JPH0349214A - Method for epitaxial growth - Google Patents

Method for epitaxial growth

Info

Publication number
JPH0349214A
JPH0349214A JP18491189A JP18491189A JPH0349214A JP H0349214 A JPH0349214 A JP H0349214A JP 18491189 A JP18491189 A JP 18491189A JP 18491189 A JP18491189 A JP 18491189A JP H0349214 A JPH0349214 A JP H0349214A
Authority
JP
Japan
Prior art keywords
molecules
light
layer
irradiated
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18491189A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18491189A priority Critical patent/JPH0349214A/en
Publication of JPH0349214A publication Critical patent/JPH0349214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To grow a compound semiconductor crystal film well by irradiating with molecules, consisting of III group element molecules or V group element molecules, and then locally irradiating with light, and then irradiating with molecules, belonging to the same group as said molecules but consisting of different element. CONSTITUTION:Introduction of arsine gas into an As molecule source 14 is stopped, and the surface of a GaAs substrate 13 is irradiated with TEG molecules from a TEG molecular beam source 16 to chemically adsorb a monomolecular layer thereto. Then, the surface of the GaAs substrate 13 is irradiated with Ar laser light through a light introducing port 15 and scanned and depicted in stripe-like shape with a predetermined width. Next, when irradiation with TEI molecules from a TEI molecular beam source 17 is carried out, a monomolecular layer having In atoms is chemically adsorbed selectively to a region wherein the chemically adsorbed layer is vanished by the irradiation with the light. Further, irradiation with As molecules from the As molecule source 14 is effected. Consequently, a hetero-epitaxial layer having a GaAs monomolecular layer is formed. This process and growth of only gallium arsenide are combined and repeated to obtain a hetero-epitaxial layer having a well structure, i.e. a light guide, in a GaAs monocrystalline film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は材料元素を含む分子線を用いて化合物半導体結
晶の薄膜を成長させる原子層エピタキシャル成長方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an atomic layer epitaxial growth method for growing a thin film of compound semiconductor crystal using a molecular beam containing a material element.

〔従来の技術1 真空中に保持して加熱された半導体基板に材料元素を含
む分子を交互に照射する原子層エピタキシャル成長法は
、原子レベルで急峻なヘテロ成長界面の形成、光ビーム
等の照射による膜の局所形成等の優れた特徴を有するエ
ピタキシャル成長方法である。この成長方法を用いたガ
リウム砒素のエピタキシャル成長の例が第49回応用物
理学会学術講演会(同予稿集分冊1 、4a−’W−1
,p、199)に報告されている。この従来例では■族
材料にはトリエチルガリウム(略称TEG、分子式(C
,H,L Ga)、V族材料にはアルシン(分子式As
H,)を用い、これらのガスを高真空中で成長温度に加
熱保持されたガリウム砒素基板に交互に照射し、アルゴ
ンレーザー光を照射して局所的にエピタキシャル成長さ
せている。本従来例ではレーザー光の照射された領域に
ガリウム砒素からなる幅0.1mmの線状パターンが形
成されている。
[Conventional technology 1] The atomic layer epitaxial growth method, in which molecules containing material elements are alternately irradiated onto a heated semiconductor substrate held in a vacuum, is characterized by the formation of a steep hetero-growth interface at the atomic level and by irradiation with a light beam, etc. This epitaxial growth method has excellent features such as localized film formation. An example of the epitaxial growth of gallium arsenide using this growth method is given in the 49th Japan Society of Applied Physics Academic Conference (Proceedings of the same, Volume 1, 4a-'W-1).
, p. 199). In this conventional example, the group III material is triethyl gallium (abbreviation: TEG, molecular formula: C
, H, L Ga), arsine (molecular formula As
Using H, ), these gases are alternately irradiated onto a gallium arsenide substrate heated and maintained at the growth temperature in a high vacuum, and argon laser light is irradiated to cause local epitaxial growth. In this conventional example, a linear pattern with a width of 0.1 mm made of gallium arsenide is formed in a region irradiated with laser light.

〔発明が解決しようとする課厘] しかしながら、前記従来例はレーザー光を照射した領域
に成長させる方式のため、面内方向へのへテロ界面の形
成が同時にできず、ヘテロ界面になるべき表面が晒され
るため良好なヘテロ界面の形成に問題があった。
[Problems to be Solved by the Invention] However, since the conventional example described above uses a method in which growth is performed in a region irradiated with laser light, it is not possible to simultaneously form a heterointerface in the in-plane direction, and the surface that should become a heterointerface cannot be formed at the same time. There was a problem in forming a good hetero interface because of the exposure.

本発明の目的はフォトリソグラフィー工程を用いずに良
好な面内ヘテロ構造の形成ができる原子層エピタキシャ
ル成長方法を提供することにある。
An object of the present invention is to provide an atomic layer epitaxial growth method that can form a good in-plane heterostructure without using a photolithography process.

[課題を解決するための手段] 上記目的を達成するため、本発明は、分子流領域となる
真空中に保持して加熱した半導体基板にm族元素を含む
分子とV族元素を含む分子を交互に照射してエピタキシ
ャル成長させる方法において、前記■族又はV族元素を
含む分子の照射後に局部的に光を照射し、その後前記分
子に含まれる元素と同族かつ前記元素と異なる元素を含
む分子を照射するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides molecules containing group M elements and molecules containing group V elements on a semiconductor substrate heated while being held in vacuum, which serves as a molecular flow region. In a method of epitaxial growth by alternating irradiation, after irradiating the molecule containing the group (I) or group V element, light is locally irradiated, and then the molecule containing an element of the same group as the element contained in the molecule and different from the above element is irradiated with light. It is something that irradiates.

[作用] 本発明による原子層エピタキシャル成長方法では、■族
又はV族元素を含む分子を照射する工程が以下の3工程
よりなる。即ち、第1に半導体基板に■族又はV族元素
である元素Aを含む分子を照射し、全面に化学吸着させ
る。第2に、局所的に光を照射して化学吸着させた前記
分子を局所的に離脱させる。第3に、前記分子に含まれ
る元素Aと同族でしかも前記元素とは異なる元素Bを含
む分子を基板全面に照射して、光によって局所的に離脱
させた領域に選択的に前記元素Bを含む分子を化学吸着
させる。以上の工程の結果、半導体基板表面に光を照射
した領域には元素Bを含む分子が化学吸着し、照射しな
かった領域には元素Aを含む分子が化学吸着した化学吸
着層を得ることができる。この工程による化学吸着層の
形成を■族及びV族について交互に繰り返すことにより
面内及び積層方向にヘテロ接合を有する構造が形成でき
る。ここで、第2の工程において用いる光の波長は化学
吸着した分子のボンドに吸収されるような波長を設定す
る必要がある。それはこの第2の工程では化学吸着した
分子を離脱させるために必要なエネルギーを光がら化学
吸着した分子に与えることにより吸着した分子を離脱さ
せるからである。さらに第3の工程で元素Bを含む分子
が光によって局所的に離脱させた領域に選択的に化学吸
着される理由は以下の通りである。即ち、第2の工程後
、半導体基板表面は光を照射しなかった領域には化学吸
着した分子があり、照射した領域には化学吸着した分子
層はない。この後、第3の工程で元素Bを含む分子を照
射すると、既に化学吸着した分子層のある領域は吸着に
対して不活性であるため新たな吸着が妨げられる。一方
、吸着層のない領域では吸着が生じる。その結果、半導
体基板表面に光を照射した領域にのみ選択的に元素Bを
含む分子を化学吸着させることができる。
[Function] In the atomic layer epitaxial growth method according to the present invention, the step of irradiating molecules containing group (I) or group V elements consists of the following three steps. That is, first, a semiconductor substrate is irradiated with molecules containing element A, which is a group I or group V element, and is chemically adsorbed on the entire surface. Second, the chemically adsorbed molecules are locally released by irradiating light locally. Third, the entire surface of the substrate is irradiated with a molecule containing an element B, which is the same group as the element A contained in the molecule but different from the element, and the element B is selectively applied to the regions locally separated by the light. chemically adsorbs the molecules it contains. As a result of the above steps, it is possible to obtain a chemisorption layer in which molecules containing element B are chemically adsorbed in the area where the semiconductor substrate surface is irradiated with light, and molecules containing element A are chemically adsorbed in the area where it is not irradiated. can. By repeating the formation of chemisorption layers in this step alternately for group (I) and group V, a structure having heterojunctions in the plane and in the stacking direction can be formed. Here, the wavelength of the light used in the second step needs to be set to a wavelength that will be absorbed by the bonds of chemically adsorbed molecules. This is because in this second step, the adsorbed molecules are released by imparting the energy necessary for releasing them from the light to the chemisorbed molecules. Furthermore, in the third step, the reason why molecules containing element B are selectively chemisorbed to the region locally separated by light is as follows. That is, after the second step, on the surface of the semiconductor substrate, there are chemically adsorbed molecules in the area where the light was not irradiated, and there is no layer of chemically adsorbed molecules in the irradiated area. After this, when molecules containing element B are irradiated in the third step, new adsorption is hindered because regions of the molecular layer that have already been chemically adsorbed are inert to adsorption. On the other hand, adsorption occurs in areas where there is no adsorption layer. As a result, molecules containing element B can be selectively chemically adsorbed only in the region where the surface of the semiconductor substrate is irradiated with light.

但し、半導体基板の温度は照射分子が単分子吸着する温
度を選ぶ必要がある。
However, it is necessary to select the temperature of the semiconductor substrate at a temperature at which a single molecule of the irradiated molecule is adsorbed.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の詳細な説明する原子層エピタキシャル
成長室の模式図である。本実施例では■族材料にはトリ
エチルガリウム(分子式、 (C,H,)、 Ga)及
びトリエチルインジウム(分子式、(C,H,)。
FIG. 1 is a schematic diagram of an atomic layer epitaxial growth chamber for explaining the present invention in detail. In this example, the group Ⅰ materials include triethylgallium (molecular formula, (C,H,), Ga) and triethylindium (molecular formula, (C,H,)).

In)、V族材料にはアルシンを用い、これらのガスを
高真空中で成長温度で加熱保持されたガリウム砒素基板
に以下の工程で照射してエピタキシャル成長させた。
In), arsine was used as the V group material, and epitaxial growth was performed by irradiating these gases onto a gallium arsenide substrate heated and maintained at a growth temperature in a high vacuum in the following steps.

図において、成長室10には、GaAs基板13を保持
してこれを成長温度まで加熱させる基板ホルダ12が内
装され、該ホルダ12に向けて砒素分子線源14、光ビ
ーム導入口15、TEG分子線源16、TEI分子線源
17が接続されている。また、成長室10内は真空ポン
プ11で高真空で排気される。光ビームには波長545
nmのアルゴンレーザ光を用い、偏向光学系で偏向させ
て光ビーム導入口15から導入した。
In the figure, a growth chamber 10 is equipped with a substrate holder 12 that holds a GaAs substrate 13 and heats it to the growth temperature. A radiation source 16 and a TEI molecular beam source 17 are connected. Further, the inside of the growth chamber 10 is evacuated to a high vacuum by a vacuum pump 11. The light beam has a wavelength of 545
An argon laser beam of nm wavelength was used, was deflected by a deflection optical system, and was introduced from the light beam introduction port 15.

砒素分子線源14は内部にアルシンガスを熱分解させる
ためのヒーターを備えており、アルシンガスはこのヒー
ターにより950℃に加熱、熱分解され砒素分子(分子
式As、 )となる。
The arsenic molecular beam source 14 is equipped with a heater for thermally decomposing arsine gas, and the arsine gas is heated to 950° C. by this heater and is thermally decomposed into arsenic molecules (molecular formula: As).

GaAs単結晶薄膜中にInAs細線を有するヘテロエ
ピタキシャル層を成長する場合は以下の手順で行う。ま
ず、化学エツチングと脱ガス処理によって表面を清浄化
したGaAs基板13を基板ホルダ12に取付け、真空
ポンプ11で高真空に排気する。次に、GaAs基板1
3の加熱を開始し、基板温度が400℃を越えた時点で
アルシンガスを砒素分子線源14に導入して砒素ビーム
を照射し、基板表面の酸化層除去を行う。基板温度が成
長温度450℃に達したのち、TEGガスをTEG分子
線源16に導入して約100n mにバッファ層を成長
させる。続いて基板温度を350℃に保ちヘテロエピタ
キシャル層を以下の方法で成長させた。即ち、第1に砒
素分子線源I4へのアルシンガスの導入を止め、TEG
分子をTEG分子線源!6から照射しGaAs基板13
の表面に1分子層を化学吸着させる。このとき過剰なT
EG分子は化学吸着層の表面には吸着しないため自動的
に1分子層の化学吸着が実現される。第2に光導入口1
5からアルゴンレーザ光をGaAs基板13の表面に照
射し、2pm幅のストライプ状の形状に走査、描画した
When growing a heteroepitaxial layer having InAs thin lines in a GaAs single crystal thin film, the following steps are performed. First, a GaAs substrate 13 whose surface has been cleaned by chemical etching and degassing treatment is attached to the substrate holder 12 and evacuated to a high vacuum using the vacuum pump 11. Next, the GaAs substrate 1
3, and when the substrate temperature exceeds 400° C., arsine gas is introduced into the arsenic molecular beam source 14 and an arsenic beam is irradiated to remove the oxide layer on the substrate surface. After the substrate temperature reaches the growth temperature of 450° C., TEG gas is introduced into the TEG molecular beam source 16 to grow a buffer layer to a thickness of about 100 nm. Subsequently, the substrate temperature was maintained at 350° C. and a heteroepitaxial layer was grown in the following manner. That is, first, the introduction of arsine gas to the arsenic molecular beam source I4 is stopped, and the TEG
TEG molecular beam source! The GaAs substrate 13 is irradiated from 6
One molecular layer is chemically adsorbed onto the surface of. At this time, excessive T
Since EG molecules are not adsorbed on the surface of the chemisorption layer, chemical adsorption of one molecular layer is automatically achieved. Second, light introduction port 1
The surface of the GaAs substrate 13 was irradiated with argon laser light from No. 5, and was scanned and drawn in a stripe shape with a width of 2 pm.

このとき、光が照射された領域で化学吸着した分子が脱
離する。第3に、TE1分子をTEI分子線源17から
照射すると、光が照射されて化学吸着層が消失した領域
に選択的にIn原子を有する1分子層が化学吸着される
。このとき、721分子は初めに形成したGa原子を含
む化学吸着層の表面には吸着しないため自動的に選択性
が実現される。第4に、砒素分子線源14から砒素分子
を照射した。以上の第1から第4の工程によりGaAs
 1分子層の面内にストライプ状のInAs 1分子層
を有するヘテロエピタキシャル層が形成された。この工
程とガリウム砒素のみの成長とを組合せて繰り返すこと
によりGaAs単結晶Fj)膜中に光ガイドとなるスト
ライプ状のInAs量子井戸構造を有するヘテロエピタ
キシャル層を成長させることができる。
At this time, molecules chemically adsorbed in the area irradiated with light are desorbed. Thirdly, when one TE molecule is irradiated from the TEI molecular beam source 17, one molecule layer having In atoms is selectively chemisorbed in the region where the chemisorption layer has disappeared due to the irradiation with light. At this time, selectivity is automatically achieved because the 721 molecules do not adsorb to the surface of the chemisorption layer containing Ga atoms that was initially formed. Fourth, arsenic molecules were irradiated from the arsenic molecular beam source 14. By the above first to fourth steps, GaAs
A heteroepitaxial layer having a striped InAs monomolecular layer within the plane of the monomolecular layer was formed. By repeating this process in combination with the growth of only gallium arsenide, a heteroepitaxial layer having a striped InAs quantum well structure serving as a light guide can be grown in the GaAs single crystal Fj) film.

上記実施例ではm族原子層の形成において本発明による
成長方法を用いたが、V族原子層の形成においても本発
明による成長方法を用いてパターン形成を行うことがで
きる。
In the above embodiments, the growth method according to the present invention was used to form the group M atomic layer, but the growth method according to the present invention can also be used to form a pattern when forming the group V atomic layer.

上記実施例では材料化合物としてトリエチルガリウム及
びトリエチルインジウムを用いたが、トリメチルガリウ
ム等の他の有機基をもつ有機金属化合物を用いてもよい
Although triethylgallium and triethylindium were used as material compounds in the above embodiments, organometallic compounds having other organic groups such as trimethylgallium may also be used.

上記実施例では化学吸着層としてアルキル基をもつ分子
層を形成する有機金属材料を用いたが、クロライド基を
持つ分子層を形成する材料であるジエチルガリウムクロ
ライド(分子式、(C,H,)、Ga(4)及びジエチ
ルインジウムクロライド(分子式、(CオH,)、[n
CU等のアルキルクロライド化物、又は、ガリウムクロ
ライド(分子式、GaCjl)、インジウムクロライド
(分子式、InCR)等の塩化物を用いてもよい。
In the above example, an organometallic material that forms a molecular layer having an alkyl group was used as the chemisorption layer. Diethylgallium chloride (molecular formula: (C,H,), Ga(4) and diethylindium chloride (molecular formula, (COH,), [n
Alkyl chlorides such as CU, or chlorides such as gallium chloride (molecular formula: GaCjl) and indium chloride (molecular formula: InCR) may be used.

上記実施例では材料化合物としてガリウム及びインジウ
ムのアルキル化合物を用いたが、アルミニウム、燐、砒
素、アンチモン、亜鉛、ベリリウム等の化合物半導体の
構成元素及び不純物の有機化合物を用いてもよい。
In the above embodiments, alkyl compounds of gallium and indium were used as material compounds, but organic compounds of constituent elements of compound semiconductors and impurities such as aluminum, phosphorus, arsenic, antimony, zinc, and beryllium may also be used.

〔発明の効果] 以上のように本発明によるエピタキシャル成長方法によ
れば、面内方向に光の集束径程度、層厚方向に1原子層
の大きさを有する局所領域に良好な界面品質を有するペ
テロ構造を形成できる効果を有する。
[Effects of the Invention] As described above, according to the epitaxial growth method of the present invention, a petrolite film having good interface quality in a local region having a diameter of light convergence in the in-plane direction and a size of one atomic layer in the layer thickness direction. It has the effect of forming a structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における原子層エピタキシャ
ル成長室の模式図である。 lO・・・成長室     II・・・真空ポンプ12
・・・基板ホルダ 14・・・砒素分子線源 16・・・TEG分子線源
FIG. 1 is a schematic diagram of an atomic layer epitaxial growth chamber in one embodiment of the present invention. lO...Growth chamber II...Vacuum pump 12
... Substrate holder 14 ... Arsenic molecular beam source 16 ... TEG molecular beam source

Claims (1)

【特許請求の範囲】[Claims] (1)分子流領域となる真空中に保持して加熱した半導
体基板にIII族元素を含む分子とV族元素を含む分子を
交互に照射してエピタキシャル成長させる方法において
、前記III族又はV族元素を含む分子の照射後に局部的
に光を照射し、その後前記分子に含まれる元素と同族か
つ前記元素と異なる元素を含む分子を照射することを特
徴とするエピタキシャル成長方法。
(1) In a method of epitaxial growth by alternately irradiating molecules containing a Group III element and molecules containing a Group V element onto a semiconductor substrate heated while being held in vacuum, which serves as a molecular flow region, the Group III or Group V element is 1. An epitaxial growth method, which comprises irradiating a molecule containing the molecule with light, then irradiating the molecule with light locally, and then irradiating a molecule containing an element that is the same group as the element contained in the molecule and different from the element.
JP18491189A 1989-07-18 1989-07-18 Method for epitaxial growth Pending JPH0349214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18491189A JPH0349214A (en) 1989-07-18 1989-07-18 Method for epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18491189A JPH0349214A (en) 1989-07-18 1989-07-18 Method for epitaxial growth

Publications (1)

Publication Number Publication Date
JPH0349214A true JPH0349214A (en) 1991-03-04

Family

ID=16161492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18491189A Pending JPH0349214A (en) 1989-07-18 1989-07-18 Method for epitaxial growth

Country Status (1)

Country Link
JP (1) JPH0349214A (en)

Similar Documents

Publication Publication Date Title
JPH0431391A (en) Epitaxial growth
JPH0349214A (en) Method for epitaxial growth
JPH05238880A (en) Method for epitaxial growth
JPH04212411A (en) Epitaxial growth method
JPH02248034A (en) Epitaxy method
JPH02208925A (en) Formation of semiconductor film
JPH02307894A (en) Method for growing compound semiconductor
JP2736655B2 (en) Compound semiconductor crystal growth method
JPH0388324A (en) Method for forming compound semiconductor thin film
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JPH0355438B2 (en)
JP2600243B2 (en) High purity metal deposition method
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2717165B2 (en) Method for forming structure of compound semiconductor
JP3047523B2 (en) Selective epitaxial growth method
JPH0535719B2 (en)
JPH0355440B2 (en)
JPH0243720A (en) Molecular beam epitaxial growth method
JPH02307895A (en) Method for growing compound semiconductor
JPH0626191B2 (en) InGaAsP mixed crystal epitaxial growth method
JPS63222420A (en) Epitaxial growth method for atomic layer of iii-v compound semiconductor
JPH02248035A (en) Epitaxy method
JPH05206029A (en) Method of flattening substrate of semiconductor crystal