JPH0388324A - Method for forming compound semiconductor thin film - Google Patents

Method for forming compound semiconductor thin film

Info

Publication number
JPH0388324A
JPH0388324A JP22317589A JP22317589A JPH0388324A JP H0388324 A JPH0388324 A JP H0388324A JP 22317589 A JP22317589 A JP 22317589A JP 22317589 A JP22317589 A JP 22317589A JP H0388324 A JPH0388324 A JP H0388324A
Authority
JP
Japan
Prior art keywords
thin film
group
compound
semiconductor thin
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22317589A
Other languages
Japanese (ja)
Inventor
Shungo Sugawara
菅原 駿吾
Koji Sato
弘次 佐藤
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22317589A priority Critical patent/JPH0388324A/en
Publication of JPH0388324A publication Critical patent/JPH0388324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optically pumped compound semiconductor thin film wherein a selecting ratio can be provided at high temperature and incorporation of impurities is less by using a compound incorporating cyclopentadienyl group or a substituted cyclopentadienyl group as an organic metal compound containing In. CONSTITUTION:As a compound containing indium, at least one kind of compound expressed by the formulas I-IV is used. In the formulas, R1 and R2 are same or different and express an alkyl group, a substituted alkyl group or halogen, and Cp expresses a cyclopentadienyl group or a substituted cyclopentadienyl group. At this time, the cyclopentadienyl group is decomposed in preference when the organic metal compound is decomposed. The formed cyclopentadiene is not incorporated into a thin film but exhausted. Thus, the amount of carbon impurities in the thin film can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は■−■族化合物半導体薄膜の形成方法に関し、
特に薄膜を成長させる際に、基板上に光を廂射し薄膜成
長反応を促進することにより、部分的に厚い、若しくは
部分的にのみ成長した半導体薄膜を形成する技術分野に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a ■-■ group compound semiconductor thin film,
In particular, the present invention relates to the technical field of forming a partially thick or only partially grown semiconductor thin film by irradiating light onto a substrate to promote a thin film growth reaction when growing a thin film.

〔従来の技術〕[Conventional technology]

■−v族化合物半導体薄膜、特に■族元素としてインジ
ウムを用いるものは、1.5μm付近の、いわゆる長波
長帯の発光素子、受光素子あるいは高速トランジスタな
どへ極めて広い応用分野を持っている。これに伴いその
作製プロセスも複雑化の一途をたどっている。例えば半
導体レーザ等を作製する場合などには、まず半導体基板
上に活性層を始めとした薄膜を積層した後、−旦薄膜形
成装置から空気中に取出し、エツチング等の手段により
必要な形状に加工し、再度薄膜を形成することがなされ
ており、多くの複雑な工程を要する問題があった。その
解決策の一つとして、例えば紫外線等による露光を併用
する、有機金属熱分解(NOVPB)法、有機金属分子
ビームエピタキシー(MOMBB)法などを用いて半導
体基板上の一部に選択的にGaAs半導体薄膜を形成す
る技術が検討されている(例えば特願昭63−3120
94号)。この半導体薄膜形成方法においては、必要部
分に優先的に薄膜を選択成長させるために、選択比、す
なわち光を照射した部分と光を照射しない部分との薄膜
成長速度の比を大きく、又は光を照射しない部分には全
く成長させない必要がある。
■-V group compound semiconductor thin films, particularly those using indium as the group ■ element, have extremely wide application fields such as light-emitting devices, light-receiving devices, and high-speed transistors in the so-called long wavelength band around 1.5 μm. Along with this, the manufacturing process is also becoming more and more complicated. For example, when manufacturing a semiconductor laser, etc., first a thin film including an active layer is laminated on a semiconductor substrate, and then the thin film is taken out of the thin film forming apparatus into the air and processed into the required shape by means such as etching. However, the thin film has to be formed again, which poses the problem of requiring many complicated steps. One of the solutions is to selectively deposit GaAs on a portion of the semiconductor substrate using a metal organic pyrolysis (NOVPB) method, a metal organic molecular beam epitaxy (MOMBB) method, etc., which also uses exposure to ultraviolet rays. Techniques for forming semiconductor thin films are being studied (for example, Japanese Patent Application No. 3120/1983)
No. 94). In this method for forming a semiconductor thin film, in order to selectively grow the thin film preferentially in the necessary areas, the selection ratio, that is, the ratio of the thin film growth rate between the areas irradiated with light and the areas not irradiated with light, is increased or the thin film is not irradiated with light. It is necessary that no growth be allowed to occur in areas that are not irradiated.

この方法をインジウム系化合物半導体薄膜形成に適用す
るための■族原料としてはトリメチルインジウム(TM
I)やトリエチルインジウム(TEI)が知られている
Trimethylindium (TM
I) and triethylindium (TEI) are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらこ゛れらの原料を用いた場合には、選択比
が小さいこと、炭素と推定される残留不純物が多い、な
どの問題があった。また、選択比がとれる温度領域は4
00℃前後であり、従来の素子に適用可能なInP半導
体薄膜の成長温度よりも100℃以上低い場合が普通で
ある。
However, when these raw materials were used, there were problems such as a low selectivity and a large amount of residual impurities presumed to be carbon. In addition, the temperature range where the selectivity can be obtained is 4.
The temperature is around 00°C, which is usually 100°C or more lower than the growth temperature of InP semiconductor thin films applicable to conventional devices.

このためフォトルミネッセンス強度は高温で作製した薄
膜の1710以下であり、素子に適用できる良質な薄膜
を得るのは困難であった。
For this reason, the photoluminescence intensity was 1710 or less than that of a thin film produced at a high temperature, and it was difficult to obtain a high-quality thin film that could be applied to devices.

本発明の目的はより高温で選択比が取れ、また不純物取
込みの少ない光励起化合物半導体薄膜の形成方法を提供
することにある。
An object of the present invention is to provide a method for forming a photoexcitable compound semiconductor thin film that can maintain a selectivity at higher temperatures and incorporates less impurities.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明は化合物半導体薄膜の形成
方法に関する発明であって、反応容器中にインジウムを
含む化合物と、元素周期表Vb族元素又はこれらを含む
化合物音導入し、これらを分解して、前記反応容器中に
設置した基板上に■−V族化合物半導体薄膜を形成する
方法において、前記インジウムを含む化合物として下記
一般式〔A〕〜〔D〕 : CA ]    R+R*InCp CB )    Lln(CpL (C)       In(Cp)s [D]      InCp 〔式中、R+及びR7は同−又は異なり、アルキル基、
置換アルキル基又はハロゲン、Cpはシアルキル基、置
換アルキル基又は置換シアルキル基、置換アルキル基を
示す〕で表される化合物の少なくとも1種を使用するこ
とを特徴とする。
To summarize the present invention, the present invention relates to a method for forming a compound semiconductor thin film, in which a compound containing indium and an element of group Vb of the periodic table of elements or a compound containing these are introduced into a reaction vessel and decomposed. In the method of forming a ■-V group compound semiconductor thin film on a substrate placed in the reaction vessel, the indium-containing compound has the following general formulas [A] to [D]: CA]R+R*InCpCB) Lln(CpL (C) In(Cp)s [D] InCp [wherein, R+ and R7 are the same or different, an alkyl group,
It is characterized by using at least one compound represented by a substituted alkyl group or halogen; Cp represents a sialkyl group, a substituted alkyl group, a substituted sialkyl group, or a substituted alkyl group.

本発明において使用可能な化合物の具体名と物性値等を
表1に示すが、本発明はこれらの化合物に限定されるも
のではない。
Table 1 shows the specific names and physical property values of the compounds that can be used in the present invention, but the present invention is not limited to these compounds.

表1 化合物の具体名 これらの有機金属原料を使用して有機金属気相エピタキ
シャル成長性(MOVPE法)や有機金属分子線エピタ
キシャル法(MOMBE法)により化合物半導体薄膜を
作成すると、従来の原料使用時に比較して薄膜品質が向
上し、更に光照射による成長の選択性が著しく向上する
ことを見出したことにより本発明を完成するに至ったも
のである。
Table 1 Specific names of compounds When compound semiconductor thin films are created using these organometallic raw materials by organometallic vapor phase epitaxial growth (MOVPE method) or organometallic molecular beam epitaxial method (MOMBE method), compared to when conventional raw materials are used The present invention was completed based on the discovery that the quality of the thin film was improved by using the method, and the selectivity of growth by light irradiation was also significantly improved.

なぜこうした効果が得られるかについては現状では必ず
しも明らかではない。しかしながら共通に含まれるシア
ルキル基、置換アルキル基、置換シアルキル基、置換ア
ルキル基等の作用により、基板上での吸着性や熱分解性
が異なること、及び光吸収特性が一般にTMIやTEI
に比較して長波長側に移行しているため、光照射による
分解性が向上することによると推定される。
At present, it is not necessarily clear why this effect is obtained. However, due to the effects of commonly contained sialkyl groups, substituted alkyl groups, substituted sialkyl groups, substituted alkyl groups, etc., adsorption properties and thermal decomposition properties on the substrate differ, and the light absorption properties are generally those of TMI and TEI.
It is presumed that this is due to the fact that the decomposition properties due to light irradiation are improved because the wavelength is shifted to the longer wavelength side compared to .

本発明で使用する原料化合物は室温で固体のものが多く
、蒸気圧も低いものが多い。したがって実際の使用時に
おいては原料格納ポンベや配管系を加熱するなどの方策
が必要となる。室温で液体の原料については従来と同様
にバブリングにより反応容器中に導入できる。
Many of the raw material compounds used in the present invention are solid at room temperature, and many have low vapor pressures. Therefore, during actual use, measures such as heating the raw material storage tank and piping system are required. Raw materials that are liquid at room temperature can be introduced into the reaction vessel by bubbling as in the conventional method.

一方、本発明で使用する元素周期表Vb族元素としては
窒素、リン、ヒ素、及びアンチモンが挙げられ、またこ
れらを含む化合物としては、アンモニア、アルシン、ホ
スフィン、スチビン、三塩化アンチモンなどが挙げられ
る。
On the other hand, examples of group Vb elements of the periodic table of elements used in the present invention include nitrogen, phosphorus, arsenic, and antimony, and examples of compounds containing these include ammonia, arsine, phosphine, stibine, antimony trichloride, etc. .

本発明の化合物半導体薄膜の形成方法において該基板に
紫外光又は可視光を照射するのが好ましい。また、紫外
光又は可視光の光線はレーザであるのが好ましい。
In the method for forming a compound semiconductor thin film of the present invention, it is preferable to irradiate the substrate with ultraviolet light or visible light. Moreover, it is preferable that the ultraviolet light or visible light beam is a laser.

〔実施例〕〔Example〕

以下、実施例により更に詳しく説明するが本発明はこれ
ら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図は本発明をレーザ励起MOMBE法にてInP化
合物半導体の単結晶薄膜の製造に適用した場合の装置の
構成を示す系統図である。第1図において符号1は基板
、2は基板ヒーター3はIn化合物ボンベ、4及び7は
マスフローコントローラー、5はガスセル、6はホスフ
ィンボンベ、8はクラッキングセル、9はアルゴンイオ
ンレーザ、10はミラー、11はレーザビーム、12は
ビューボート、13は反応容器、14は排気系、15は
温度制御器を意味する。
Embodiment 1 FIG. 1 is a system diagram showing the configuration of an apparatus when the present invention is applied to the production of a single crystal thin film of an InP compound semiconductor by the laser-excited MOMBE method. In FIG. 1, reference numeral 1 is a substrate, 2 is a substrate heater 3 is an In compound cylinder, 4 and 7 are mass flow controllers, 5 is a gas cell, 6 is a phosphine cylinder, 8 is a cracking cell, 9 is an argon ion laser, 10 is a mirror, 11 is a laser beam, 12 is a view boat, 13 is a reaction vessel, 14 is an exhaust system, and 15 is a temperature controller.

(100) InP基板1は基板ヒーター2上に設置さ
れ一定温度に保たれている。In系の有機金属原料であ
るジエチルシアルキル基、置換アルキルインジウムは1
00℃に保温されたボンベ3からマスフローコントロー
ラー4、ガスセル5を通して反応容器13中に導入され
る(フラックス;5×104)。リンの原料であるホス
フィン(10%水素希釈)はボンベ6から同様にして反
応容器中に導入される(フラックス;l0XIO−”)
反応容器中は10−’Torrに減圧されているため、
有機金属化合物、リンは両方共分子線として基板に照射
される。アルゴンイオンレーザ(波長:514.5nm
)9から出たビームはミラー10で反射され、ビューポ
ート12から基板上に照射される。
(100) InP substrate 1 is placed on substrate heater 2 and kept at a constant temperature. The diethylsialkyl group and substituted alkylindium, which are In-based organometallic raw materials, are 1
It is introduced into the reaction vessel 13 from the cylinder 3 kept at 00° C. through the mass flow controller 4 and the gas cell 5 (flux: 5×10 4 ). Phosphine (10% diluted with hydrogen), which is a raw material for phosphorus, is introduced into the reaction vessel from cylinder 6 in the same way (flux: 10XIO-")
Since the pressure inside the reaction vessel is reduced to 10-'Torr,
Both the organometallic compound and phosphorus are irradiated onto the substrate as molecular beams. Argon ion laser (wavelength: 514.5nm)
) 9 is reflected by a mirror 10 and irradiated onto the substrate from a view port 12.

基板温度450℃、レーザパワー100W/cdの条件
で1時間成長したところ照射部で厚さ1.1μm1非照
射部で0.6μmのInP薄膜が得られた。二次イオン
質量分析(SIMS)分析により薄膜中の炭素不純物量
を定量したところl Q l’l/cm3以下であった
。また77Kにおけるフォトルミネッセンス強度は実用
可能な薄膜と同レベルであった。
When grown for 1 hour at a substrate temperature of 450° C. and a laser power of 100 W/cd, an InP thin film with a thickness of 1.1 μm in the irradiated area and 0.6 μm in the non-irradiated area was obtained. The amount of carbon impurities in the thin film was determined by secondary ion mass spectrometry (SIMS) analysis and was found to be less than l Q l'l/cm3. Furthermore, the photoluminescence intensity at 77K was at the same level as that of a practically usable thin film.

比較例1 実施例1においてIn系有機金属化合物としてTEIを
使用する以外は同様にしてInP薄膜の形成を行った。
Comparative Example 1 An InP thin film was formed in the same manner as in Example 1 except that TEI was used as the In-based organometallic compound.

照射部で0.8μm1非照射部で0.6μmの膜厚であ
った。炭素不純物量は3×10 ”/cm3であり、ま
た77Kにおけるフォトルミネッセンス測定では測定可
能な強度のスペクトルは得られなかった。
The film thickness was 0.8 μm in the irradiated area and 0.6 μm in the non-irradiated area. The amount of carbon impurities was 3 x 10''/cm3, and photoluminescence measurements at 77K did not yield a measurable intensity spectrum.

実施例2 M0VPE装置を用いて(100) InP基板上にI
nP薄膜を成長させた。リン源としては10%水素希釈
のホスフィンを流量100 sccmで、インジウム源
としては120℃のジエチルシアルキル基、置換アルキ
ルインジウムに5 secmの水素をバブリングさせて
用いた。基板温度は500tで、150 W/cj強度
のアルゴンイオンレーザ(波長:514.5nm)を照
射した。1時間の成長によりレーザ照射部で0.8μm
1非照射部で0.4μmのInP膜厚を得た。また?7
Kにおけるフォトルミネッセンス強度では実用可能な薄
膜と同レベルであった。
Example 2 I was deposited on a (100) InP substrate using a M0VPE device.
An nP thin film was grown. As the phosphorus source, phosphine diluted with 10% hydrogen was used at a flow rate of 100 sccm, and as the indium source, 5 seconds of hydrogen was bubbled through diethylsialkyl group-substituted alkylindium at 120°C. The substrate temperature was 500 t, and argon ion laser (wavelength: 514.5 nm) with an intensity of 150 W/cj was irradiated. 0.8 μm at the laser irradiated area after 1 hour of growth
1. An InP film thickness of 0.4 μm was obtained in the non-irradiated area. Also? 7
The photoluminescence intensity at K was at the same level as a practically usable thin film.

比較例2 インジウム源としてTMI  (20を保温)を使用す
る以外は実施例2と同様にしてInP薄展の形成を行っ
た。1時間の成長によりレーザ照射部で0.6μm1非
照射部で0.4μmのInP薄膜を得た。また77Kに
おけるフォトルミネッセンス測定では測定可能な強度の
スペクトルは得られなかった。
Comparative Example 2 A thin InP spread was formed in the same manner as in Example 2 except that TMI (20 was kept warm) was used as the indium source. After 1 hour of growth, an InP thin film was obtained with a thickness of 0.6 μm in the laser irradiated area and 0.4 μm in the non-irradiated area. Moreover, no measurable intensity spectrum was obtained in photoluminescence measurement at 77K.

実施例3〜9 ジエチルシアルキル基、置換アルキルインジウムに代え
て、下記表2の化合物を用いる以外は実施例1と同様に
してInP膜厚の形成を行った。ただし、ボンベ加熱温
度はそれぞれ表中の値とした。この結果は実施例1と同
様に従来材料と比較してレーザ照射により、より大きな
コントラストの得られていることが判明した。また炭素
不純物濃度も、いずれの場合も10 ’/cm3以下で
あった。
Examples 3 to 9 InP film thickness was formed in the same manner as in Example 1 except that the compounds shown in Table 2 below were used in place of the diethylsialkyl group and the substituted alkylindium. However, the cylinder heating temperature was the value shown in the table. Similar to Example 1, this result revealed that a larger contrast was obtained by laser irradiation compared to the conventional material. Further, the carbon impurity concentration was also 10'/cm3 or less in all cases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係わる化合物半導体薄膜
の形成方法によれば、Inを含む有機金属化合物として
、少なくとも1個のシアルキル基、置換アルキル基又は
置換シアルキル基、置換アルキル基を含む化合物を使用
する。このため、有機金属化合物の分解の際にシアルキ
ル基、置換アルキル基が優先的に分解され、生じたシク
ロペンタジェンは薄膜中に取込まれることなく排気され
るため、薄膜中の炭素不純物量の大幅な低減が可能とな
る。またこれらの化合物は一級に従来の化合物に比較し
て光吸収波長が長波長側に移動するため、成長の際の光
選択性が向上する利点がある。
As explained above, according to the method for forming a compound semiconductor thin film according to the present invention, as the organometallic compound containing In, a compound containing at least one sialkyl group, a substituted alkyl group, a substituted sialkyl group, or a substituted alkyl group is used. use. Therefore, when organometallic compounds are decomposed, sialkyl groups and substituted alkyl groups are preferentially decomposed, and the generated cyclopentadiene is exhausted without being incorporated into the thin film, reducing the amount of carbon impurities in the thin film. A significant reduction is possible. Moreover, these compounds have the advantage of improving photoselectivity during growth, since the light absorption wavelength shifts to the longer wavelength side compared to conventional compounds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例において用いたInP薄
膜の形成装置の構成を示す系統図である。 1  ・基板、2・・・基板ヒーター 3・In化合物
ボンベ、4及び7・ ・マスフローコントローラー 5
・ ・ガスセル、6・・ホスフィンボンベ、8・ ・ク
ラッキングセル、9・ ◆アルゴンイオンレーザ、10
・・ミラー 11  ・レーザビーム、12・・ビュー
ボート、13・ ・反応容器、14・排気系、15・ 
・温度制御器
FIG. 1 is a system diagram showing the configuration of an InP thin film forming apparatus used in the first embodiment of the present invention. 1. Substrate, 2... Substrate heater 3. In compound cylinder, 4 and 7. - Mass flow controller 5
・・Gas cell, 6・・Phosphine cylinder, 8・・Cracking cell, 9・ ◆Argon ion laser, 10
・・Mirror 11・Laser beam, 12・・View boat, 13・・Reaction vessel, 14・Exhaust system, 15・
・Temperature controller

Claims (1)

【特許請求の範囲】 1、反応容器中にインジウムを含む化合物と、元素周期
表Vb族元素又はこれらを含む化合物を導入し、これら
を分解して、前記反応容器中に設置した基板上にIII
−V族化合物半導体薄膜を形成する方法において、前記
インジウムを含む化合物として下記一般式〔A〕〜〔D
〕: 〔A〕R_1R_2InCp 〔B〕R_1In(Cp)_2 〔C〕In(Cp)_3 〔D〕InCp 〔式中、R_1及びR_2は同一又は異なり、アルキル
基、置換アルキル基又はハロゲン、Cpはシクロペンタ
ジエニル基又は置換シクロペンタジエニル基を示す〕で
表される化合物の少なくとも1種を使用することを特徴
とする化合物半導体薄膜の形成方法。
[Claims] 1. Introducing a compound containing indium, an element of group Vb of the periodic table of elements, or a compound containing these into a reaction vessel, decomposing them, and dissolving them onto a substrate placed in the reaction vessel.
- In the method for forming a group V compound semiconductor thin film, the indium-containing compound has the following general formulas [A] to [D
]: [A]R_1R_2InCp [B]R_1In(Cp)_2 [C]In(Cp)_3 [D]InCp [In the formula, R_1 and R_2 are the same or different, an alkyl group, a substituted alkyl group or a halogen, and Cp is a cyclo A method for forming a compound semiconductor thin film, the method comprising using at least one compound represented by the following formula: pentadienyl group or substituted cyclopentadienyl group.
JP22317589A 1989-08-31 1989-08-31 Method for forming compound semiconductor thin film Pending JPH0388324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22317589A JPH0388324A (en) 1989-08-31 1989-08-31 Method for forming compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22317589A JPH0388324A (en) 1989-08-31 1989-08-31 Method for forming compound semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0388324A true JPH0388324A (en) 1991-04-12

Family

ID=16793983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22317589A Pending JPH0388324A (en) 1989-08-31 1989-08-31 Method for forming compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0388324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462008A (en) * 1994-08-22 1995-10-31 Northwestern University Semiconductor films
JP2018090855A (en) * 2016-12-02 2018-06-14 株式会社高純度化学研究所 Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition
WO2018225668A1 (en) * 2017-06-09 2018-12-13 株式会社高純度化学研究所 Raw material for chemical vapor deposition, and light-blocking container having raw material chemical vapor deposition contained therein and method for producing same
WO2022026582A1 (en) * 2020-07-28 2022-02-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194613A (en) * 1987-10-06 1989-04-13 Showa Denko Kk Vapor growth method
JPH02163930A (en) * 1988-10-07 1990-06-25 Philips Gloeilampenfab:Nv Manufacture of epitaxial

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194613A (en) * 1987-10-06 1989-04-13 Showa Denko Kk Vapor growth method
JPH02163930A (en) * 1988-10-07 1990-06-25 Philips Gloeilampenfab:Nv Manufacture of epitaxial

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462008A (en) * 1994-08-22 1995-10-31 Northwestern University Semiconductor films
JP2018090855A (en) * 2016-12-02 2018-06-14 株式会社高純度化学研究所 Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition
WO2018225668A1 (en) * 2017-06-09 2018-12-13 株式会社高純度化学研究所 Raw material for chemical vapor deposition, and light-blocking container having raw material chemical vapor deposition contained therein and method for producing same
JPWO2018225668A1 (en) * 2017-06-09 2020-04-09 株式会社高純度化学研究所 Raw material for chemical vapor deposition, light-shielding container containing raw material for chemical vapor deposition, and method for producing the same
US11655538B2 (en) 2017-06-09 2023-05-23 Kojundo Chemical Laboratory Co., Ltd. Precursor for chemical vapor deposition, and light-blocking container containing precursor for chemical vapor deposition and method for producing the same
WO2022026582A1 (en) * 2020-07-28 2022-02-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers
JP2023536697A (en) * 2020-07-28 2023-08-29 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Heteroalkylcyclopentadienyl indium-containing precursors and methods of their use for the deposition of indium-containing layers
US11859283B2 (en) 2020-07-28 2024-01-02 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroalkylcyclopentadienyl indium-containing precursors and processes of using the same for deposition of indium-containing layers

Similar Documents

Publication Publication Date Title
JP3879173B2 (en) Compound semiconductor vapor deposition method
Ekerdt et al. Role of surface chemistry in semiconductor thin film processing
JPH0280572A (en) Arsine, antimony and phosphine substituent
JPH0388324A (en) Method for forming compound semiconductor thin film
JP2603121B2 (en) Method of forming compound semiconductor thin film
JPH0431391A (en) Epitaxial growth
JP2736655B2 (en) Compound semiconductor crystal growth method
JPH0337186A (en) Method for forming compound semiconductor thin film
JP3182584B2 (en) Compound thin film forming method
JPS62232919A (en) Crystal growth
JPH05186295A (en) Method for growing crystal
JPH0426587A (en) Crystal growing method for iii-v group compound semiconductor and crystal growing device used for this method
JPS59164697A (en) Vapor growth method
JPS5965434A (en) Vapor phase etching of compound semiconductor
JPH01103982A (en) Production of single crystal of group iii-v compound semiconductor
JP2953955B2 (en) Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor
JPS61176111A (en) Manufacture of compound semiconductor thin film
JP3047523B2 (en) Selective epitaxial growth method
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JPH0349214A (en) Method for epitaxial growth
JPH01215019A (en) Formation of ohmic electrode
JPH0280394A (en) Method and device for molecular ray epitaxial growth
JPH02248035A (en) Epitaxy method
JPH02254715A (en) Manufacture of compound semiconductor crystal layer
JPH0666270B2 (en) Method of manufacturing semiconductor device containing phosphorus