JPH02248034A - Epitaxy method - Google Patents

Epitaxy method

Info

Publication number
JPH02248034A
JPH02248034A JP6765189A JP6765189A JPH02248034A JP H02248034 A JPH02248034 A JP H02248034A JP 6765189 A JP6765189 A JP 6765189A JP 6765189 A JP6765189 A JP 6765189A JP H02248034 A JPH02248034 A JP H02248034A
Authority
JP
Japan
Prior art keywords
substrate
molecules
irradiated
electron beam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6765189A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6765189A priority Critical patent/JPH02248034A/en
Publication of JPH02248034A publication Critical patent/JPH02248034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable a hetero-structure to be formed in a fine local region by a method wherein, after irradiating a substrate surface with the first element molecules cut of III, V group elements, a specified region of the surface is irradiated with electron beam and then the second molecules. CONSTITUTION:A GaAs substrate 13 is fixed on a substrate holder 12 in a highly vacuumized deposition chamber 10. Later, the substrate 13 is heated and irradiated with TEG(triethylgallium) molecules from a TEG molecular beam source 16 to make monomolecular layer chemically adsorb on the surface of the substrate 13. Next, the surface of the substrate 13 is irradiated with electron beam focussed from an electron beam source 15 for scanning and exposure. At this time, the chemically adsorbed molecules in the region irradiated with the electron beam are released. Next, when the substrate 13 is irradiated with TEI(triethylindium) molecules from a TEI molecular beam source 17, the monomolecular layer selectively having In atoms is chemically absorbed on the region wherefrom the chemically adsorbed layer is vanished by the irradiation with electron beam. Finally, the substrate 13 is irradiated with As molecules from an arsenic molecular beam source 14. Through these procedures, an epitaxial layer of InAs molecular layer in quantum size can be formed in a GaAs monomolecular layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエピタキシャル成長方法に関し、ざらに詳しく
は、化合物半導体結晶の薄膜を材料元素を含む分子線を
用いて成長させる原子層エピタキシャル成長方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an epitaxial growth method, and more particularly to an atomic layer epitaxial growth method for growing a thin film of compound semiconductor crystal using a molecular beam containing a material element.

[従来の技術] 真空中に保持・加熱された半導体基板に材料元素を含む
分子を交互に照射する原子層エピタキシャル成長法は、
原子レベルでの急峻なペテロ成長界面の形成、光ビーム
等の照射による膜の局所形成等の優れた特徴を有するエ
ピタキシャル成長方法である。
[Prior art] The atomic layer epitaxial growth method involves alternately irradiating molecules containing material elements onto a semiconductor substrate held and heated in a vacuum.
This epitaxial growth method has excellent features such as the formation of a steep Peter's growth interface at the atomic level and the local formation of a film by irradiation with a light beam or the like.

この成長方法を用いたガリウム砒素のエピタキシャル成
長の例が第49回応用物理学会学術講演会予稿集分冊1
,4a−W=1.I)、199ニ報告すしている。この
従来例では、■族材料にトリエチルガリウム(略称TE
G、分子式; (C2H5)3Ga)、v族材料にアル
シン(分子式:ASH3)を用い、これらのガスを高真
空中で成長温度に加熱保持されたガリウム砒素基板に交
互に照射し、アルゴンレーザ光を照射して局所的にエピ
タキシャル成長させている。本従来例ではレーザ光の照
射された領域にガリウム砒素からなる幅0.1mmの線
状パターンが形成されている。
An example of epitaxial growth of gallium arsenide using this growth method is Proceedings of the 49th Japan Society of Applied Physics Academic Conference Volume 1
, 4a-W=1. I), 199 days have been reported. In this conventional example, triethyl gallium (abbreviated as TE) is used as a group material.
G, molecular formula: (C2H5)3Ga), arsine (molecular formula: ASH3) is used as the V group material, these gases are alternately irradiated onto a gallium arsenide substrate heated and maintained at the growth temperature in a high vacuum, and argon laser light is applied. is irradiated to cause local epitaxial growth. In this conventional example, a linear pattern with a width of 0.1 mm made of gallium arsenide is formed in the area irradiated with the laser beam.

[発明が解決しようとする課題] しかしながら、局所的に形成可能な領域はレーザ光のス
ポットサイズで制限されるため11JIn以下にするの
が困難で、また面内方向のへテロ界面の形成が同時にで
きない等の問題がある。そのため、量子サイズ効果が顕
著になる10nm以下の微小局所領域への良好なヘテロ
構造の形成ができなかった。
[Problems to be solved by the invention] However, since the area that can be formed locally is limited by the spot size of the laser beam, it is difficult to reduce the area to 11JIn or less, and it is difficult to form a heterointerface in the in-plane direction at the same time. There are problems such as not being able to do it. Therefore, it was not possible to form a good heterostructure in a minute local region of 10 nm or less where the quantum size effect becomes noticeable.

本発明は以上述べたような従来の事情に鑑みてなされた
もので、10nm以下の微小局所領域への良好なヘテロ
構造の形成ができる原子層エピタキシャル成長方法を提
供することにある。
The present invention has been made in view of the conventional circumstances as described above, and it is an object of the present invention to provide an atomic layer epitaxial growth method capable of forming a good heterostructure in a minute local region of 10 nm or less.

[課題を解決するための手段] 本発明は、分子流領域となる真空中に保持・加熱された
半導体基板に■族元素を含む分子とV族元素を含む分子
とを交互に照射してエピタキシャル成長させる原子層エ
ピタキシャル成長方法において、■族元素を含む分子の
照射工程およびV族元素を含む分子の照射工程のうち少
なくとも一つが、第1の元素を含む分子を基板表面に照
射する段階と、該基板表面の所定領域に電子線を照射す
る段階と、前記第1の元素と同族で、かつ種類の異なる
第2の元素を含む分子を基板表面に照射する段階とを備
えてなることを特徴とするエピタキシャル成長方法であ
る。
[Means for Solving the Problems] The present invention performs epitaxial growth by alternately irradiating molecules containing Group I elements and molecules containing Group V elements onto a semiconductor substrate held and heated in vacuum, which serves as a molecular flow region. In the atomic layer epitaxial growth method, at least one of the step of irradiating molecules containing a group I element and the step of irradiating molecules containing a group V element comprises a step of irradiating a substrate surface with molecules containing a first element; The substrate surface is characterized by comprising the steps of irradiating a predetermined region of the surface with an electron beam, and irradiating the substrate surface with molecules containing a second element that is in the same group as the first element and is different in type. This is an epitaxial growth method.

[作用] 本発明による原子層エピタキシャル成長方法では、■族
および/またはV族元素を含む分子を照射する工程が以
下の3段階よりなる。
[Function] In the atomic layer epitaxial growth method according to the present invention, the step of irradiating molecules containing group (I) and/or group V elements consists of the following three steps.

即ち、第1の段階は、半導体基板に■族またはV族元素
である元素Aを含む分子を照射し、全面に化学吸着させ
る段階である。第2の段階は、局所的に電子線を照射し
て化学吸着させた前記分子を局所的に脱離させる段階で
ある。第3の段階は、前記分子に含まれる元素Aと同族
でしかも前記元素と異なる元素Bを含む分子を基板全面
に照射して、電子線によって局所的に脱離させた領域に
選択的に前記元素Bを含む分子を化学吸着させる段階で
ある。
That is, the first step is a step in which the semiconductor substrate is irradiated with molecules containing element A, which is a group I or group V element, and is chemically adsorbed on the entire surface. The second step is to locally irradiate an electron beam to locally desorb the chemically adsorbed molecules. In the third step, the entire surface of the substrate is irradiated with a molecule containing an element B, which is the same group as the element A contained in the molecule and is different from the element, and the molecule is selectively applied to the region locally desorbed by the electron beam. This is a step in which molecules containing element B are chemically adsorbed.

以上の工程の結果、半導体基板表面に電子線を照射した
領域には元素Bを含む分子が、照射しなかった領域には
元素Aを含む分子が、それぞれ化学吸着した化学吸着層
を得ること・ができる。以上の3段階よりなる工程によ
る化学吸着層の形成を■族および/またはV族について
交互に繰り返すことにより、積層方向および面方向に1
0 nm以下の微小サイズでヘテロ構造が形成できる。
As a result of the above steps, a chemisorption layer is obtained in which molecules containing element B are chemically adsorbed in the area where the electron beam was irradiated on the surface of the semiconductor substrate, and molecules containing element A are chemically adsorbed in the area where the electron beam was not irradiated. I can do it. By repeating the formation of chemisorption layers by the process consisting of the above three steps alternately for Group II and/or Group V, one
A heterostructure can be formed with a microscopic size of 0 nm or less.

ここで、第2の段階において用いられる電子線の加速電
圧は、化学吸着した分子の吸着エネルギーと基板温度の
熱エネルギーとの差より大きいエネルギーを電子に与え
られるよう設定する必要がある。それはこの第2の段階
では、化学吸着した分子を脱離させるために必要なエネ
ルギーを電子から化学吸着した分子に与えることにより
、吸着した分子を脱離させるからである。ただし、脱離
過程に、複数の電子が関与、し得る程度に電子電流を上
げられる場合はこの限りではない。
Here, the acceleration voltage of the electron beam used in the second step needs to be set so that energy greater than the difference between the adsorption energy of the chemically adsorbed molecules and the thermal energy of the substrate temperature can be given to the electrons. This is because, in this second stage, the chemisorbed molecules are desorbed by providing the chemisorbed molecules with the energy required to desorb them from the electrons. However, this does not apply if the electron current can be increased to such an extent that multiple electrons participate in the desorption process.

更に第3の段階で元素Bを含む分子が電子線によって局
所的に脱離させた領域に選択的に化学吸着される理由は
以下の通りである。即ち、第2の段階後、半導体基板表
面は電子線を照射しなかった領域には化学吸着した分子
があり、照射した領域には化学吸着した分子層はない。
Furthermore, the reason why molecules containing element B are selectively chemisorbed in the region locally desorbed by the electron beam in the third step is as follows. That is, after the second step, on the surface of the semiconductor substrate, there are chemically adsorbed molecules in the area where the electron beam was not irradiated, and there is no layer of chemically adsorbed molecules in the irradiated area.

この後、第3の段階で元素Bを含む分子を照射すると、
すでに化学吸着した分子層のある領域は吸着に対して不
活性であるため新たな吸着が妨げられる。一方、吸着層
のない領域では吸着が生じる。その結果、半導体基板表
面に電子線を照射した領域にのみ選択的に元素Bを含む
分子を化学吸着させることができる。ただし、半導体基
板の温度は照射分子が単分子吸着する温度を選ぶ必要が
ある。
After this, in the third step, when molecules containing element B are irradiated,
Certain regions of the molecular layer that have already been chemisorbed are inert to adsorption and thus prevent new adsorption. On the other hand, adsorption occurs in areas where there is no adsorption layer. As a result, molecules containing element B can be selectively chemically adsorbed only in the region where the surface of the semiconductor substrate is irradiated with the electron beam. However, it is necessary to select the temperature of the semiconductor substrate at a temperature at which single molecules of irradiated molecules are adsorbed.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例を説明するための原子層エピ
タキシャル成長室の構成図である。本実施例では■族材
料にはトリエチルガリウム(分子式;(02H5)3G
a)、およびトリエチルインジウム(略称TEI、分子
式: (C2Hs )3I n ) 、V族材料にはア
ルシンを用い、これらのガスを高真空中で成長温度に加
熱・保持されたカリウム砒素基板に以下の工程で照射し
てエピタキシャル成長させた。
FIG. 1 is a block diagram of an atomic layer epitaxial growth chamber for explaining one embodiment of the present invention. In this example, the group III material is triethyl gallium (molecular formula: (02H5)3G
a) and triethylindium (abbreviated as TEI, molecular formula: (C2Hs)3I n ), arsine is used as the V group material, and these gases are heated and maintained at the growth temperature in a high vacuum on a potassium arsenide substrate as follows. It was irradiated during the process to grow epitaxially.

成長室10にはGaAs基板13を保持すると共に、成
長温度まで加熱する基板ホルダ12、砒素分子線源14
、電子ビーム源15、TEG分子線源16、TE■分子
線源17が配設され、真空ポンプ11で高真空に排気さ
れる。砒素分子線源14は内部にアルシンガスを熱分解
させるためのヒータ(図示せず)を備えており、アルシ
ンガスはこのヒータにより、950’Cに加熱・熱分解
されて砒素分子(分子式;AS2 )となる。また、電
子ビーム源15は内部に電子銃、加速電極および集束レ
ンズを備え、必要とする空間分解能以下に電子ビームを
集束する。
The growth chamber 10 holds a GaAs substrate 13, and also includes a substrate holder 12 that heats the substrate to the growth temperature, and an arsenic molecular beam source 14.
, an electron beam source 15, a TEG molecular beam source 16, and a TE molecular beam source 17, which are evacuated to a high vacuum by a vacuum pump 11. The arsenic molecular beam source 14 is equipped with a heater (not shown) for thermally decomposing arsine gas, and the arsine gas is heated to 950'C and thermally decomposed by this heater to form arsenic molecules (molecular formula: AS2). Become. Further, the electron beam source 15 includes an electron gun, an accelerating electrode, and a focusing lens therein, and focuses the electron beam to a required spatial resolution or less.

GaAS単結晶単結中薄膜中サイズのInAs量子箱を
有するヘテロエピタキシャル層を成長する場合は以下の
手順で行った。まず、化学エツチングと脱ガス処理によ
って表面を清浄化したGaAs基板13を基板ホルダ1
2に取り付け、真空ポンプ11で高真空に排気した。次
に、GaAs基板13の加熱を開始し、基板温度が40
0°Cを越えた時点でアルシンガスを砒素分子線源14
に導入して砒素ビームを照射し、基板表面の酸化層除去
を行った。
When growing a heteroepitaxial layer having a medium-sized InAs quantum box in a medium-thin GaAS single crystal, the following procedure was performed. First, a GaAs substrate 13 whose surface has been cleaned by chemical etching and degassing treatment is placed on the substrate holder 1.
2 and evacuated to high vacuum using the vacuum pump 11. Next, heating of the GaAs substrate 13 is started, and the substrate temperature reaches 40°C.
When the temperature exceeds 0°C, turn the arsine gas into an arsenic molecular beam source 14.
The oxide layer on the substrate surface was removed by introducing an arsenic beam into the substrate and irradiating it with an arsenic beam.

基板温度が成長温度450’Cに達したのち、TEGガ
スをTEG分子線源16に導入して約100 nmのバ
ッファ層を成長した。
After the substrate temperature reached the growth temperature of 450'C, TEG gas was introduced into the TEG molecular beam source 16 to grow a buffer layer of about 100 nm.

続いて基板温度を350′Gに保ち、ヘテロエピタキシ
ャル層を以下の方法で成長させた。即ら、第1に砒素分
子線源14へのアルシンガスの導入を止め、TEG分子
をTEG分子線源16から照射し、GaAs基板13の
表面に1分子層を化学吸着させる。この時、過剰なTE
G分子は化学吸着層の表面には吸着しないため自動的に
1分子層の化学吸着が実現される。第2に電子ビーム源
15から集束した電子線をGaAs基板13の表面に照
射し、5nm角の正方形の形状に走査、描画した。この
時、電子ビームが照射された領域で化学吸着した分子が
脱離する。第3に、TEI分子をTEI分子線源17か
ら照射すると、電子ビームが照射されて化学吸着層が消
失した領域に選択的にIn原子を有する1分子層が化学
吸着される。この時、TEI分子は初めに形成したGa
原子を含む化学吸着層の表面には吸着しないため自動的
に選択性が実現される。第4に、砒素分子線源14から
砒素分子を照射した。
Subsequently, the substrate temperature was maintained at 350'G, and a heteroepitaxial layer was grown in the following manner. That is, first, the introduction of arsine gas to the arsenic molecular beam source 14 is stopped, and TEG molecules are irradiated from the TEG molecular beam source 16 to chemically adsorb one molecular layer on the surface of the GaAs substrate 13. At this time, excessive TE
Since G molecules are not adsorbed on the surface of the chemisorption layer, chemical adsorption of one molecular layer is automatically achieved. Second, a focused electron beam from the electron beam source 15 was irradiated onto the surface of the GaAs substrate 13 to scan and draw a 5 nm square shape. At this time, molecules chemically adsorbed in the region irradiated with the electron beam are desorbed. Third, when TEI molecules are irradiated from the TEI molecular beam source 17, one molecular layer containing In atoms is selectively chemisorbed in the region where the chemisorption layer has disappeared due to the electron beam irradiation. At this time, the TEI molecule is formed by the initially formed Ga
Since it does not adsorb to the surface of the chemisorption layer containing atoms, selectivity is automatically achieved. Fourth, arsenic molecules were irradiated from the arsenic molecular beam source 14.

以上の第1から第4の工程によりGaA31分子層中に
量子サイズのInAS1分子層を有するヘテロエピタキ
シャル層が形成された。この工程を繰り返すことにより
、必要な厚さのGaAS単結晶単結中薄膜中サイズのI
nAs量子箱を有刃るヘテロエピタキシャル層を成長さ
せることができた。
Through the above first to fourth steps, a heteroepitaxial layer having one quantum-sized InAS molecular layer in a three-layer GaA molecular layer was formed. By repeating this process, I
We were able to grow a heteroepitaxial layer with nAs quantum boxes.

上記実施例では■族原子層の形成において、本発明の成
長方法を用いたが、V族原子層の形成においても本発明
の成長方法を用いてパターン形成を行うことができる。
In the above embodiments, the growth method of the present invention was used to form the group Ⅰ atomic layer, but the growth method of the present invention can also be used to form a pattern in the formation of the group V atomic layer.

上記実施例では材料化合物としてトリエチルガリウムお
よびトリエチルインジウムを用いたが、トリメチルガリ
ウム等の他の有機基をもつ有機金属化合物を用いてもよ
く、またクロライド基を持ち分子層を形成する材料であ
るジエチルガリウムクロライド(分子式: (C2H5
)2 GaCff1 )、ジエチルインジウムクロライ
ド(分子式;%式% ト化物、またはガリウムクロライド(分子式;GaC1
、インジウムクロライド(分子式;InCf>等の塩化
物を用いてもよい。
In the above examples, triethyl gallium and triethylindium were used as material compounds, but organometallic compounds having other organic groups such as trimethyl gallium may also be used, and diethyl, which is a material having a chloride group and forming a molecular layer, may also be used. Gallium chloride (molecular formula: (C2H5
)2 GaCff1 ), diethyl indium chloride (molecular formula; % formula % toride, or gallium chloride (molecular formula; GaC1
, indium chloride (molecular formula: InCf>, etc.) may be used.

上記実施例では材料化合物としてガリウムおよびインジ
ウムのアルキル化合物を用いたか、アルミニウム、燐、
砒素、アンチモン、亜鉛、ベリリウム等の他の化合物半
導体の構成元素および不純物の有機化合物を用いてもよ
い。
In the above examples, alkyl compounds of gallium and indium were used as material compounds, or aluminum, phosphorus,
Other constituent elements of compound semiconductors, such as arsenic, antimony, zinc, and beryllium, and organic compounds of impurities may also be used.

[発明の効果] 以上説明したように、本発明のエピタキシャル成長方法
によれば、面内方向に電子線の集束径程度、層厚方向に
1原子層の大きさを有する微小局所領域にペテロ構造を
有するヘテロエピタキシャル層を形成することができる
[Effects of the Invention] As explained above, according to the epitaxial growth method of the present invention, a petrostructure can be formed in a minute local region having a size about the diameter of an electron beam in the in-plane direction and one atomic layer in the layer thickness direction. It is possible to form a heteroepitaxial layer having the following properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いられる原子層エピタキシャ
ル成長室の一例の構成図である。
FIG. 1 is a block diagram of an example of an atomic layer epitaxial growth chamber used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)分子流領域となる真空中に保持・加熱された半導
体基板にIII族元素を含む分子とV族元素を含む分子と
を交互に照射してエピタキシャル成長させる原子層エピ
タキシャル成長方法において、III族元素を含む分子の
照射工程およびV族元素を含む分子の照射工程のうち少
なくとも一つが、第1の元素を含む分子を基板表面に照
射する段階と、該基板表面の所定領域に電子線を照射す
る段階と、前記第1の元素と同族で、かつ種類の異なる
第2の元素を含む分子を基板表面に照射する段階とを備
えてなることを特徴とするエピタキシャル成長方法。
(1) In an atomic layer epitaxial growth method in which molecules containing group III elements and molecules containing group V elements are epitaxially grown by alternately irradiating molecules containing group III elements and molecules containing group V elements onto a semiconductor substrate held and heated in vacuum, which serves as a molecular flow region, group III elements are used. At least one of the step of irradiating molecules containing a group V element and the step of irradiating molecules containing a group V element includes a step of irradiating a substrate surface with molecules containing a first element, and irradiating a predetermined region of the substrate surface with an electron beam. An epitaxial growth method comprising the steps of: irradiating a substrate surface with a molecule containing a second element that is in the same group as the first element and of a different type.
JP6765189A 1989-03-22 1989-03-22 Epitaxy method Pending JPH02248034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6765189A JPH02248034A (en) 1989-03-22 1989-03-22 Epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6765189A JPH02248034A (en) 1989-03-22 1989-03-22 Epitaxy method

Publications (1)

Publication Number Publication Date
JPH02248034A true JPH02248034A (en) 1990-10-03

Family

ID=13351141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6765189A Pending JPH02248034A (en) 1989-03-22 1989-03-22 Epitaxy method

Country Status (1)

Country Link
JP (1) JPH02248034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295225A (en) * 1990-04-12 1991-12-26 Semiconductor Res Found Formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295225A (en) * 1990-04-12 1991-12-26 Semiconductor Res Found Formation of thin film

Similar Documents

Publication Publication Date Title
Asakawa et al. Damage and contamination‐free GaAs and AlGaAs etching using a novel ultrahigh‐vacuum reactive ion beam etching system with etched surface monitoring and cleaning method
JPH0794494A (en) Manufacture of compound semiconductor device
JPH02248034A (en) Epitaxy method
JPH05238880A (en) Method for epitaxial growth
JPH04212411A (en) Epitaxial growth method
JPH0431391A (en) Epitaxial growth
JPH02307894A (en) Method for growing compound semiconductor
JPH0349214A (en) Method for epitaxial growth
JP2600243B2 (en) High purity metal deposition method
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JPH02307895A (en) Method for growing compound semiconductor
JP2686699B2 (en) Method for forming GaN mask for selective growth
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
JP2717165B2 (en) Method for forming structure of compound semiconductor
JP3047523B2 (en) Selective epitaxial growth method
JPH0243720A (en) Molecular beam epitaxial growth method
JP2858058B2 (en) Crystal growth method
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JP3092821B2 (en) Compound semiconductor surface structure and method of manufacturing the same
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPH02288333A (en) Method of forming pattern of compound semiconductor
JPH02248035A (en) Epitaxy method
JPH04155817A (en) Surface cleaning method for compound semiconductor substrate
JPH0832047A (en) Manufacture of semiconductor fine structure