JPS62232919A - Crystal growth - Google Patents
Crystal growthInfo
- Publication number
- JPS62232919A JPS62232919A JP7628486A JP7628486A JPS62232919A JP S62232919 A JPS62232919 A JP S62232919A JP 7628486 A JP7628486 A JP 7628486A JP 7628486 A JP7628486 A JP 7628486A JP S62232919 A JPS62232919 A JP S62232919A
- Authority
- JP
- Japan
- Prior art keywords
- growth
- crystal
- raw material
- substrate crystal
- tmg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 239000012808 vapor phase Substances 0.000 claims description 5
- 238000003877 atomic layer epitaxy Methods 0.000 abstract description 14
- 238000006552 photochemical reaction Methods 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 abstract 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 17
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、気相エピタキシャル結晶成長方法に関し、詳
しくは、光照射により基板上に化合物結晶を気相エピタ
キシャル成長させる方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vapor phase epitaxial crystal growth method, and more particularly to a method for vapor phase epitaxial growth of a compound crystal on a substrate by light irradiation.
(従来技術)
従来、このような結晶成長方法の1つに、紫外線照射に
よる有機金属熱分解法(Metal Chemical
Vaper Deposition、以下MOCVDと
いう)が知られている。例えば、GaAsのような化合
物結晶をMOCVDで気相成長させる場合、■属原料と
してトリメチルガリウム(TMG) 、vg原料として
砒化水素(ASH3)を用い、これらの原料ガスを加熱
されたGaAs基板結晶上に均一に流し、原料ガスを熱
分解してエピタキシャル成長させることが広く行なわれ
ている。また最近の新しい試みとして、これらの原料ガ
スを交互に流して成長させる方法が開発されている(参
考文献:牧本俊樹、小林面構、堀越佳治“MOCVD法
による原子層成長(流量変調エピタキシ) 、1985
年秋季第46回応用物理学会学術講演会予稿集p614
、’1a−E−11)。(Prior Art) Conventionally, one of such crystal growth methods is metal chemical thermal decomposition method using ultraviolet irradiation.
Vaper Deposition (hereinafter referred to as MOCVD) is known. For example, when a compound crystal such as GaAs is grown in a vapor phase by MOCVD, trimethyl gallium (TMG) is used as the (I) group material and hydrogen arsenide (ASH3) is used as the VG source, and these source gases are grown on a heated GaAs substrate crystal. It is widely practiced to cause epitaxial growth by pyrolyzing the source gas by flowing it uniformly through the substrate. In addition, as a recent new attempt, a growth method has been developed in which these raw material gases are flowed alternately (References: Toshiki Makimoto, Menko Kobayashi, Yoshiharu Horikoshi, "Atomic layer growth by MOCVD method (flow modulation epitaxy)", 1985
Proceedings of the 46th Japan Society of Applied Physics Academic Conference, Autumn 2018 p614
, '1a-E-11).
(発明が解決しようとする問題点)
これら従来の方法はいずれも、原料ガスを熱分解してエ
ピタキシャル成長を行なうものである。(Problems to be Solved by the Invention) All of these conventional methods perform epitaxial growth by thermally decomposing a source gas.
原料ガスを熱分解して成長させる場合には、基板結晶の
表面状態によらず成長が起こるため、たとえ原料ガスを
交互に流しても、■属又はV属原子層を一層づつ交互に
成長させる、いわゆる、アトミック レイヤ エピタキ
シ(以下ALEという)を実現することは極めて困難で
あった。When the raw material gas is pyrolyzed to grow, growth occurs regardless of the surface condition of the substrate crystal, so even if the raw material gases are alternately supplied, the atomic layers of group II or group V can be grown one layer at a time. It has been extremely difficult to realize so-called atomic layer epitaxy (hereinafter referred to as ALE).
(問題点を解決するための手段)
本発明者等は先に原料ガス中に含まれる化合物を直接分
解するのに適合するフォトンエネルギーよりも低いフォ
トンエネルギーの光で基板結晶表面を光照射して、原料
ガスを光化学反応により分解してエピタキシャル成長さ
せる方法を開発し、特許出願を行なった(特願昭60−
66066号)。(Means for solving the problem) The present inventors first irradiated the substrate crystal surface with light having a photon energy lower than the photon energy suitable for directly decomposing the compounds contained in the source gas. developed a method for epitaxial growth by decomposing raw material gas through a photochemical reaction, and filed a patent application (patent application 1986-
No. 66066).
本発明者等は、この表面光化学反応により原料ガスを分
解する方法に、上記した原料ガスを交互に流す方法を導
入することにより、1原子層づつのディジタルな結晶成
長が行なわれることを見出し、上記の問題点を解決する
に至った。The present inventors have discovered that digital crystal growth can be performed one atomic layer at a time by introducing the above-described method of alternately flowing the raw material gas into the method of decomposing the raw material gas by this surface photochemical reaction, The above problems have been solved.
すなわち、本発明は、化合物結晶の気相エピタキシャル
成長方法において、原料ガスを交互に流すと同時に基板
結晶表面に光照射を行ない、基板結晶表面における光化
学反応により原料ガスを分解することを特徴とする。That is, the present invention is characterized in that, in a method for vapor phase epitaxial growth of compound crystals, source gases are alternately flowed and at the same time light is irradiated onto the substrate crystal surface to decompose the source gas by a photochemical reaction on the substrate crystal surface.
(作用)
本発明は、表面光化学反応に基づくため、基板結晶の表
面状態に強く依存しくすなわち、基板表面の原子種によ
り反応速度が変わり)、1原子層毎のディジタルな結晶
成長が進行し、理想的なAL Eを容易に実現すること
ができる。(Function) Since the present invention is based on a surface photochemical reaction, it strongly depends on the surface state of the substrate crystal (that is, the reaction rate changes depending on the atomic species on the substrate surface), and digital crystal growth progresses for each atomic layer. Ideal ALE can be easily realized.
本発明によれば、G a A I A S % InG
aAsP、rnPなどの結晶成長にも同様に利用できる
が、本発明の結晶成長機構の理解を容易にするため、以
下、GaAsの実施例により本発明の詳細な説明する。According to the invention, G a A I A S % InG
The present invention can be similarly utilized for crystal growth of aAsP, rnP, etc., but in order to facilitate understanding of the crystal growth mechanism of the present invention, the present invention will be described in detail below using an example of GaAs.
(実施例)
第1図(a)は本発明を適用して、GaAsの単結晶薄
膜をTMG及びAsH,ガスを用いて成長する順序を示
す。TMGとASH3はバルブを用いて1秒間だけ交互
に成長室に流した。TMGとAsH,の供給は、1秒間
のスペースを設けてキャリア水素ガスにより■及び■属
ガスの混合が起こらないようにした。従って本実施例で
は4秒で1サイクルの成長が完了する。本実施例では光
照射光源としてA「レーザ光を用い、温度上昇を少なく
するため、TMGの供給時にのみ基板結晶上にレーザ光
照射を行なった。これはTMGとAsH,を原料ガスと
して用いた場合にはTMGの供給時にのみレーザ光を照
射しただけで十分エピタキシャル成長が生じることを実
験的に確認したためである。しかし、光照射で原料ガス
の一方にのみ有効である場合でも本発明の有効性が保た
れる。例えば第1図(b)に示すような順序でもよい。(Example) FIG. 1(a) shows the order in which the present invention is applied to grow a GaAs single crystal thin film using TMG, AsH, and gas. TMG and ASH3 were alternately flowed into the growth chamber for 1 second using a valve. TMG and AsH were supplied with a 1 second interval to prevent mixing of the group (1) and (2) gases by the carrier hydrogen gas. Therefore, in this example, one cycle of growth is completed in 4 seconds. In this example, A laser beam was used as the light irradiation light source, and in order to reduce the temperature rise, the laser beam was irradiated onto the substrate crystal only when TMG was supplied. This is because it has been experimentally confirmed that in some cases, epitaxial growth is sufficient to occur simply by irradiating laser light only when TMG is supplied. For example, the order shown in FIG. 1(b) may be used.
AsH,ガス(20%、水素稀釈)は100cc/分で
流し、3秒間の蓄積後1秒間成長室に供給した。TMC
,は4℃に保温し、水素ガスで2cc/分の流量でバブ
リングし、100cc/分の水素ガスで稀釈した後、3
秒間の蓄積及び1秒間の供給を行なった。GaAs基板
結晶は400℃に加熱した。レーザ光照射は、1,2W
のアルゴンレーザをQ、75m2に集光して行なった。AsH, gas (20%, hydrogen diluted) was flowed at 100 cc/min and fed into the growth chamber for 1 second after 3 seconds of accumulation. TMC
, was kept at 4°C, bubbled with hydrogen gas at a flow rate of 2 cc/min, diluted with 100 cc/min of hydrogen gas, and then
Accumulation for 1 second and delivery for 1 second were performed. The GaAs substrate crystal was heated to 400°C. Laser light irradiation is 1.2W
An argon laser was focused on Q, 75 m2.
この時に得られた成長速度は0.28nm/サイクルで
あり、理想的ALEが生じていることがわかった。すな
わち、1.800回の繰り返しにより、GaAs基板結
晶上にAsとGaの原子層が一層づつ交互に積層した厚
さ0.51μmの薄膜が得られた。The growth rate obtained at this time was 0.28 nm/cycle, indicating that ideal ALE was occurring. That is, by repeating the process 1.800 times, a thin film with a thickness of 0.51 μm in which As and Ga atomic layers were alternately laminated on a GaAs substrate crystal was obtained.
第2図は、成長機構を調べるため、上記成長条件のうち
成長温度のみを変化させた時の成長速度の変化を示す。FIG. 2 shows changes in growth rate when only the growth temperature among the above growth conditions was changed in order to investigate the growth mechanism.
なお比較のため、レーザ光照射を行なわない場合の成長
速度も同時に示した。第2図より365℃〜430℃の
範囲の成長温度で理想的ALEが生じていることがわか
る。また、レーザ光照射を行なわない場合には理想的A
L Eが得られないことが分かる。For comparison, the growth rate without laser beam irradiation is also shown. It can be seen from FIG. 2 that ideal ALE occurs at a growth temperature in the range of 365°C to 430°C. In addition, when laser beam irradiation is not performed, the ideal A
It can be seen that LE cannot be obtained.
理想的A L Eにおいては、TMG供給時にはGa原
子が、また、AsH,供給時にはAs原子が基板結晶表
面を過不足なくおおい、ちょうど一原子層ずつディジタ
ルな成長が行なわれる。従って理想的ALEを実現する
ためには、GaまたはAsの基板表面上へのたい積がち
ょうど1原子層になった時に自動的に停止する機構が成
長機構の中に組み込まれている必要がある。In an ideal ALE, Ga atoms cover the substrate crystal surface when TMG is supplied, and As atoms cover the substrate crystal surface in excess or deficiency when AsH is supplied, and digital growth is performed exactly one atomic layer at a time. Therefore, in order to realize ideal ALE, it is necessary to incorporate into the growth mechanism a mechanism that automatically stops when the deposition of Ga or As on the substrate surface becomes just one atomic layer.
第2図において、レーザ光を照射しない場合には、Ga
のたい積がTMGの熱分解によって進行し、上記自動調
節機構がないため、成長速度の温度変化を示す曲線はA
LEの成長速度を示すラインと単に交差するだけである
。すなわち、従来の成長方法では成長がアナログ的に進
行し、理論的には成長速度をALEの成長速度に一敗さ
せることが可能であるが、理想的ALEで要求されるl
原子層毎のディジタルなエピタキシーになっていないこ
とがわかる。一方、レーザ光照射を行なった場合に、成
長が1サイクル毎にディジタルに進行する理想的ALE
が実現できた理由は、成長温度を下げることによってT
MGの熱分解反応の進行を防止すると同時に、レーザ光
照射により表面光化学反応を促進したことにある。表面
光化学反応は基板表面の原子種により反応速度が変わる
ため、これをディジタルエピタキシーに不可欠のたい積
自動調節機構として利用できる。本発明では光照射によ
る表面光化学反応を原料ガスの分解に利用することによ
り理想的ALEが実現できた。In Figure 2, when the laser beam is not irradiated, Ga
The growth rate progresses due to thermal decomposition of TMG, and there is no automatic adjustment mechanism as described above, so the curve showing the temperature change in the growth rate is A.
It simply intersects the line indicating the growth rate of LE. In other words, in the conventional growth method, growth proceeds in an analog manner, and theoretically it is possible to make the growth rate comparable to that of ALE, but the l required for ideal ALE is
It can be seen that there is no digital epitaxy for each atomic layer. On the other hand, an ideal ALE in which growth progresses digitally every cycle when laser light irradiation is performed.
The reason why T was achieved is that by lowering the growth temperature
The purpose is to prevent the progress of the thermal decomposition reaction of MG, and at the same time promote the surface photochemical reaction by laser light irradiation. Since the reaction rate of surface photochemical reactions changes depending on the atomic species on the substrate surface, this can be used as an automatic accumulation adjustment mechanism essential for digital epitaxy. In the present invention, ideal ALE can be achieved by utilizing surface photochemical reactions caused by light irradiation to decompose raw material gas.
第3図は最初に述べた成長条件のうち、照射するレーザ
光強度を変えた時の成長速度の変化を示す。理想的AL
Eの実現にはレーザ光強度にも制限が有り、150〜2
30 W/cdが望ましい光強度であることが分かる。FIG. 3 shows the change in the growth rate when the intensity of the irradiated laser beam is changed under the growth conditions described at the beginning. ideal AL
To realize E, there is a limit to the laser light intensity, which is 150 to 2
It can be seen that 30 W/cd is a desirable light intensity.
第4図は、最初に述べた成長条件のうち、TMGの供給
量を変えた時の成長速度の変化を示す。FIG. 4 shows changes in the growth rate when the supply amount of TMG was changed under the growth conditions described at the beginning.
十分過剰のTMGを供給することにより成長が完全にデ
ィジタルに進行していることがわかる。供給量が10−
’mol /サイクル以下の領域で成長速度とTMG供
給量の間に比例関係が成立していない。これは第5図に
示した成長モデルで説明できる。It can be seen that by supplying a sufficient excess of TMG, growth proceeds completely digitally. Supply amount is 10-
There is no proportional relationship between the growth rate and the amount of TMG supplied in the region below 'mol/cycle. This can be explained by the growth model shown in Figure 5.
第5図は本発明の成長モデルを示す。TMGは表面のA
s原子位置では表面光化学反応により分解してGaが堆
積するが、Ga原子位置では反応の選択性によりTMG
の分解が起こらない。本モデルにより成長がディジタル
に進行すると同時にTMG供給量が不足した場合に成長
速度がTMG量に比例しない現象が理解できる。なお、
第4図の破線は第5図のモデルで計算した成長速度を示
しており、実験値との一致が良い。FIG. 5 shows the growth model of the present invention. TMG is A on the surface
At the s atom position, Ga is decomposed and deposited by a surface photochemical reaction, but at the Ga atom position, TMG is deposited due to the selectivity of the reaction.
No decomposition occurs. With this model, it is possible to understand the phenomenon in which the growth rate is not proportional to the TMG amount when the TMG supply is insufficient at the same time as growth progresses digitally. In addition,
The broken line in FIG. 4 shows the growth rate calculated using the model in FIG. 5, which is in good agreement with the experimental values.
(発明の効果)
上述したように、本発明は、成長温度を下げることによ
って、原料ガス中の化合物の熱分解反応をおさえ、表面
光化学反応を主反応としているため、基板結晶上に原子
層が一層づつディジタルにエピタキシャル成長し、理想
的なALEが実現できる。(Effects of the Invention) As described above, the present invention suppresses the thermal decomposition reaction of compounds in the raw material gas by lowering the growth temperature and uses the surface photochemical reaction as the main reaction, so that an atomic layer is not formed on the substrate crystal. The ideal ALE can be achieved by digitally epitaxially growing layer by layer.
第1図は本発明の実施例に用いた原料ガスとレーザ照射
の操作工程の順序を示す。第2図は〜第4図は本発明の
実施例で得られたGaAs薄膜の成長条件を示すグラフ
であって、第2図は成長速度と成長温度の関係を、第3
図は成長速度とレーザ光強度の関係を、第4図は成長速
度とTMG供給の関係をそれぞれ示す。第5図は本発明
の結晶成長の機構を説明するためのモデルを示す。FIG. 1 shows the sequence of operation steps for raw material gas and laser irradiation used in an example of the present invention. Figures 2 to 4 are graphs showing the growth conditions of GaAs thin films obtained in Examples of the present invention, and Figure 2 shows the relationship between growth rate and growth temperature.
The figure shows the relationship between growth rate and laser light intensity, and FIG. 4 shows the relationship between growth rate and TMG supply. FIG. 5 shows a model for explaining the crystal growth mechanism of the present invention.
Claims (1)
なくとも2種類の原料ガスを交互に流すと同時に、基板
結晶表面に光照射を行なうことを特徴とする結晶成長方
法。A method for vapor phase epitaxial growth of a compound crystal, characterized in that at least two types of raw material gases are alternately flowed and, at the same time, a surface of a substrate crystal is irradiated with light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61076284A JP2652630B2 (en) | 1986-04-02 | 1986-04-02 | Crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61076284A JP2652630B2 (en) | 1986-04-02 | 1986-04-02 | Crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62232919A true JPS62232919A (en) | 1987-10-13 |
JP2652630B2 JP2652630B2 (en) | 1997-09-10 |
Family
ID=13601002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61076284A Expired - Lifetime JP2652630B2 (en) | 1986-04-02 | 1986-04-02 | Crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2652630B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US7846840B2 (en) | 2000-06-28 | 2010-12-07 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US9587310B2 (en) | 2001-03-02 | 2017-03-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134927A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing process of compound semiconductor single crystal thin film |
JPS6134924A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor crystal |
JPS6134923A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor crystal |
JPS6134929A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor device |
-
1986
- 1986-04-02 JP JP61076284A patent/JP2652630B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134927A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing process of compound semiconductor single crystal thin film |
JPS6134924A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor crystal |
JPS6134923A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor crystal |
JPS6134929A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing device of semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846840B2 (en) | 2000-06-28 | 2010-12-07 | Applied Materials, Inc. | Method for forming tungsten materials during vapor deposition processes |
US7781326B2 (en) | 2001-02-02 | 2010-08-24 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US9012334B2 (en) | 2001-02-02 | 2015-04-21 | Applied Materials, Inc. | Formation of a tantalum-nitride layer |
US9587310B2 (en) | 2001-03-02 | 2017-03-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
Also Published As
Publication number | Publication date |
---|---|
JP2652630B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62232919A (en) | Crystal growth | |
JP3274907B2 (en) | Method for growing indium gallium nitride compound semiconductor | |
JP3077781B2 (en) | Method for growing indium gallium nitride | |
JPH03196643A (en) | Vapor phase epitaxy | |
JP2736655B2 (en) | Compound semiconductor crystal growth method | |
JPH0388324A (en) | Method for forming compound semiconductor thin film | |
JP3182584B2 (en) | Compound thin film forming method | |
JPH01215014A (en) | Growth of semiconductor crystal | |
JPH0535719B2 (en) | ||
JPS63188932A (en) | Method for vapor growth of gallium nitride compound semiconductor | |
JPS6328030A (en) | Method for crystal growth of compound semiconductor | |
JPH03119721A (en) | Crystal growth | |
JPH0267721A (en) | Manufacture of compound semiconductor thin film | |
JPH01103982A (en) | Production of single crystal of group iii-v compound semiconductor | |
JPH0442891A (en) | Production of semiconductor thin film | |
JPS63186418A (en) | Manufacture of compound semiconductor crystal layer | |
JPS6134987A (en) | Manufacture of semiconductor laser | |
JPS62183110A (en) | Manufacture of iii-v compound semiconductor thin film | |
JP2743970B2 (en) | Molecular beam epitaxial growth of compound semiconductors. | |
JPH04254499A (en) | Production of compound semiconductor crystal | |
JPS63273313A (en) | Organic metal vapor growth method for compound semiconductor | |
JPH0532482A (en) | Molecular beam epitaxy method and compound semiconductor film | |
JPH0251497A (en) | Formation of semiconductor thin film | |
Yeh | ZnSe growth by ion laser-assisted metalorganic chemical vapor deposition | |
JPS62137822A (en) | Vapor growth method for semiconductor film |