JPH0431391A - Epitaxial growth - Google Patents

Epitaxial growth

Info

Publication number
JPH0431391A
JPH0431391A JP13178690A JP13178690A JPH0431391A JP H0431391 A JPH0431391 A JP H0431391A JP 13178690 A JP13178690 A JP 13178690A JP 13178690 A JP13178690 A JP 13178690A JP H0431391 A JPH0431391 A JP H0431391A
Authority
JP
Japan
Prior art keywords
substrate
irradiated
beam source
group
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13178690A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13178690A priority Critical patent/JPH0431391A/en
Publication of JPH0431391A publication Critical patent/JPH0431391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form heterogeneous structure having interface qualities suitable for a local range having a size of mono-atomic layer in the direction of film thickness by making a raw material molecule of compound semiconductor comprising two or more constituent elements adsorb on a substrate and irradiating an ungrowing range with light rays. CONSTITUTION:A GaAs substrate 13 having cleaned surface is attached to a substrate holder 12, a growing chamber 10 is evacuated into high vacuum by a vacuum pump 11 and the substrate 13 is heated. Then, a material gas of group V is introduced to a molecular beam source 14, the substrate is irradiated with the beam of group V and an oxide layer on the surface of the substrate 13 is removed. Then, one material gas of constituent elements of a compound semiconductor is fed to a molecular beam source 16 to grow a buffer layer and then introduction of the material gas of group V to the molecular beam source 14 is stopped. The substrate is irradiated with molecule of the other material gas from a molecular beam source 17, a monomolecular layer is chemically adsorbed on the surface of the substrate 13 and the substrate 13 is irradiated with energy light having such a sufficient energy to eliminate the adsorbed molecule from a light beam induction inlet 15 to eliminate the adsorbed molecule in an ungrowing range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 化合物半導体結晶の薄膜を材料元素を含む分子線を用い
て望む部位に選択的に成長させる原子層エピタキシャル
成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an atomic layer epitaxial growth method for selectively growing a thin film of a compound semiconductor crystal at a desired location using a molecular beam containing a material element.

〔従来の技術〕[Conventional technology]

真空中に保持、加熱された半導体基板に材料元素を含む
分子を交互に照射する原子層エピタキシャル成長方法は
、原子レベルで急峻なヘテロ成長界面の形成、光ビーム
等の照射による膜の局所形成等の優れた特徴を有するエ
ピタキシャル成長方法である。この成長方法を用いた砒
化ガリウムのエピタキシャル成長の例が第49回応用物
理学会学術講演会(同予稿集分冊1.4a−W−1゜p
、199>に報告されている。この従来例では■族材料
にはトリエチルガリウム(略称TEG。
The atomic layer epitaxial growth method, in which molecules containing material elements are alternately irradiated onto a heated semiconductor substrate held in a vacuum, is capable of forming steep hetero-growth interfaces at the atomic level, localized film formation by irradiation with light beams, etc. This is an epitaxial growth method with excellent characteristics. An example of the epitaxial growth of gallium arsenide using this growth method is presented at the 49th Annual Meeting of the Japan Society of Applied Physics (Proceedings of the same, Volume 1.4a-W-1゜p).
, 199>. In this conventional example, the group III material is triethyl gallium (abbreviated as TEG).

分子式(C2Hs )3 Ga) 、V族材料にはアル
シン(分子式ASH3)を用い、これらのガスを高真空
中で成長温度に加熱保持された砒化ガリウム基板に交互
照射し、アルゴンレーザー光を照射して局所的にエピタ
キシャル成長させている。この従来例ではレーザー光の
照射された領域に砒化ガリウムからなる幅0.1mmの
線状パターンが形成されている。
The molecular formula is (C2Hs)3Ga), and arsine (molecular formula ASH3) is used as the V group material. These gases are alternately irradiated onto a gallium arsenide substrate heated and maintained at the growth temperature in a high vacuum, and argon laser light is irradiated. It is locally grown epitaxially. In this conventional example, a linear pattern with a width of 0.1 mm made of gallium arsenide is formed in a region irradiated with laser light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、レーザー光を照射した領域に成長させる
方式のため、レーザー光の照射されない領域には化学吸
着したトリエチルガリウムが残り、続いて照射されたア
ルシンと反応して砒化ガリウム層が形成されるため、レ
ーザー光を照射した領域と照射しない領域との成長選択
性が充分ではなかった。そのため、面内方向のへテロ界
面の形成が困難であった。
However, due to the method of growing in the area irradiated with laser light, chemically adsorbed triethylgallium remains in the area not irradiated with laser light, and subsequently reacts with the irradiated arsine to form a gallium arsenide layer. Growth selectivity between areas irradiated with laser light and areas not irradiated was not sufficient. Therefore, it was difficult to form a heterointerface in the in-plane direction.

本発明の目的は、フォトリソグラフィー工程が不必要で
、且つ、優れた成長選択性を有するため良好な面内ヘテ
ロ構造の形成ができる原子層エピタキシャル成長方法を
提供することにある。
An object of the present invention is to provide an atomic layer epitaxial growth method that does not require a photolithography step and has excellent growth selectivity and can form a good in-plane heterostructure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、分子流領域となる真空中に保持・加熱した半
導体基板に■族元素を含む分子とV族元素を含む分子を
交互に照射してエピタキシャル成長させる方法において
、一方の族の元素を含む分子の照射後に局部的に光を照
射して吸着分子を離脱させ、その後他方の族の元素を含
む分子を照射することを特徴とするエピタキシャル成長
方法である。
The present invention provides a method for epitaxial growth by alternately irradiating molecules containing Group I elements and molecules containing Group V elements onto a semiconductor substrate held and heated in vacuum, which serves as a molecular flow region, which contains elements from one group. This is an epitaxial growth method characterized by irradiating molecules, then locally irradiating light to detach the adsorbed molecules, and then irradiating molecules containing elements of the other group.

〔作用〕[Effect]

本発明による原子層エピタキシャル成長方法では、1分
子層を成長させる工程が以下の3工程よりなる。即ち、
第1に半導体基板に■族元素を含む分子を照射し全面に
化学吸着させる。第2に、光を照射して化学吸着させた
前記分子を局所的に脱離させる。第3に、V族元素を含
む分子を基板全面に照射して、第1の工程で化学吸着さ
せた■族元素と反応させ1分子層を形成する。以上の工
程の結果、第2の工程に於て光を照射した領域を除いて
選択的に1分子層の半導体層が形成される。この工程を
繰り返すことにより必要な厚さを有する半導体層が選択
的に形成される。
In the atomic layer epitaxial growth method according to the present invention, the step of growing one molecular layer consists of the following three steps. That is,
First, the semiconductor substrate is irradiated with molecules containing Group Ⅰ elements to chemically adsorb them on the entire surface. Second, the chemically adsorbed molecules are locally desorbed by irradiation with light. Thirdly, molecules containing a group V element are irradiated onto the entire surface of the substrate to react with the group (I) element chemically adsorbed in the first step to form one molecular layer. As a result of the above steps, a single molecular layer semiconductor layer is selectively formed except for the area irradiated with light in the second step. By repeating this process, a semiconductor layer having the required thickness is selectively formed.

本成長方法では非成長領域においては成長を抑制する方
法として吸着した分子を脱離させ基板表面から除去する
ことによっている。そのため、面内方向にヘテロ接合を
形成し得るに充分な選択成長特性を実現できる。ここで
、第2の工程において用いる光の波長は化学吸着した分
子のボンドに吸収されるような波長を設定する必要があ
る。それはこの第2の工程では化学吸着した分子を脱離
させるために必要なエネルギーを光から化学吸着した分
子に与えることにより吸着した分子を脱離させるからで
ある。但し、半導体基板の温度は照射分子が単分子吸着
する温度を選ぶ必要がある。
In this growth method, growth is suppressed in non-growth regions by desorbing adsorbed molecules and removing them from the substrate surface. Therefore, selective growth characteristics sufficient to form a heterojunction in the in-plane direction can be achieved. Here, the wavelength of the light used in the second step needs to be set to a wavelength that will be absorbed by the bonds of chemically adsorbed molecules. This is because in this second step, the chemisorbed molecules are desorbed by applying the energy necessary for desorbing the chemisorbed molecules from the light. However, it is necessary to select the temperature of the semiconductor substrate at a temperature at which a single molecule of the irradiated molecule is adsorbed.

〔実施例〕〔Example〕

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の詳細な説明する原子層エピタキシャル
成長室の模式図である。本実施例では■族材料にはジメ
チルガリウムクロライド(分子式、(CH3) 2 G
aC1) 、ジメチルインジウムクロライド(分子式、
(CH3)2 IIIC1)、及び、■族材料にはアル
シン(分子式、AsH3)を用い、これらのガスを高真
空中で成長温度に加熱保持されたGaAs基板に以下の
工程で照射してエピタキシャル成長させた。成長室10
は、GaAs基板13を成長温度まで加熱保持する基板
ホルダ12、As分子線源14、光ビーム導入口15、
ジメチルガリウムクロライド分子線源16、ジメチルイ
ンジウムクロライド分子線源17を備えており、真空ポ
ンプIJ−で高真空に排気される。As分子線源14は
内部にアルシンガスを熱分解させるためのヒーターを備
えており、アルシンガスはこのヒーターにより950℃
に加熱、熱分解され、As2分子となる、また、ジメチ
ルガリウムクロライド分子線源16およびジメチルイン
ジウムクロライド分子線源17も内部にヒーターを備え
ており、ジメチルガリウムクロライドガス及びジメチル
インジウムクロライドガスはこのヒーターにより400
℃に加熱、熱分解され、それぞれガリウムクロライド分
子(分子式GaC1)及びインジウムクロライド分子(
分子式I nCI )となる。さらに、光ビームには波
長545nmのアルゴンレーザ光を用い、偏向光学系で
偏向させて光ビーム導入口15から導入した。
FIG. 1 is a schematic diagram of an atomic layer epitaxial growth chamber for explaining the present invention in detail. In this example, the group III material is dimethyl gallium chloride (molecular formula: (CH3) 2 G
aC1), dimethylindium chloride (molecular formula,
(CH3)2 IIIC1) and arsine (molecular formula, AsH3) are used as the group II material, and these gases are irradiated onto a GaAs substrate heated and maintained at the growth temperature in a high vacuum to achieve epitaxial growth in the following steps. Ta. Growth room 10
A substrate holder 12 that heats and holds the GaAs substrate 13 to a growth temperature, an As molecular beam source 14, a light beam introduction port 15,
It is equipped with a dimethyl gallium chloride molecular beam source 16 and a dimethyl indium chloride molecular beam source 17, and is evacuated to a high vacuum by a vacuum pump IJ-. The As molecular beam source 14 is equipped with a heater for thermally decomposing arsine gas, and the arsine gas is heated to 950°C by this heater.
The dimethyl gallium chloride molecular beam source 16 and the dimethyl indium chloride molecular beam source 17 are also equipped with heaters inside, and dimethyl gallium chloride gas and dimethyl indium chloride gas are heated and thermally decomposed into two As molecules. by 400
℃ and thermally decomposed to form gallium chloride molecules (molecular formula GaC1) and indium chloride molecules (molecular formula GaC1), respectively.
The molecular formula is I nCI ). Furthermore, an argon laser beam with a wavelength of 545 nm was used as the light beam, and the beam was deflected by a deflection optical system and introduced from the light beam inlet 15.

GaAs基板13上にIIIAsよりなるストライプ構
造をマスクなしで形成する場合の例を以下に示す。まず
、化学エツチングと脱ガス処理によって表面を清浄化し
たGaAs基板13を基板ホルダ12に取り付け、真空
ポンプ11で廃棄して成長室内を高真空にした。次に、
GaAs基板13の加熱を開始し、基板温度が400℃
を越えた時点でアルシンガスをAs分子線源14に導入
してAsビームを照射し基板表面の酸化層除去を行った
。基板温度が成長温度450℃に達したのち、ジメチル
ガリウムクロライドガスをジメチルガリウムクロライド
分子線源16に導入して約1100nバツフア層を成長
した。続いて基板温度を350℃に保ちヘテロエピタキ
シャル層を以下の方法で成長させた。即ち、第1にAs
分子線源14へのアルシンガスの導入を止め、インジウ
ムクロライド分子をジメチルインジウムクロライド分子
線源17から照射しGaAs基板13の表面に1分子層
を化学吸着させる。このとき過剰なインジウムクロライ
ド分子は化学吸着層の表面には吸着しないため自動的に
1分子層の化学吸着が実現される。第2に光導入口15
がらアルゴンレーザ光をG a A s基板13の表面
に照射し、5μm幅のストライプ状の形成を残しそれ以
外の部分を走査した。このとき、光が照射された領域て
化学吸着した分子が脱離する。第3に、As分子線源1
4からAs2分子を照射した。以上の第1から第3の工
程によりストライプ状のI nAsエピタキシャル層が
1分子層形成された。この工程と砒化ガリウムのみの成
長とを組み合わせて繰り返すことによりGaAs単結晶
薄膜中に光ガイドとなるストライプ状のI nAs量子
井戸構造を有するヘテロエピタキシャル層を成長させる
ことができる。
An example of forming a stripe structure made of IIIAs on the GaAs substrate 13 without a mask will be shown below. First, a GaAs substrate 13 whose surface had been cleaned by chemical etching and degassing treatment was attached to the substrate holder 12 and disposed of using the vacuum pump 11 to create a high vacuum in the growth chamber. next,
Heating of the GaAs substrate 13 is started, and the substrate temperature reaches 400°C.
At the point when the temperature exceeded 1, arsine gas was introduced into the As molecular beam source 14, and an As beam was irradiated to remove the oxide layer on the surface of the substrate. After the substrate temperature reached the growth temperature of 450° C., dimethyl gallium chloride gas was introduced into the dimethyl gallium chloride molecular beam source 16 to grow a buffer layer of about 1100 nm. Subsequently, the substrate temperature was maintained at 350° C. and a heteroepitaxial layer was grown in the following manner. That is, firstly, As
The introduction of arsine gas into the molecular beam source 14 is stopped, and indium chloride molecules are irradiated from the dimethylindium chloride molecular beam source 17 to chemically adsorb one molecular layer onto the surface of the GaAs substrate 13. At this time, excess indium chloride molecules are not adsorbed onto the surface of the chemical adsorption layer, so chemical adsorption of one molecular layer is automatically achieved. Second, the light introduction port 15
The surface of the GaAs substrate 13 was irradiated with an argon laser beam, leaving a stripe-like formation with a width of 5 μm and scanning the remaining portion. At this time, the chemically adsorbed molecules in the area irradiated with light are desorbed. Third, As molecular beam source 1
As2 molecules were irradiated from No.4. Through the above first to third steps, one molecular layer of a striped InAs epitaxial layer was formed. By repeating this process in combination with the growth of only gallium arsenide, a heteroepitaxial layer having a striped InAs quantum well structure serving as a light guide can be grown in a GaAs single crystal thin film.

上記実施例では化学吸着させる■族材料分子としてガリ
ウムクロライド及びインジウムクロライドを用い、また
、材料化合物としてジメチルガリウムクロライド及びジ
メチルインジウムクロライドを用いたが、ジメチルガリ
ウムクロライド等の他の有機基をもつ有機金属化合物を
用いてもよい また、ガリウムクロライド(分子式、G
aC1)インジウムクロライド(分子式、GaCI )
等の塩化物を直接■族材料と塩化水素との反応によって
発生させ導入して用いてもよい。
In the above example, gallium chloride and indium chloride were used as the group (III) material molecules to be chemically adsorbed, and dimethyl gallium chloride and dimethyl indium chloride were used as the material compounds, but organic metals with other organic groups such as dimethyl gallium chloride Also, gallium chloride (molecular formula, G
aC1) Indium chloride (molecular formula, GaCI)
It is also possible to directly generate and introduce chlorides such as these by reacting a Group 1 material with hydrogen chloride.

上記実施例では化学吸着層としてクロライド基をもつ分
子層を形成する有機金属材料を用いたIII)等のアル
キル化物、または、ガリウムクロライド(分子式、Ga
C1)インジウムクロライド(分子式、GaC1)等の
塩化物を用いてもよい 上記実施例では材料化合物としてガリウム及びインジウ
ムのアルキル化合物を用いたが、アルミニウム、燐、砒
素、アンチモン、亜鉛、ベリリウム、等の他の化合物半
導体の構成元素及び不純物の有機化合物や塩化物を用い
てもよい。
In the above embodiments, alkylated compounds such as III) or gallium chloride (molecular formula, Ga
C1) Chlorides such as indium chloride (molecular formula, GaC1) may be used In the above examples, alkyl compounds of gallium and indium were used as material compounds, but aluminum, phosphorus, arsenic, antimony, zinc, beryllium, etc. Other constituent elements of compound semiconductors and impurity organic compounds and chlorides may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によるエピタキシャル成長方法では、面内方向に
光の集束径程度、層厚方向に1原子層の大きさを有する
局所領域に良好な界面品質を有するヘテロ構造の形成か
できる。
In the epitaxial growth method according to the present invention, it is possible to form a heterostructure having good interface quality in a local region having a size about the diameter of a light convergence in the in-plane direction and one atomic layer in the layer thickness direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における原子層エピタキシャ
ル成長室の模式図、 10・・・成長室、11・・・真空ポンプ、12・・・
基板ホルダ、13・・・GaAs基板、14・・・As
分子線源、15・・・光ビーム導入口、16・・・ジメ
チルガリウムクロライド分子線源、17・・・ジメチル
インジウムクロライド分子線源 を、それぞれ示す。
FIG. 1 is a schematic diagram of an atomic layer epitaxial growth chamber in one embodiment of the present invention, 10...growth chamber, 11...vacuum pump, 12...
Substrate holder, 13...GaAs substrate, 14...As
Molecular beam source, 15... Light beam inlet, 16... Dimethyl gallium chloride molecular beam source, 17... Dimethyl indium chloride molecular beam source are shown, respectively.

Claims (1)

【特許請求の範囲】  1、分子流領域となる真空中に設置された基板上に2
種類以上の構成元素からなる化合物半導体を成長させる
方法において、前記基板上に前記化合物半導体の原料分
子を供給して吸着させる工程に続いて前記吸着分子を基
板から離脱させるに充分なエネルギーの光を非成長領域
に照射する工程を備えることを特徴とするエピタキシャ
ル成長方法。  2、III族の化合物からなる原料分子、光、V族元素
の化合物からなる原料分子の順に前記基板に照射する工
程を繰り返し行うことにより化合物半導体を成長させる
ことを特徴とする請求項1記載のエピタキシャル成長方
法。
[Claims] 1. On a substrate placed in a vacuum serving as a molecular flow region, 2.
In a method for growing a compound semiconductor composed of more than one type of constituent elements, following the step of supplying raw material molecules of the compound semiconductor onto the substrate and allowing them to be adsorbed, light with sufficient energy to detach the adsorbed molecules from the substrate is emitted. An epitaxial growth method characterized by comprising a step of irradiating a non-growth region. 2. The compound semiconductor is grown by repeatedly performing the step of irradiating the substrate with raw material molecules made of a Group III compound, light, and raw material molecules made of a compound of a Group V element in this order. Epitaxial growth method.
JP13178690A 1990-05-23 1990-05-23 Epitaxial growth Pending JPH0431391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13178690A JPH0431391A (en) 1990-05-23 1990-05-23 Epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13178690A JPH0431391A (en) 1990-05-23 1990-05-23 Epitaxial growth

Publications (1)

Publication Number Publication Date
JPH0431391A true JPH0431391A (en) 1992-02-03

Family

ID=15066111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13178690A Pending JPH0431391A (en) 1990-05-23 1990-05-23 Epitaxial growth

Country Status (1)

Country Link
JP (1) JPH0431391A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode

Similar Documents

Publication Publication Date Title
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH0280572A (en) Arsine, antimony and phosphine substituent
JPH0431391A (en) Epitaxial growth
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JPH02208925A (en) Formation of semiconductor film
JPH05238880A (en) Method for epitaxial growth
JP2736655B2 (en) Compound semiconductor crystal growth method
JP3182584B2 (en) Compound thin film forming method
JPH0388324A (en) Method for forming compound semiconductor thin film
JPH04212411A (en) Epitaxial growth method
JPH0349214A (en) Method for epitaxial growth
JPH02307894A (en) Method for growing compound semiconductor
JP3047523B2 (en) Selective epitaxial growth method
JPH0355438B2 (en)
JPH02248034A (en) Epitaxy method
JPH05186295A (en) Method for growing crystal
JPH0355440B2 (en)
JPH0426587A (en) Crystal growing method for iii-v group compound semiconductor and crystal growing device used for this method
JP2717165B2 (en) Method for forming structure of compound semiconductor
JPH02248035A (en) Epitaxy method
JPH02153892A (en) Process for molecular beam epitaxial growth
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2603121B2 (en) Method of forming compound semiconductor thin film
JPH0243720A (en) Molecular beam epitaxial growth method
JPS62138390A (en) Molecular beam epitaxy