JPS6134927A - Growing process of compound semiconductor single crystal thin film - Google Patents

Growing process of compound semiconductor single crystal thin film

Info

Publication number
JPS6134927A
JPS6134927A JP15397784A JP15397784A JPS6134927A JP S6134927 A JPS6134927 A JP S6134927A JP 15397784 A JP15397784 A JP 15397784A JP 15397784 A JP15397784 A JP 15397784A JP S6134927 A JPS6134927 A JP S6134927A
Authority
JP
Japan
Prior art keywords
compound semiconductor
single crystal
growing
crystal thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15397784A
Other languages
Japanese (ja)
Other versions
JPH0782991B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Hitoshi Abe
仁志 阿部
Soubee Suzuki
鈴木 壮兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP59153977A priority Critical patent/JPH0782991B2/en
Priority to GB08518834A priority patent/GB2162862B/en
Priority to DE19853526824 priority patent/DE3526824A1/en
Priority to FR8511517A priority patent/FR2578680B1/en
Publication of JPS6134927A publication Critical patent/JPS6134927A/en
Priority to US08/077,119 priority patent/US5693139A/en
Publication of JPH0782991B2 publication Critical patent/JPH0782991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make it feasible to grow single crystal growing layers subject to the precision of monomolecular layer on a substrate by a method wherein the pressure inside a growing vessel, heating temperature of substrate, optimum value for single crystal growing one cycle monomolecular layers or one cycle dimolecular layers of introducing gas are specified. CONSTITUTION:A gate valve 2 is opened to vacuum a growing vessel 1 up to around 10<-7>-10<-8> Pa by an ultrahigh vacuum pump 3 and after heating a GaAs substrate 12 up to 300-800 deg.C by a heater 10, one valve 6 is opened to introduce TMG8 for 0.5-10sec within the range boosting the pressure in the growing vessel 1 up to 10<-1>-10<-7> Pa. When, after closing the valve 6 to vacuum the gas inside the growing vessel 1, the other valve 7 is opened to introduce AsH3 for 2- 200sec within the range boosting the pressure in the growing vessel 1 up to 10<-1>-10<-7> Pa, at least one monomolecular layer of GaAs is formed on the substrate 12. Finally single crystal growing layers of GaAs with specific thickness may be grown subject to the precision of monomolecular layer by means of repeating said procedures for growing monomolecular layers one after another.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は化合物半導体の単結晶成長層を単分子層オーダ
ーで形成するのに好適な化合物半導体単結晶薄膜の成長
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for growing a compound semiconductor single crystal thin film suitable for forming a compound semiconductor single crystal growth layer on the order of a monomolecular layer.

[先行技術とその問題点コ 従来から半導体の薄膜結晶を得るための気相エピタキシ
ー技術として、有機金属気相成長法(以、下、MO−C
VD法と呼ぶ)、分子線エピタキシー法C以下、MBE
法と呼ぶ)、原子層エピタキシー(以下、ALE法と呼
ぶ)などが知られている。しかし、MO−CVD法はソ
ースとして■族、■族元素を水素ガス等をキャリアとし
て、同時に反応室へ導入し、熱分解によって成長させる
ため、成長層の品質が悪い。また、単分子層オーダーの
制御が困難である等の欠点がある。
[Prior art and its problems] Metal-organic vapor phase epitaxy (hereinafter referred to as MO-C
VD method), molecular beam epitaxy method C, MBE
(hereinafter referred to as ALE method), atomic layer epitaxy (hereinafter referred to as ALE method), and the like are known. However, in the MO-CVD method, group (1) and (3) elements are introduced as a source into a reaction chamber simultaneously with hydrogen gas or the like as a carrier, and the growth layer is grown by thermal decomposition, so the quality of the grown layer is poor. Further, there are drawbacks such as difficulty in controlling the monolayer order.

一方、超高真空を利用した結晶成長法としてよく知られ
るMBE法は、物理吸着を第一段階とするために、結晶
の品質は化学反応を利用した気相成長法に劣る。GaA
sのような■−v族間の化合物半導体を成長する時には
、■族、■族元素をソースとして用い、ソース源自体を
成長室の中に設置している。このため、ソース源を加熱
して得られる放出ガスと蒸発量の制御、および、ソース
の補給が困難であり、成長速度を長時間一定に保つこと
が困難である。また、蒸発物の排気など真空装置が複雑
になる。更には、化合物半導体の化学量論的組成(スト
イキオメトリ−)を精密に制御することが困難で、結局
、高品質の結晶を得ることができない欠点がある。
On the other hand, the MBE method, which is well known as a crystal growth method using an ultra-high vacuum, uses physical adsorption as the first step, so the quality of the crystal is inferior to the vapor phase growth method using a chemical reaction. GaA
When growing compound semiconductors between the ■-V groups such as S, group ■ and group ■ elements are used as sources, and the sources themselves are installed in the growth chamber. For this reason, it is difficult to control the gas released by heating the source and the amount of evaporation, and to replenish the source, making it difficult to keep the growth rate constant for a long time. In addition, the vacuum equipment, such as exhausting evaporated matter, becomes complicated. Furthermore, it is difficult to precisely control the stoichiometric composition (stoichiometry) of the compound semiconductor, and as a result, high quality crystals cannot be obtained.

更にALE法は、T、5unLolaらがU、S、P、
 Nn4058430(1977)で説明しているよう
に、MBE法を改良し半導体元素のそれぞれをパルス状
に交互に供給し、単原子層を基板に交互に付着させ、薄
膜を原子層ずつ成長させるもので、原子層の精度で膜厚
を制御できる利点があるが、MBE法の延長でありMB
Eと同様に結晶性が良くない。また成長した薄膜もCd
Te、 ZnTe等のII−IV族化合物半導体に限ら
れ、現在超LSI等の半導体装置の主力であるSlやG
aAsに関しては成功していない。ALEを改良して分
子層を吸着し、表面での化学反応を利用した成長も試み
られてはいるがZnSの多結晶もしくはTa 205の
アモルファスの薄膜の成長であり単結晶成長技術とはな
っていない。
Furthermore, the ALE method was developed by T,5unLola et al.
As explained in Nn4058430 (1977), this method improves the MBE method and alternately supplies each semiconductor element in a pulsed manner, depositing monoatomic layers alternately on the substrate and growing a thin film atomic layer by atomic layer. , which has the advantage of being able to control the film thickness with atomic layer precision, is an extension of the MBE method.
Similar to E, crystallinity is not good. In addition, the grown thin film is also Cd
It is limited to II-IV group compound semiconductors such as Te and ZnTe, and currently includes Sl and G, which are the mainstay of semiconductor devices such as VLSI.
No success has been achieved with aAs. Attempts have been made to improve ALE to adsorb a molecular layer and use chemical reactions on the surface for growth, but these are only for the growth of polycrystalline ZnS or amorphous thin films of Ta 205, and this is not a single-crystal growth technology. do not have.

このように、MO−CVD法やMBE法では化学量論的
組成を満足する高品質の結晶を単分子層オーダーで形成
することが困難な一方、ALE法では単結晶が得られな
い欠点があった。
As described above, while it is difficult to form high-quality crystals that satisfy the stoichiometric composition on the order of a monomolecular layer using the MO-CVD method and the MBE method, the ALE method has the disadvantage that single crystals cannot be obtained. Ta.

[発明の目的コ 本発明は上記従来技術の欠点を除き、化学量論的組成を
制御することにより結晶成長層の品質を改善し、単分子
層の精度で成長膜を形成することができる化合物半導体
の単結晶薄膜の成長法を提供することを目的とする。
[Object of the invention] The present invention eliminates the drawbacks of the above-mentioned prior art, improves the quality of a crystal growth layer by controlling the stoichiometric composition, and provides a compound that can form a growth film with the precision of a monomolecular layer. The purpose of this invention is to provide a method for growing single crystal thin films of semiconductors.

[発明の概要コ このため、本発明はALE法では、単元素の1原子層を
基板上に形成したのに対し、その基板上に成長させたい
成分元素を含む分子のガスを外部から交互に導入するサ
イクルを繰り返すことにより基板上に結晶を成長させる
が、その際、成長槽内の圧力、基板加熱温度、導入する
ガス量の1サイクル1分子層もしくは1サイクル2分子
層の単結晶成長するための最適値を実験的に見い出し、
基板上に単結晶が成長できるようにしたことを特徴とし
ている。
[Summary of the Invention] Therefore, in the ALE method, a single atomic layer of a single element is formed on a substrate, whereas a gas containing molecules containing the component elements desired to be grown on the substrate is alternately supplied from the outside. A crystal is grown on the substrate by repeating the introduction cycle, and at this time, the pressure in the growth tank, the substrate heating temperature, and the amount of gas introduced are adjusted such that a single crystal grows in one molecular layer per cycle or two molecular layers per cycle. Experimentally find the optimal value for
The feature is that a single crystal can be grown on the substrate.

[発明の実施例コ 以下、本発明の詳細な説明する。[Embodiments of the invention] The present invention will be explained in detail below.

第1図は本発明の一実施例に係る化合物半導体単結晶成
長装置の構成図を示したもので、1は成長槽で材質はス
テンレス等の金属、2はゲートバルブ、3は成長槽1内
を超高真空に排気するための排気装置、4,5は例えば
■−■族化合物半導体の■族、■族の成分元素のガス状
の化合物を導入するノズル、6,7はノズル4,5を開
閉するバルブ、8の■族は成分元素を含むガス状の化合
物、9は■族の成分元素を含むガス状の化合物、10は
基板加熱用のヒーターで石英ガラスに封入したタングス
テン(W)線であり、電線等は省略して図示しているも
の、11は測温用の熱電対、12は化合物半導体の基板
、13は成長槽内の真空度を測るための圧力計である。
FIG. 1 shows a configuration diagram of a compound semiconductor single crystal growth apparatus according to an embodiment of the present invention, in which 1 is a growth tank made of metal such as stainless steel, 2 is a gate valve, and 3 is inside the growth tank 1. 4 and 5 are nozzles for introducing, for example, gaseous compounds of component elements of group Ⅰ and group Ⅰ of the ■-■ group compound semiconductor; 6 and 7 are nozzles 4 and 5; Valve that opens and closes, Group 8 is a gaseous compound containing a component element, 9 is a gaseous compound containing a component element of Group 2, 10 is a heater for heating the substrate, and tungsten (W) sealed in quartz glass. 11 is a thermocouple for temperature measurement, 12 is a compound semiconductor substrate, and 13 is a pressure gauge for measuring the degree of vacuum in the growth tank.

以上の構成で、成長槽1内の圧力、基板12の加熱温度
、ガスの導入量等をパラメータとして結晶成長状態を調
べた結果、下記の条件にて結晶成長させると、高品質の
単結晶薄膜を単分子層の精度で形成できることが実験的
に確認できた。即ち。
With the above configuration, the crystal growth state was investigated using parameters such as the pressure inside the growth tank 1, the heating temperature of the substrate 12, and the amount of gas introduced. As a result, it was found that when the crystal is grown under the following conditions, a high quality single crystal thin film can be obtained. It was experimentally confirmed that it is possible to form a monolayer with the precision of a monomolecular layer. That is.

GaAsの単結晶をGaAs基板1上にエピタキシャル
成長させるには、先ずゲートバルブ2を開けて超高真空
排気装置3により、成長槽1内を10−7〜10  ’
 Pa5cal(以下、Paと略す)程度に排気する。
To epitaxially grow a GaAs single crystal on a GaAs substrate 1, first open the gate valve 2 and use the ultra-high vacuum exhaust device 3 to vacuum the inside of the growth tank 1 at 10-7 to 10'.
Exhaust to about Pa5cal (hereinafter abbreviated as Pa).

次に、GaAs基板12を300〜800°Cにヒータ
ー10により加熱し、Gaを含むガスとしてTMG (
)−リメチルガリウム)8を成長槽1内の圧力が、10
−1〜1O−7Paになる範囲で、0.5〜10秒間バ
ルブ6を開けて導入する。その後、バルブ6を閉じて成
長槽1内のガスを排気後、今度はAsを含むガスとして
ASH!(アルシン)9を成長槽1内の圧力が10−1
〜10”Paになる範囲で、2〜200秒間バルブ7を
開けて導入する。これにより、基板12上にGaAsが
少なくとも1分子層成長できる。以上の操作を繰り返し
、単分子層を次々と成長させることにより、所望の厚さ
のGaAsの単結晶成長層を単分子層の精度で成長させ
ることができる。
Next, the GaAs substrate 12 is heated to 300 to 800°C by the heater 10, and TMG (
)-limethylgallium)8 when the pressure in the growth tank 1 is 10
-1 to 1O-7Pa, the valve 6 is opened for 0.5 to 10 seconds and the mixture is introduced. After that, the valve 6 is closed and the gas in the growth tank 1 is exhausted, and then the gas containing As is ASH! (Arsine) 9 and the pressure in growth tank 1 is 10-1
The valve 7 is opened for 2 to 200 seconds at a pressure of ~10"Pa. This allows at least one molecular layer of GaAs to grow on the substrate 12. By repeating the above operations, monomolecular layers are grown one after another. By doing so, a GaAs single crystal growth layer of a desired thickness can be grown with the precision of a monomolecular layer.

第2図(a)は、導入ガスとして、TMGとGaAsを
用いた時の成長温度600℃での1サイクル当りのTM
Gの導入量をパラメーターとして1サイクル当りのGa
As膜の成長膜厚を示すものである。1サイクル当りの
TMGの導入量が増えると成長膜厚が飽和する。この飽
和値以上のガスの導入量で成長してやれば、たとえ、ガ
ス導入量が多心変動しても、確実に1サイクル1分子層
もしくは1す、イクル2分子層成長するため、原子単位
の精度の膜厚が制御できる。この飽和する条件でTMG
とA!9H3を交互に導入し、その導入回数と、GaA
sエピタキシャル成長層の膜厚の関係を示したものが第
2図(b)である。この図から明らかなように、非常に
よい直線性を示すことから任意の膜厚が完全に制御でき
ることが判る。このようにして、得られたGaAsのエ
ピタキシャル成長層を電子線回折およびX線回折で調べ
たところ、非常に完全性の高い薄膜単結晶となっている
ことが判明した。
Figure 2 (a) shows the TM per cycle at a growth temperature of 600°C when TMG and GaAs are used as introduced gases.
Ga per cycle using the amount of G introduced as a parameter
It shows the growth thickness of the As film. As the amount of TMG introduced per cycle increases, the grown film thickness becomes saturated. If growth is performed with the amount of gas introduced above this saturation value, even if the amount of gas introduced varies from core to core, one molecular layer per cycle or two molecular layers per cycle will be grown, resulting in precision in atomic units. The film thickness can be controlled. Under this saturated condition, TMG
And A! 9H3 was introduced alternately, and the number of introductions and GaA
FIG. 2(b) shows the relationship between the film thicknesses of the s epitaxial growth layer. As is clear from this figure, the film exhibits very good linearity, indicating that any film thickness can be completely controlled. When the thus obtained epitaxially grown GaAs layer was examined by electron beam diffraction and X-ray diffraction, it was found that it was a thin film single crystal with extremely high integrity.

尚、Gaを含む原料ガスとしてはTMGのみに限らずT
EG、ZEGaCfl 、ZMGaCflやCaCQ 
3 +GaBr 3.GaT3のようなガスを用いても
同様に結晶性のよいGaAs薄膜が得られた。
Note that the raw material gas containing Ga is not limited to TMG, but also TMG.
EG, ZEGaCfl, ZMGaCfl and CaCQ
3 +GaBr 3. Even when a gas such as GaT3 was used, a GaAs thin film with good crystallinity was similarly obtained.

第3図は本発明の他の実施例を示したものであり、不純
物添加をするためのものである。14.15は不純物添
加に用いるガス状化合物を導入するノズル、16.17
はノズル14.15を開閉するバルブ、18は■族の成
分元素を含むガス状の化合物、19は■族の成分元素を
含むガス状の化合物である。不純物を添加する以外の部
分は第1図の実施例と同一であるので説明は省略する。
FIG. 3 shows another embodiment of the present invention, which is for adding impurities. 14.15 is a nozzle that introduces a gaseous compound used for impurity addition, 16.17
18 is a gaseous compound containing a component element of group (1); and 19 is a gaseous compound containing a component element of group (2). Since the parts other than the addition of impurities are the same as the embodiment shown in FIG. 1, their explanation will be omitted.

この構成で、P型成長層を形成する場合は、導入ガスと
してTMG(トリメチルガリウム)8、AsHs(アル
シン)9と添加する不純物ガスとしてZMZn (ジメ
チル亜鉛)18の3つのガスを循環式に導入する。
When forming a P-type growth layer with this configuration, three gases, TMG (trimethyl gallium) 8 and AsHs (arsine) 9 as introduced gases, and ZMZn (dimethyl zinc) 18 as an impurity gas to be added, are introduced in a circulating manner. do.

また、別の方法としてはTトIG8とZMZnlBを同
時にAsH39とは交互に導入するか、AsH39と2
MZn18を同時にTMG8とは交互に導入することに
よって不純物添加ができる。更にまた、別の方法として
はTMGとZMZnとを同時に導入、真空排気、AsH
3導入、真空排気という第1のサイクルと、 n4Gの
み導入、真空排出、AsHs導入、真空排出という第2
のサイクルとを交互に繰り返すことによって、Znのド
ープされた層とドープされていない層を交互に、または
多層ずつ交互に形成することもできる。
Another method is to introduce T IG8 and ZMZnlB at the same time and alternately with AsH39, or to introduce AsH39 and 2
Impurities can be added by simultaneously introducing MZn18 and TMG8 alternately. Furthermore, another method is to simultaneously introduce TMG and ZMZn, vacuum evacuation, and AsH
The first cycle is 3 introduction, vacuum evacuation, and the second cycle is n4G only introduction, vacuum evacuation, AsHs introduction, and vacuum evacuation.
It is also possible to form alternating Zn doped and undoped layers or multiple layers by alternating cycles of Zn.

尚、不純物ガスとしてはZMCd (ジメチルカドミウ
ム)、ZMMg(ジメチルマグネシウム)、SiHa 
(モノシラン)、GeH4(ゲルマン)などでもよい。
Note that impurity gases include ZMCd (dimethylcadmium), ZMMg (dimethylmagnesium), and SiHa.
(monosilane), GeH4 (germane), etc. may also be used.

また、ZMCdとZMZnとを同時に導入しても良い。Furthermore, ZMCd and ZMZn may be introduced at the same time.

次に、n型成長層の形成は、添加する不純物ガスとして
2MSe19(ジメチルセレン)をTMG8. AsH
39と循環式に導入する。別の方法としてはTMG8と
2MSe19を同時にTMG8とは交互に導入すること
によって不純物添加ができる。
Next, to form an n-type growth layer, 2MSe19 (dimethyl selenium) is added as an impurity gas to TMG8. AsH
39 and introduced in a circular manner. Another method is to add impurities by simultaneously introducing TMG8 and 2MSe19 alternately with TMG8.

尚、このときの不純物ガスとしてはZMS (ジメチル
硫黄)、H2S(硫化水素)、H2Se(セレン化水素
)などを用いることができる。
Incidentally, as the impurity gas at this time, ZMS (dimethyl sulfur), H2S (hydrogen sulfide), H2Se (hydrogen selenide), etc. can be used.

この場合、不純物ガスの導入流量をAsH39、TMG
8に比べ、例えば10−3〜10−6程小さく取り、導
入時間は0,5〜10秒にすることにより、厚さ方向に
所望の不純物濃度分布を有する分子層エピタキシャル成
長層が形成できる。また、添加する不純物ガスの量と時
間を調整することにより、pn接合、不均一不純物密度
分布、npn、 npin、 pnp、pnip等のバ
イポーラトランジスタ構造、n +in ”、n”n”
−n+等の電界効果トランジスタや静電誘導トランジス
タ、pnpnのサイリスタ構造等を実現できることは勿
論である。
In this case, the flow rate of impurity gas introduced is changed to AsH39, TMG
By setting the impurity concentration smaller, for example, by 10<-3> to 10<-6> than 8, and by setting the introduction time to 0.5 to 10 seconds, a molecular layer epitaxial growth layer having a desired impurity concentration distribution in the thickness direction can be formed. In addition, by adjusting the amount and time of the impurity gas added, it is possible to create pn junctions, non-uniform impurity density distributions, bipolar transistor structures such as npn, npin, pnp, pnip, n+in'', n''n''
Of course, field effect transistors such as -n+, static induction transistors, pnpn thyristor structures, etc. can be realized.

第4図は本発明の更に別の実施例を示したものであり、
混晶化合物半導体を成長させるものである。混晶として
Ga1−xAnxAsを例にとって説明する。20は■
族のAlのガス状化合物を導入するノズル、21は20
を開閉するバルブ、22は■族のlを含むガス状化合物
である。50〜52については後述する。他の部分は第
1図の実施例と同一であるので説明は省略する。
FIG. 4 shows yet another embodiment of the present invention,
This is to grow a mixed crystal compound semiconductor. Explanation will be given by taking Ga1-xAnxAs as an example of the mixed crystal. 20 is■
A nozzle for introducing a gaseous compound of Al of the group 21 is 20
The valve 22 for opening and closing is a gaseous compound containing 1 of group Ⅰ. 50 to 52 will be described later. The other parts are the same as the embodiment shown in FIG. 1, so their explanation will be omitted.

導入ガスとしてAsHs 8、TMG9、TNA Q 
22(トリメチルアルミニウム TMA Q 22を循環式に導入する。このとき、TM
A fl 22の導入流量および導入時間をTMG9に
対して調節することによって、厚さ方向に所望の成分比
を有する混晶分子層エピタキシャル成長層を形成できる
AsHs 8, TMG9, TNA Q as introduced gas
22 (trimethylaluminum TMA Q 22 is introduced in a circulation manner. At this time, TM
By adjusting the introduction flow rate and introduction time of A fl 22 with respect to TMG 9, a mixed crystal molecular layer epitaxially grown layer having a desired component ratio in the thickness direction can be formed.

尚、TMG9とTMA Q22は同時に導入しても良い
Note that TMG9 and TMA Q22 may be introduced at the same time.

また、導入ガス20にはTMGとTMA Qを混合した
ガスでも良い。また、Ga 1− xA Q xAsを
例にとったが、GaAs 1−xPx. InxGa 
1−xP. InxGa 1−xAa等の他のm−v族
の混晶、Hg + − xcdxTe等のII−Vl族
の混晶でも良い。
Further, the introduced gas 20 may be a mixture of TMG and TMA Q. In addition, although Ga 1-xA Q xAs was taken as an example, GaAs 1-xPx. InxGa
1-xP. Other m-v group mixed crystals such as InxGa1-xAa and II-Vl group mixed crystals such as Hg + -xcdxTe may also be used.

また、第5図(a)に示すようなGa + −xAlx
As超格子構造を成長するには第5図(b)に示すよう
なシーケンスを用いれば良い。つまり、最初の2サイク
ルはTMG9とAsH s 8との交互導入、次の5サ
イクルはTMA Q 22とAsH s 8との交互導
入、次の2サイクルはTMG9とAsH s 8との交
互導入する。次の4サイクルは不純物導入のサイクルで
、ノズル50を用い、バルブ51の開閉により、SiH
4(シラン)52をAsH s8と同時にTMG9と交
互に導入する。つまり、バルブ51とバルブ6との開閉
の位相を一致させて4サイクル導入する。次の2サイク
ルはアンドープGaAsの成長で、TMG9とAsH 
s 8との交互導入、次の2サイクルはアンドープA 
Q Asの成長で、TMA Q 22とAsH s 8
との交互導入をすれば良い。
In addition, Ga + -xAlx as shown in FIG. 5(a)
To grow an As superlattice structure, a sequence as shown in FIG. 5(b) may be used. That is, TMG9 and AsH s 8 are alternately introduced in the first two cycles, TMA Q 22 and AsH s 8 are alternately introduced in the next five cycles, and TMG9 and AsH s 8 are alternately introduced in the next two cycles. The next four cycles are impurity introduction cycles, using the nozzle 50 and opening and closing the valve 51 to
4 (silane) 52 is introduced simultaneously with AsH s8 and alternating with TMG9. That is, the opening and closing phases of the valve 51 and the valve 6 are made to match, and four cycles are introduced. The next two cycles are the growth of undoped GaAs, TMG9 and AsH.
Alternating introduction with s 8, next 2 cycles are undoped A
With the growth of Q As, TMA Q 22 and AsH s 8
It would be better to introduce it alternately with

第6図は本発明の更に別の実施例を示したものであり、
禁制帯幅と格子定数を独立に制御できる4元混晶以上の
格子歪補正された混晶化合物半導体を成長させるもので
ある。−例としてGao.7Alo.3^so.gsP
o.o lでGaAs基板上に成長させると格子歪補正
されることが知られているので混晶にGa + −xA
nxAs + −yPyを例にとって説明する。
FIG. 6 shows yet another embodiment of the present invention,
The purpose is to grow a lattice strain-corrected mixed crystal compound semiconductor of quaternary mixed crystal or higher whose forbidden band width and lattice constant can be controlled independently. - For example, Gao. 7Alo. 3^so. gsP
o. It is known that lattice distortion is corrected when grown on a GaAs substrate with
This will be explained by taking nxAs + -yPy as an example.

23、24は混晶元素を含む■族のA[、■族のPのガ
ス状化合物を導入するノズル、 25.26はノズル2
3、24のそれぞれを開閉するバルブ、27.28は■
族のAΩ、V族のPの成分を元素に含むガス状化合物で
ある。他の部分は第1図と同一であるので説明は省略す
る。導入ガスとしてAsH 38、TMG9 。
23 and 24 are nozzles for introducing a gaseous compound of group Ⅰ A[, group Ⅰ P containing a mixed crystal element, 25.26 is nozzle 2
The valves 3 and 24 open and close, 27 and 28 are ■
It is a gaseous compound containing elements of AΩ of group V and P of group V. Since the other parts are the same as those in FIG. 1, their explanation will be omitted. AsH 38 and TMG9 were introduced as gases.

TMAΩ27,PI( 3(ホスフィン)28を用い、
これらのガスを循環式に導入する。このとき、■族同志
,■族同志は同時に導入しても良い。また、あらかじめ
ガスを混合しておいても良い。成長温度、成長圧力など
は第1図に示す実施例とほぼ同様であり、ガス混合比又
は導入流量、導入時間を調整することによって格子歪補
正された混晶化合物半導体エピタキシャル成長層を形成
できる。
Using TMAΩ27, PI (3 (phosphine)28,
These gases are introduced in a circulating manner. At this time, the ■ group members and the ■ group members may be introduced at the same time. Alternatively, the gases may be mixed in advance. The growth temperature, growth pressure, etc. are almost the same as those in the embodiment shown in FIG. 1, and by adjusting the gas mixture ratio, introduction flow rate, and introduction time, a mixed crystal compound semiconductor epitaxial growth layer with lattice strain correction can be formed.

尚、以上の各実施例においては、いずれも基板12の加
熱源を成長槽1内に設けた例について述べてきたが、例
えば第7図に示すように、加熱源として赤外線ランプ3
0を用い、これを成長槽1外のランプハウス31内に設
け、そのランプハウス31から出力する赤外線を石英ガ
ラス32を介して基板12に照射することにより,サセ
プター33に保持させた基板I2を加熱するようにして
もよい。このようにすれば、成長槽1内から結晶の成長
に必要ない部材を除くことができ、ヒーター加熱に伴う
重金属等の不要なガス成分の発生を未然に防止すること
ができる。
In each of the above embodiments, an example has been described in which the heating source for the substrate 12 is provided in the growth tank 1. For example, as shown in FIG. 7, an infrared lamp 3 is used as the heating source.
0 is installed in a lamp house 31 outside the growth tank 1, and by irradiating the substrate 12 with infrared rays output from the lamp house 31 via the quartz glass 32, the substrate I2 held on the susceptor 33 is It may also be heated. In this way, members unnecessary for crystal growth can be removed from the inside of the growth tank 1, and generation of unnecessary gas components such as heavy metals due to heater heating can be prevented.

また、成長槽1には、光学系40を取り付け、その外部
に水銀ランプ、重水素ランプ、Xeランプ、エキシマ−
レーザ、Arレーザ等の光源4Iを設け、波長180〜
600nmの光を基板12に照射するようにしてもよい
。このようにした場合には、基板温度を下げることがで
き、その結果、更に高品質の単結晶を成長させることが
できるようになる。
Furthermore, an optical system 40 is attached to the growth tank 1, and a mercury lamp, deuterium lamp, Xe lamp, excimer lamp, etc. are installed on the outside of the optical system 40.
A light source 4I such as a laser or Ar laser is provided, and the wavelength is 180~
The substrate 12 may be irradiated with 600 nm light. In this case, the substrate temperature can be lowered, and as a result, a single crystal of even higher quality can be grown.

ところで、以上述べてきた実施例においては、超高真空
装置等はイオンポンプ等周知なものを使用することがで
きる。また、単結晶基板を出し入れするための補助真空
槽、結晶引出し装置等を付加することは容易にでき、量
産性の優れたものにできることは言う迄もない。また、
結晶成長に用いるガスは主にGaAsについて説明をし
てきたがInP、 A(AP、 GaP等他のm−v族
化合物あるいは■−■族化合物に適用できることは勿論
である。更に、基板はGaAsに限らず他の化合物基板
に成長させるヘテロエピタキシャル成長等でも良い。
Incidentally, in the embodiments described above, a well-known ultra-high vacuum device such as an ion pump can be used. Furthermore, it goes without saying that an auxiliary vacuum chamber for loading and unloading the single crystal substrate, a crystal drawing device, etc. can be easily added, and the device can be easily mass-produced. Also,
Although the gas used for crystal growth has mainly been explained with respect to GaAs, it is of course applicable to other m-v group compounds such as InP, A(AP, GaP, etc.) or ■-■ group compounds. However, heteroepitaxial growth on other compound substrates may be used.

[発明の効果] 以上のように本発明によれば、一層ずつ成長できること
、化学量論的組成を満たすことが容易で基板上に良質な
単結晶を形成させることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to grow layer by layer, it is easy to satisfy the stoichiometric composition, and it is possible to form a high-quality single crystal on a substrate.

また、不純物の添加を一層ずつ行なうことができるので
、非常に急峻な不純物密度分布を得ることができる等、
非常に高速なトランジスタ、集積回路、ダイオード発光
素子等の製作に対して優れた作用効果を発揮する。
In addition, since impurities can be added layer by layer, a very steep impurity density distribution can be obtained.
It exhibits excellent effects in the production of extremely high-speed transistors, integrated circuits, diode light emitting devices, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る結晶成長装置の構成図
、第2図(a)は第1図における1サイクル当りのTM
G導入量と成長膜厚との関係を示すグラフ図、第2図(
b)は第1図における成長層膜厚とバルブ開閉数との関
係を示すグラフ図、第3図、第4図はそれぞれ本発明の
他の実施例に係る結晶成長装置の構成図、第5図は第4
図の装置を用いて超格子構造を形成する場合の説明図で
、同図(a)は超格子構造説明図、同図(b)はガス導
入シーケンス図、第6図、第7図はそれぞれ本発明の更
に別の実施例に係る結晶成長装置の構成図である。 1・・・成長槽、2 ・ゲートバルブ、3・・ 排気装
置、4,5,14,15,20,23,211・・・ 
ノズル、6,7,16゜17.21,25.26・・・
バルブ、8,9,18,19,22,27,28・・・
ガス状化合物、10・・・ ヒーター、11・・・熱電
対、12・・・基板、13・・・圧力計。 第1図 第3図 第4図 第6図
FIG. 1 is a block diagram of a crystal growth apparatus according to an embodiment of the present invention, and FIG. 2(a) shows the TM per cycle in FIG.
A graph showing the relationship between the amount of G introduced and the grown film thickness, Figure 2 (
b) is a graph showing the relationship between the growth layer thickness and the number of valve openings and closings in FIG. The figure is number 4
This is an explanatory diagram when forming a superlattice structure using the apparatus shown in the figure. Figure (a) is an explanatory diagram of the superlattice structure, Figure (b) is a gas introduction sequence diagram, and Figures 6 and 7 are respectively It is a block diagram of the crystal growth apparatus based on yet another Example of this invention. 1... Growth tank, 2 - Gate valve, 3... Exhaust device, 4, 5, 14, 15, 20, 23, 211...
Nozzle, 6, 7, 16° 17.21, 25.26...
Valve, 8, 9, 18, 19, 22, 27, 28...
Gaseous compound, 10... Heater, 11... Thermocouple, 12... Substrate, 13... Pressure gauge. Figure 1 Figure 3 Figure 4 Figure 6

Claims (15)

【特許請求の範囲】[Claims] (1)化合物半導体の成分元素を含むガス状分子を成長
槽内の圧力が10^−^1〜10^−^7パスカルにな
る範囲で0.5〜200秒間基板上に導入し、排気後、
前記化合物半導体の別の成分元素を含むガス状分子を前
記成長槽内の圧力が10^−^1〜10^−^7パスカ
ルになる範囲で0.5〜200秒間前記基板上に導入す
る一連の操作を基板を300〜800℃に加熱して繰り
返すことにより、所望の厚さの化合物半導体の単結晶薄
膜を単分子層の精度で成長させることを特徴とする化合
物半導体単結晶薄膜の成長法。
(1) Gaseous molecules containing component elements of a compound semiconductor are introduced onto the substrate for 0.5 to 200 seconds at a pressure in the growth tank of 10^-^1 to 10^-^7 Pascals, and after evacuation. ,
A series of introducing gaseous molecules containing another component element of the compound semiconductor onto the substrate for 0.5 to 200 seconds at a pressure in the growth tank of 10^-^1 to 10^-^7 Pascals. A method for growing a compound semiconductor single crystal thin film, which is characterized by growing a compound semiconductor single crystal thin film of a desired thickness with monomolecular layer precision by heating the substrate to 300 to 800°C and repeating the above operations. .
(2)特許請求の範囲第1項記載において、前記基板上
には少なくとも2種類の化合物半導体の単結晶薄膜を連
続的に成長させる化合物半導体単結晶薄膜の成長法。
(2) A method for growing a compound semiconductor single crystal thin film according to claim 1, in which single crystal thin films of at least two types of compound semiconductors are successively grown on the substrate.
(3)特許請求の範囲第1項あるいは第2項記載におい
て、前記化合物半導体の不純物元素を含むガス状分子を
前記化合物半導体の成分元素を含むガス状分子の少なく
とも一方と同時または交互に導入することにより、厚さ
方向に所望の不純物濃度分布を有する化合物半導体の単
結晶薄膜を単分子層の精度で連続的に成長させる化合物
半導体単結晶薄膜の成長法。
(3) In claim 1 or 2, a gaseous molecule containing an impurity element of the compound semiconductor is introduced simultaneously or alternately with at least one of the gaseous molecules containing a component element of the compound semiconductor. A method for growing a compound semiconductor single crystal thin film in which a compound semiconductor single crystal thin film having a desired impurity concentration distribution in the thickness direction is continuously grown with monomolecular layer precision.
(4)特許請求の範囲第1項あるいは第2項記載におい
て、所定の繰り返しサイクル毎に少なくとも1回、前記
化合物半導体の成分元素を含むガス状分子の少なくとも
一方と同時に、不純物元素を含むガス状分子を導入する
ことにより、不純物元素を含む分子層と不純物元素を含
まない分子層とを周期的に連続的に形成する化合物半導
体単結晶薄膜の成長法。
(4) In claim 1 or 2, at least once in each predetermined repetition cycle, at least one of the gaseous molecules containing the component elements of the compound semiconductor is simultaneously A method for growing compound semiconductor single crystal thin films that periodically and continuously forms molecular layers containing impurity elements and molecular layers not containing impurity elements by introducing molecules.
(5)特許請求の範囲第3項あるいは第4項記載におい
て、少なくとも2種類以上の化合物半導体の不純物元素
を含むガス状分子を導入する化合物半導体単結晶薄膜の
成長法。
(5) A method for growing a compound semiconductor single crystal thin film according to claim 3 or 4, in which gaseous molecules containing at least two or more types of compound semiconductor impurity elements are introduced.
(6)特許請求の範囲第3項あるいは第4項記載におい
て、少なくとも2種類以上の化合物半導体の不純物元素
を混合した化合物半導体の成分元素を含むガス状分子を
個別にそれぞれ異なったサイクルもしくは同じサイクル
で異なる時間導入することにより異なった分子層に異っ
た不純物元素を含ませる化合物半導体単結晶薄膜の成長
法。
(6) In claim 3 or 4, gaseous molecules containing component elements of a compound semiconductor in which impurity elements of at least two or more compound semiconductors are mixed are individually cycled in different cycles or in the same cycle. A method for growing compound semiconductor single crystal thin films in which different impurity elements are included in different molecular layers by introducing them for different times.
(7)特許請求の範囲第1項あるいは第2項記載におい
て、前記化合物半導体が2つ以上の成分より成る化合物
半導体単結晶薄膜の成長法。
(7) A method for growing a compound semiconductor single crystal thin film according to claim 1 or 2, wherein the compound semiconductor is composed of two or more components.
(8)特許請求の範囲第1項記載において、前記化合物
半導体がGaAsである化合物半導体単結晶薄膜の成長
法。
(8) A method for growing a compound semiconductor single crystal thin film according to claim 1, wherein the compound semiconductor is GaAs.
(9)特許請求の範囲第2項記載において、少なくとも
2種類の化合物半導体の一つがGaAsであり、他がG
a_1_−_xAl_xAsである化合物半導体単結晶
薄膜の成長法。
(9) In claim 2, one of the at least two types of compound semiconductors is GaAs, and the other is GaAs.
A method for growing a compound semiconductor single crystal thin film of a_1_-_xAl_xAs.
(10)真空に排気する成長槽内に外部より結晶成分元
素を含むガスを導入し、基板上に化合物半導体を成長さ
せる方法において、前記成長槽内を所定の圧力に排気す
る一方、前記基板を所定の温度に加熱し、TMG、TE
G、ZEGaCl、GaBr_3GaI_3のうちのい
ずれかを前記成長槽に所定の圧力で所定の時間導入し、
排気後、TMAs、AsCl_3、AsBr_3、As
H_3のうちいずれかを前記成長槽に所定の圧力で所定
の時間導入することによって少なくとも1分子層を成長
させるサイクルを少なくとも含み、更に以上のサイクル
を繰り返すことにより所望の厚さのGaAs単結晶薄膜
を単分子層の精度で成長させることを特徴とする化合物
半導体単結晶薄膜の成長法。
(10) In a method of growing a compound semiconductor on a substrate by introducing a gas containing a crystal component element from the outside into a growth tank that is evacuated, the growth tank is evacuated to a predetermined pressure, while the substrate is Heat to specified temperature, TMG, TE
Introducing any one of G, ZEGaCl, GaBr_3GaI_3 into the growth tank at a predetermined pressure for a predetermined time,
After exhaust, TMAs, AsCl_3, AsBr_3, As
At least a cycle of growing at least one molecular layer by introducing any one of H_3 into the growth tank at a predetermined pressure for a predetermined time, and further repeating the above cycle to grow a GaAs single crystal thin film with a desired thickness. A method for growing compound semiconductor single crystal thin films with the precision of a monomolecular layer.
(11)特許請求の範囲第10項において前記化合物半
導体がAlを含む2つ以上の成分より成る化合物半導体
結晶薄膜であり、Alを含む化合物ガスにTMAl、T
EAl、ZMAlCl、ZMAlCl、AlCl_3、
AlBr_3、AlI_3のうちいずれかを用い、前記
化合物半導体のAl以外の成分を含むガスと同時にまた
は交互に前記成長槽に所定の圧力で所定の時間導入し排
気することによって少なくとも1分子層を成長させるサ
イクルを少なくとも含み、更に以上のサイクルを繰り返
すことにより所望の厚さの単結晶薄膜を単分子層の精度
で成長させることを特徴とする化合物半導体単結晶薄膜
の成長法。
(11) In claim 10, the compound semiconductor is a compound semiconductor crystal thin film consisting of two or more components containing Al, and the compound gas containing Al includes TMAl, T
EAl, ZMAlCl, ZMAlCl, AlCl_3,
Using either AlBr_3 or AlI_3, at least one molecular layer is grown by simultaneously or alternately introducing a gas containing a component other than Al of the compound semiconductor into the growth tank at a predetermined pressure for a predetermined time and evacuating it. 1. A method for growing a compound semiconductor single crystal thin film, comprising at least a cycle, and further repeating the above cycles to grow a single crystal thin film of a desired thickness with monomolecular layer precision.
(12)特許請求の範囲第10項あるいは第11項記載
において、前記化合物半導体のp型不純物元素を含むガ
ス状分子としてZMZn、ZEZn、ZECd、ZMH
g、ZEHg、B_2H_6のうちいずれかを、またn
型不純物元素を含むガス状分子としてSiH_4、Ge
H_4、SnH_4、PbH_4、ZNSe、ZNTe
、H_2S、H_2Se、H_2Te、H_2Poのい
ずれかを前記化合物半導体の成分元素を含むガス状分子
の少なくとも一方と同時または交互に導入することによ
り、厚さ方向に所望の不純物濃度分布を有する前記化合
物半導体の単結晶薄膜を単分子層の精度で成長させる化
合物半導体単結晶薄膜の成長法。
(12) In claim 10 or 11, ZMZn, ZEZn, ZECd, ZMH is used as the gaseous molecule containing the p-type impurity element of the compound semiconductor.
g, ZEHg, B_2H_6, or n
SiH_4, Ge as gaseous molecules containing type impurity elements
H_4, SnH_4, PbH_4, ZNSe, ZNTe
, H_2S, H_2Se, H_2Te, H_2Po simultaneously or alternately with at least one of gaseous molecules containing component elements of the compound semiconductor, the compound semiconductor has a desired impurity concentration distribution in the thickness direction. A compound semiconductor single crystal thin film growth method that grows single crystal thin films with monomolecular layer precision.
(13)特許請求の範囲第10項、第11項、第12項
のいずれかの記載において、所定の繰り返しサイクル毎
に少なくとも1回、前記化合物半導体の成分元素を含む
ガス状分子の少なくとも一方と同時に、前記化合物半導
体の不純物元素を含むガス状分子を導入することにより
、不純物元素を含む分子層と不純物元素を含まない分子
層とを周期的に形成する化合物半導体単結晶薄膜の成長
法。
(13) In any one of claims 10, 11, and 12, at least one of the gaseous molecules containing the component elements of the compound semiconductor is At the same time, a method for growing a compound semiconductor single crystal thin film in which a molecular layer containing the impurity element and a molecular layer not containing the impurity element are periodically formed by introducing gaseous molecules containing the impurity element of the compound semiconductor.
(14)特許請求の範囲第12項あるいは第13項記載
において、少なくとも2種類以上の化合物半導体の不純
物元素を混合した化合物半導体の成分元素を含むガス状
分子を個別にそれぞれ異なったサイクルもしくは同じサ
イクルで異なる時間導入することにより異なった分子層
に異った不純物元素を含ませる化合物半導体単結晶薄膜
の成長法。
(14) In claim 12 or 13, gaseous molecules containing component elements of a compound semiconductor in which at least two or more types of compound semiconductor impurity elements are mixed are individually cycled in different cycles or in the same cycle. A method for growing compound semiconductor single crystal thin films in which different impurity elements are included in different molecular layers by introducing them for different times.
(15)特許請求の範囲第1項〜第14項のいずれかの
記載において、基板上に波長180〜600nmの光を
照射する化合物半導体単結晶薄膜の成長法。
(15) A method for growing a compound semiconductor single crystal thin film according to any one of claims 1 to 14, in which a substrate is irradiated with light having a wavelength of 180 to 600 nm.
JP59153977A 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film Expired - Lifetime JPH0782991B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59153977A JPH0782991B2 (en) 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film
GB08518834A GB2162862B (en) 1984-07-26 1985-07-25 A method of growing a thin film single crystalline semiconductor
DE19853526824 DE3526824A1 (en) 1984-07-26 1985-07-26 METHOD FOR FORMING A MONOCRISTALLINE THIN FILM FROM A CONNECTION SEMICONDUCTOR
FR8511517A FR2578680B1 (en) 1984-07-26 1985-07-26 PROCESS FOR FORMING A MONOCRYSTALLINE THIN FILM OF SEMICONDUCTOR COMPOUND
US08/077,119 US5693139A (en) 1984-07-26 1993-06-15 Growth of doped semiconductor monolayers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153977A JPH0782991B2 (en) 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4322680A Division JP2567331B2 (en) 1992-11-06 1992-11-06 Method of growing compound semiconductor single crystal thin film

Publications (2)

Publication Number Publication Date
JPS6134927A true JPS6134927A (en) 1986-02-19
JPH0782991B2 JPH0782991B2 (en) 1995-09-06

Family

ID=15574213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153977A Expired - Lifetime JPH0782991B2 (en) 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film

Country Status (1)

Country Link
JP (1) JPH0782991B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232919A (en) * 1986-04-02 1987-10-13 Rikagaku Kenkyusho Crystal growth
JPS6388820A (en) * 1986-10-02 1988-04-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of compound semiconductor device
JPS63110719A (en) * 1986-10-29 1988-05-16 Res Dev Corp Of Japan Manufacture of epitaxial layer of compound semiconductor
JPS63110718A (en) * 1986-10-29 1988-05-16 Res Dev Corp Of Japan Manufacture of epitaxial layer of compound semiconductor
JPS63132421A (en) * 1986-11-22 1988-06-04 Res Dev Corp Of Japan Epitaxial growth method for compound semiconductor
JPS63136616A (en) * 1986-11-28 1988-06-08 Res Dev Corp Of Japan Epitaxial crystal growth method for compound semiconductor
JPH0462834A (en) * 1990-06-25 1992-02-27 Nec Corp Manufacture of thin semiconductor film
JPH0697096A (en) * 1992-11-06 1994-04-08 Res Dev Corp Of Japan Growing method for compound semiconductor single crystal thin film
JPH06112142A (en) * 1992-11-06 1994-04-22 Res Dev Corp Of Japan Manufacture of superlattice semiconductor
US5608229A (en) * 1994-09-16 1997-03-04 Fujitsu Limited Quantum box semiconductor device
KR100305301B1 (en) * 1997-09-30 2001-09-24 가네꼬 히사시 Method of manufacturing optical semiconductor device
CN107902695A (en) * 2017-11-21 2018-04-13 红河砷业有限责任公司 A kind of method for efficiently preparing high-purity aluminium arsenide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130896A (en) * 1979-02-28 1980-10-11 Lohja Ab Oy Method and device for growing compound thin membrane
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130896A (en) * 1979-02-28 1980-10-11 Lohja Ab Oy Method and device for growing compound thin membrane
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232919A (en) * 1986-04-02 1987-10-13 Rikagaku Kenkyusho Crystal growth
JPS6388820A (en) * 1986-10-02 1988-04-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of compound semiconductor device
JPS63110719A (en) * 1986-10-29 1988-05-16 Res Dev Corp Of Japan Manufacture of epitaxial layer of compound semiconductor
JPS63110718A (en) * 1986-10-29 1988-05-16 Res Dev Corp Of Japan Manufacture of epitaxial layer of compound semiconductor
JPS63132421A (en) * 1986-11-22 1988-06-04 Res Dev Corp Of Japan Epitaxial growth method for compound semiconductor
JPS63136616A (en) * 1986-11-28 1988-06-08 Res Dev Corp Of Japan Epitaxial crystal growth method for compound semiconductor
JPH0462834A (en) * 1990-06-25 1992-02-27 Nec Corp Manufacture of thin semiconductor film
JPH0697096A (en) * 1992-11-06 1994-04-08 Res Dev Corp Of Japan Growing method for compound semiconductor single crystal thin film
JPH06112142A (en) * 1992-11-06 1994-04-22 Res Dev Corp Of Japan Manufacture of superlattice semiconductor
JP2567331B2 (en) * 1992-11-06 1996-12-25 新技術事業団 Method of growing compound semiconductor single crystal thin film
US5608229A (en) * 1994-09-16 1997-03-04 Fujitsu Limited Quantum box semiconductor device
US5817538A (en) * 1994-09-16 1998-10-06 Fujitsu Limited Method of making quantum box semiconductor device
KR100305301B1 (en) * 1997-09-30 2001-09-24 가네꼬 히사시 Method of manufacturing optical semiconductor device
CN107902695A (en) * 2017-11-21 2018-04-13 红河砷业有限责任公司 A kind of method for efficiently preparing high-purity aluminium arsenide

Also Published As

Publication number Publication date
JPH0782991B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
JPS6134929A (en) Growing device of semiconductor device
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
US6334901B1 (en) Apparatus for forming semiconductor crystal
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPS61260622A (en) Growth for gaas single crystal thin film
JP2567331B2 (en) Method of growing compound semiconductor single crystal thin film
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP2577543B2 (en) Single crystal thin film growth equipment
JPS62138390A (en) Molecular beam epitaxy
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS6134924A (en) Growing device of semiconductor crystal
JPH04187597A (en) Production of thin film of gallium nitride
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH03159995A (en) Doping in epitaxial crystal growth process
JP2654608B2 (en) Method for manufacturing GaAs semiconductor diode
JPH02166723A (en) Growth of compound semiconductor
JPS647487B2 (en)
JPH01179312A (en) Vapor growth of iii-v compound semiconductor
JPH0267723A (en) Manufacture of compound semiconductor thin film
JPH05326412A (en) Method for forming compound thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term