor | |
JPS62232919A (en) | Crystal growth | |
JPS63319296A (en) | Production of semiconductor | |
JPH0267721A (en) | Manufacture of compound semiconductor thin film | |
JPS62119193A (en) | Production of semiconductor | |
JP2793939B2 (en) | Method for growing compound semiconductor crystal |