JPS63110718A - Manufacture of epitaxial layer of compound semiconductor - Google Patents
Manufacture of epitaxial layer of compound semiconductorInfo
- Publication number
- JPS63110718A JPS63110718A JP25579486A JP25579486A JPS63110718A JP S63110718 A JPS63110718 A JP S63110718A JP 25579486 A JP25579486 A JP 25579486A JP 25579486 A JP25579486 A JP 25579486A JP S63110718 A JPS63110718 A JP S63110718A
- Authority
- JP
- Japan
- Prior art keywords
- group
- iii
- compound semiconductor
- arsine
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000013078 crystal Substances 0.000 claims abstract description 35
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 17
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 14
- 150000004678 hydrides Chemical class 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 5
- 229910021478 group 5 element Inorganic materials 0.000 claims abstract 3
- 238000006557 surface reaction Methods 0.000 claims abstract 2
- 239000010409 thin film Substances 0.000 claims description 11
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 20
- -1 alkyl gallium Chemical compound 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 4
- 238000001704 evaporation Methods 0.000 abstract description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 239000011574 phosphorus Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 18
- 239000010453 quartz Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 239000010408 film Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 238000002109 crystal growth method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- XGELIJUZAOYNCA-UHFFFAOYSA-N gold;phosphane Chemical compound P.[Au] XGELIJUZAOYNCA-UHFFFAOYSA-N 0.000 description 1
- 238000000097 high energy electron diffraction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 1
- 238000005389 semiconductor device fabrication Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、数オングストロームから数10オングストロ
ームの精度の膜厚制御が可能なI−V族化合物半導体の
完全結晶育成技術に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a technique for growing a perfect crystal of a group IV compound semiconductor, which allows film thickness control with an accuracy of several angstroms to several tens of angstroms.
(従来のfL術)
超高速半導体素子の実現のために、高純度薄膜の結晶成
長技術の確立が必要である。化合物半導体の結晶成長技
術の中では、分子線エピタキシィ (MBE)や有機金
4法気相エピタキシャル成長法(MO−CVD)が、薄
膜形成、多元混晶の組成制御及び超格子の作成等のため
に広く用いられて来た。MO−CVDはその装置の簡易
性、量産性、及び、実用上で充分な膜4制却性を有して
いることから広く用いられているが、単分子層オーダー
の精度の膜厚制御性を必要とする超高速半導体素子作製
におけるプロセスとしては不充分である。MBEは、材
料を加熱しその蒸気を基板結晶上に蒸着する方法を用い
ておジ、成長速度全非常に小さくすることができるため
に、膜厚制御性ViMO−CVDに比べ優れている。し
かし、単分子層オーダーの精度の膜厚制御は難しく、R
HEEDによるモニタによシこの問題がようやく解決さ
れつつある。また、MBEでは良質の結晶を得るために
成長温度を500〜600℃といり念高温に設定する必
要があり、急峻な不純物プロファイルを実現することが
難しくなる。さらに、MBEは蒸着法に基づいているた
め、0val defeetといっ念結晶欠陥の嵌入
や、化学量論的組成からの逸脱といった問題が生じる。(Conventional fL Technique) In order to realize ultra-high-speed semiconductor devices, it is necessary to establish a crystal growth technique for high-purity thin films. Among compound semiconductor crystal growth technologies, molecular beam epitaxy (MBE) and organic gold four-method vapor phase epitaxial growth (MO-CVD) are used for thin film formation, composition control of multi-component mixed crystals, and superlattice creation. It has been widely used. MO-CVD is widely used because its equipment is simple, mass-producible, and has sufficient film control properties for practical use. This is insufficient as a process for ultra-high-speed semiconductor device fabrication that requires. MBE is superior to ViMO-CVD in terms of film thickness control because it uses a method of heating a material and depositing its vapor onto a substrate crystal, and the overall growth rate can be made very small. However, it is difficult to control the film thickness with precision on the order of a monolayer, and R
This problem is finally being solved by HEED monitoring. Furthermore, in MBE, in order to obtain high-quality crystals, it is necessary to set the growth temperature to a very high temperature of 500 to 600° C., making it difficult to realize a steep impurity profile. Furthermore, since MBE is based on a vapor deposition method, problems such as zero val defect, intrusion of crystal defects, and deviation from the stoichiometric composition occur.
一方、分子層エピタキシィは、】−V族化合物の結晶成
長において、I族化合物ガスとV族化合物ガスを交互に
基板結晶上に導入し、結晶を単分子層ずつ成長させる方
法である(例えば、西澤潤−の論文(J、NiN15h
iza、HlAbe and T、Kurabay
ashi;J、Electrochem、Soc、13
2(1985)1197−1200コ参照)。この方法
は、化合物ガスの拳分子吸着を利用し、■族化合物ガス
とV族化合物ガスの1回ずつの導入で県分子膜成長層を
得るものである。この方法は、化合物ガスの巷分子吸着
を利用しているため、導入ガスの圧力が変化しても常に
低分子層ずつの成長が起こる。よって、MBEで用いら
れているよりなRHEED等のモニタは不用である。し
かし、この方法は準分子層ずつ成長を行うため、所定の
膜厚を得るのに時間がかかるという欠点を持つ口
(発明が解決しようとする問題点)
本発明は、上記の分子層エピタキシの問題点を克服する
新規な結晶成長法であって、数分+1から約10分子層
といりた精度の膜厚制御性を有するエピタキシャル成長
法を提供することを目的とする。On the other hand, molecular layer epitaxy is a method in which a group I compound gas and a group V compound gas are alternately introduced onto a substrate crystal to grow the crystal monolayer by monolayer in the crystal growth of group V compounds (for example, Jun Nishizawa's paper (J, NiN15h
iza, HlAbe and T, Kurabay
ashi;J, Electrochem, Soc, 13
2 (1985) 1197-1200). This method utilizes fist molecule adsorption of a compound gas and obtains a molecular film growth layer by introducing a group (I) compound gas and a group V compound gas once each. Since this method utilizes the molecular adsorption of a compound gas, the growth of low molecular weight layers always occurs even if the pressure of the introduced gas changes. Therefore, a monitor such as RHEED used in MBE is unnecessary. However, since this method grows quasi-molecular layers one by one, it takes a long time to obtain a predetermined film thickness (problem to be solved by the present invention). It is an object of the present invention to provide a novel crystal growth method that overcomes the problems and provides an epitaxial growth method that has film thickness controllability with an accuracy of several minutes + 1 to about 10 molecular layers.
(問題点を解決するための手段)
このため、本発明は、まず基板結晶上に数分+1から数
10分子層に相当する量の例えば電を、アルキルガリウ
ムの水素還元、熱分解もしくはGa の蒸着により、
薄膜状に堆積させ、次に、例えばヒ素の水素化物である
アルシンをGa堆積層上へ導入しGaと反応させ、以上
の操作を繰シ返すことによりGaAs等のW−V族化合
物半導体の成長膜を得る方法である。V原水素化物にリ
ンの水素化物を用いれば、例えばGapの成長@を得る
ことができる。(Means for Solving the Problems) For this reason, the present invention first involves applying an amount of electricity, for example, equivalent to several minutes plus one to several tens of molecular layers, onto a substrate crystal through hydrogen reduction of alkyl gallium, thermal decomposition, or Ga. By vapor deposition,
After depositing a thin film, for example, arsine, which is a hydride of arsenic, is introduced onto the Ga deposited layer and reacted with Ga. By repeating the above operation, a W-V group compound semiconductor such as GaAs can be grown. This is a method for obtaining membranes. If a phosphorus hydride is used as the V source hydride, Gap growth@ can be obtained, for example.
(作用)
I族に属する物質としてGaを含む化合物半導体のりち
の、GaAs エピタキシャル成長ヲ例に挙げて説明
する。第1図は本発明によるエピタキシャル成長の原理
園である。第1図において、符号1はGaAs基板結晶
、符号2は基板1上に堆積したGa、符号3は基板1上
に成長させたエピタキシャル成長層を示す。第1図に示
すように、まず、GaAs基板結晶1上にGa2を数分
+1に相当する清?選んで堆積させる。Ga2の堆積方
法として、アルキルガリウムの水素還元、熱分解もしく
はGaの蒸着を用いる。(Function) An explanation will be given by taking as an example the epitaxial growth of GaAs, which is a compound semiconductor containing Ga as a substance belonging to Group I. FIG. 1 shows the principle of epitaxial growth according to the present invention. In FIG. 1, reference numeral 1 indicates a GaAs substrate crystal, reference numeral 2 indicates Ga deposited on the substrate 1, and reference numeral 3 indicates an epitaxial growth layer grown on the substrate 1. As shown in FIG. 1, first, Ga2 was deposited on a GaAs substrate crystal 1 in an amount equivalent to several times +1. Select and deposit. As a method for depositing Ga2, hydrogen reduction of alkyl gallium, thermal decomposition, or Ga vapor deposition is used.
次に、アルシンを、Ga堆積層2上へ導入し、Ga2と
導入され次アルシンの反応によりGaA3のエピタキシ
ャル成長薄膜3を得る口この操作を繰り返えすことによ
り、所定の膜厚のGaAs成長層3を得る。Next, arsine is introduced onto the Ga deposited layer 2, and an epitaxially grown thin film 3 of GaA3 is obtained by the reaction between the introduced arsine and Ga2.By repeating this operation, a GaAs grown layer 3 of a predetermined thickness is obtained. get.
GaとA、H3の反応は次式で与えられる。The reaction between Ga, A, and H3 is given by the following equation.
Ga + Ashs→GaA3+ 、H2この反応は3
00℃程度の低温でも起こるため、300℃程度の低温
でもG、A8のエピタキシャル成長が可能である。Ga + Ashs → GaA3+, H2 This reaction is 3
Since this occurs even at a low temperature of about 00°C, epitaxial growth of G and A8 is possible even at a low temperature of about 300°C.
(実施例)
以下、添付の図面を参照にして、本発明の実施例を詳細
に説明する。(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第2 図(a) H1常圧のMO−CVO9[1利用し
て、アルキルガリウムの水素還元による本発明の1つの
実施例の製造方法に用いる装置を示すものである。石英
反応管7の一端には、TMG()リメチルガリウム)導
入口4、アルシン導入口5、水素導入口6が設けられ、
他端には排気口が設けられている。そして、石英反応管
7の内部にはGaA、基板結晶1を支持する石英サセプ
タ8が設けられておシ、石英反応管7の周囲にはGaA
、基板結晶1を加熱するための抵抗加熱炉9が設けら
れている。この実施例では、Gaのソースとしてアルキ
ルガリウムの一種であるトリメチルガリウム(TMG)
を用いている。FIG. 2(a) shows an apparatus used in the production method of one embodiment of the present invention by hydrogen reduction of alkyl gallium using MO-CVO9[1 at normal pressure of H1. At one end of the quartz reaction tube 7, a TMG (limethyl gallium) inlet 4, an arsine inlet 5, and a hydrogen inlet 6 are provided.
An exhaust port is provided at the other end. A quartz susceptor 8 that supports GaA and the substrate crystal 1 is provided inside the quartz reaction tube 7, and a GaA susceptor 8 is provided around the quartz reaction tube 7.
, a resistance heating furnace 9 for heating the substrate crystal 1 is provided. In this example, trimethyl gallium (TMG), a type of alkyl gallium, is used as the Ga source.
is used.
エピタキシャル成長を行う時のガス導入方法は第2図(
b)に示した手順で行う。すなわち、水素で希釈したT
M GをTMG導入口4より、TMG希釈希釈水素を
水素導入口6よジ石英反応管7に導入し、石英サセプタ
8上に暇付けられたGaAs基板結、t& 1を抵抗加
熱炉9により加熱し、その表面にGaを数分子層から約
10分子層に相当する量を堆積させる。堆積させるGa
の量はTMG導入量及びT M G導入時間によp制御
するり次に、石英反応管4を水素導入口6から導入した
水素ガスによりパージする。その次に、水素で希釈した
アルシンをアルシン導入口5より、アルシン希釈用の水
素を水素導入口6より石英反応管7に導入する。アルシ
ンの導入は、 G、A3基板1上に堆積していたG、A
sになるまで続ける。The gas introduction method for epitaxial growth is shown in Figure 2 (
Perform the procedure shown in b). That is, T diluted with hydrogen
MG is introduced through the TMG inlet 4, TMG diluted hydrogen is introduced into the quartz reaction tube 7 through the hydrogen inlet 6, and the GaAs substrate t&1 placed on the quartz susceptor 8 is heated in the resistance heating furnace 9. Then, an amount of Ga corresponding to several to about 10 molecular layers is deposited on the surface. Ga to be deposited
The amount of TMG is controlled by the amount of TMG introduced and the time of TMG introduction.Next, the quartz reaction tube 4 is purged with hydrogen gas introduced from the hydrogen inlet 6. Next, arsine diluted with hydrogen is introduced into the quartz reaction tube 7 through the arsine inlet 5 and hydrogen for diluting arsine through the hydrogen inlet 6. The introduction of arsine was carried out on the G,A deposited on the G,A3 substrate 1.
Continue until it reaches s.
以上の操作を繰り返すことにより、GaAsの琳結晶薄
膜の成長が可能となる。By repeating the above operations, it becomes possible to grow a GaAs phosphor crystal thin film.
第3図(a)は、アルキルガリウムの熱分解により、数
分子層の嘆厚制律性を実現した本発明による結晶成長法
の池の実施例の製造方法に用いる装置を示すものである
。石英反応管14の上端には、TMG導入口10、アル
シン導入口11が設けられ、下端には真空排気系13が
設けられている。そして、石英反応管14の内部には、
GaAs1板結晶1を加熱するための加熱用ヒータ12
が設けられている。成長を行う場合の手順を第3図(b
)に示す。まず、窒素で希釈したT M GをTMG導
入口10より石英反り管14に導入し、加熱用ヒータ1
2により加熱されたGaAs基板1の表面にGaを数分
子層堆積させる。FIG. 3(a) shows an apparatus used in the manufacturing method of the embodiment of the crystal growth method according to the present invention, which achieves thickness regulation of several molecular layers by thermal decomposition of alkyl gallium. A TMG inlet 10 and an arsine inlet 11 are provided at the upper end of the quartz reaction tube 14, and a vacuum exhaust system 13 is provided at the lower end. Then, inside the quartz reaction tube 14,
Heater 12 for heating GaAs 1 plate crystal 1
is provided. The procedure for growing is shown in Figure 3 (b).
). First, TMG diluted with nitrogen is introduced into the warped quartz tube 14 through the TMG inlet 10, and then
Several molecular layers of Ga are deposited on the surface of the GaAs substrate 1 heated by Step 2.
次に、TMGの導入を止め、真空排気系13により石英
反応管14内のTMGを排気する。その次に、窒素で希
釈したアルシンをアルシン導入口11より導入し、Ga
As基板上に堆積していたGaがGaAsになるまで導
入し続ける。本実施例では、低真空で成長を行わせるこ
と、及び、ガスの希釈に水素を用いず窒素を用いること
により、TMG導入によるGaの堆積量を精密に制御す
ることができる。Next, the introduction of TMG is stopped, and the TMG in the quartz reaction tube 14 is exhausted by the vacuum exhaust system 13. Next, arsine diluted with nitrogen is introduced from the arsine inlet 11, and Ga
The introduction continues until the Ga deposited on the As substrate becomes GaAs. In this example, the amount of Ga deposited by introducing TMG can be precisely controlled by performing the growth in a low vacuum and by using nitrogen instead of hydrogen for diluting the gas.
第3U(1:)は、1実施例として、GaAs基板結晶
にStドープで面方位が(100)のものを用い、基板
温度600℃で、TMGの導入時間が4秒、TMGの排
気が10秒、アルシンの導入時間が20秒、アルシンの
排気が10秒の場合のガス導入サイクル数と成長ill
の関係を示すものである。第3図(aは第3図(b)に
示し之手順を1サイクルとし、繰り返しガス導入サイク
ル数に対する成長膜厚をプロットしである。第3図(c
)のグラフの傾きから1サイクルのガス導入で約8大の
成長膜厚が得られることがわかった。この直はGaAs
の約2.8分子層に相当する。For the 3rd U (1:), as an example, a GaAs substrate crystal doped with St and having a plane orientation of (100) was used, the substrate temperature was 600°C, the TMG introduction time was 4 seconds, and the TMG exhaust was 10 sec, number of gas introduction cycles and growth when arsine introduction time is 20 seconds and arsine exhaust is 10 seconds
This shows the relationship between Figure 3 (a) assumes that the procedure shown in Figure 3 (b) is one cycle, and plots the grown film thickness against the number of repeated gas introduction cycles. Figure 3 (c)
) It was found from the slope of the graph that a growth film thickness of about 8 times can be obtained with one cycle of gas introduction. This line is GaAs
This corresponds to about 2.8 molecular layers of .
第4図(a)はGap蒸着を利用した本発明の池の実施
例の製造方法に用いる装置を示すものである。成長室2
5の側壁にはアルシン供給口20が設けられ、その先端
には加熱ヒータ12てよりで加熱され−q GaAs基
板結晶1に対向するようにアルシン導入ノズル21が取
付けられている。FIG. 4(a) shows an apparatus used in the method of manufacturing a pond according to an embodiment of the present invention using gap deposition. Growth room 2
An arsine supply port 20 is provided on the side wall of the substrate 5, and an arsine introduction nozzle 21 is attached to the tip of the arsine supply port 20 so as to face the -q GaAs substrate crystal 1 which is heated by a heater 12.
成長室25の内s Kは加熱用ヒータを内置した石英る
つは23が設けられ、その中に金属ガリウム22が入れ
られている。そして、るつぼ23の蒸発口の前には回転
式シャッタ24が設けられている。また成長室25の下
部には真空排気系26が設けられている。成長室25は
初め。Inside the growth chamber 25, a quartz crucible 23 with a heating heater placed therein is provided, and metal gallium 22 is placed therein. A rotary shutter 24 is provided in front of the evaporation port of the crucible 23. Further, a vacuum exhaust system 26 is provided at the bottom of the growth chamber 25. Growth room 25 is the beginning.
真空排気系26によj) 10−” Torr台の超高
真空に引かれる。成長を行う場合の手順を第4図(b)
に示す。まず、加熱用ヒータ12によシ加熱され72G
aAs基板結晶1の表面に、るつぼ23内の加熱された
ca22から発生するG1気をシャッタ24を開けて蒸
着する。次に、シャブタ24を閉じた後、アルシン導入
ノズル21よシアルシンを導入し、GaAsのエピタキ
シャル成長を行う。この後、アルシンtX空排気する口
この方法による膜厚制御性は、第3図(a)の実施例で
得られ友堕と同!度の値が得られた。この方法に、よれ
ば、基板温度が320℃以上で単結晶成長が可能である
。ただし、基板眞度が高い方がアルシンの反応効率は高
く々る。第4図(C)にアルシンの反応効率の基板温度
依存性の測定結果を示す。まずGaを5分間基板上に蒸
着し、その後、所定の基板温度に設定し、アルシンを5
X1(r’TarrT:導入する。このとき%GaがG
aAsになるまでの時間を測定し、アルシンの反応効率
を算出した。この方法によれば、数オングストローム暎
位の劃−性を有しつつ%300〜400℃といりた低温
で、エピタキシャル成長が可能であるO
第5図(&)け、AOGal−XAB7) !ピlキ’
larkM長で不純物添加を行う場合の第2図(a)と
同様な装置の実施例である。石英反応管7の一端には。The vacuum evacuation system 26 extracts an ultra-high vacuum of 10-" Torr level. The procedure for growth is shown in FIG. 4(b).
Shown below. First, it is heated to 72G by the heating heater 12.
G1 gas generated from heated ca22 in the crucible 23 is deposited on the surface of the aAs substrate crystal 1 by opening the shutter 24. Next, after closing the sieve filter 24, siarsin is introduced through the arsine introduction nozzle 21 to perform epitaxial growth of GaAs. After that, the arsine tX was evacuated.The film thickness controllability obtained by this method was the same as that obtained in the example shown in FIG. 3(a). The degree value was obtained. According to this method, single crystal growth is possible at a substrate temperature of 320° C. or higher. However, the higher the substrate purity, the higher the reaction efficiency of arsine. FIG. 4(C) shows the measurement results of the substrate temperature dependence of the reaction efficiency of arsine. First, Ga was evaporated onto the substrate for 5 minutes, then the substrate temperature was set to a predetermined temperature, and arsine was evaporated for 5 minutes.
X1(r'TarrT: introduced. At this time, %Ga is G
The time required to form aAs was measured, and the reaction efficiency of arsine was calculated. According to this method, epitaxial growth is possible at a low temperature of 300 to 400°C while having a tensile strength of several angstroms. Pilki'
This is an example of an apparatus similar to that shown in FIG. 2(a) when impurity addition is performed with a length of larkM. At one end of the quartz reaction tube 7.
さらに%TM、A()リメチルアルミニウム)の導入口
30、DMZ (ジメチル亜鉛)の導入口31、硫化水
素(H2S)の導入口32が設けられている。Furthermore, an inlet 30 for %TM, A (remethylaluminum), an inlet 31 for DMZ (dimethylzinc), and an inlet 32 for hydrogen sulfide (H2S) are provided.
AwGMk−XAs ノ成長は、tf、4人口4よりT
MGを導入し、第2図(a)の場合と同様に1基板結晶
1の表面に0色を堆積させる。次に、TMAを導入口3
0より導入し、同様にしてAtk堆積させ、その次に、
導入口5よりアルシンを導入し、AlxGa5XAsの
エピタキシャル薄膜を得るロ不純物添加Vi、、P形に
ついては、水素で希釈したDMZを導入口31より、T
MAの導入に引き続き導入し、P形G&AS及びP形A
1.x Ga1−xlsを得る。n形については、水素
で希釈した硫化水素を導入口32より、アルシンの導入
の前に導入し、n形GaAs及びn形AtX Ga1−
XAsを得る・第5 図(b)及び第5図(e)は、第
5図(&)と同様に、 AlxGa1−XAs のエ
ピタキシャル成長で不純物添加を行う場合の装置の実施
例である。第5図(b)は第3図(&)と同様な装置で
、石英反応管14の上端にh、サラニ、TMA+7)4
人口40、DMZの導入口41、硫化水ネの導入口42
が設けられ、それぞれ窒素で希釈したガスを第5図(&
)の場合と同様の手;畝で導入し、P形及びn形のGa
AaとAlxGa1−XAsの底長禰を得る。第5図(
C)は第4図(mlと同様な装置で、成長室25の側壁
には、さらに、硫化水素の導入口50が設けられ、その
先端には硫化水素導入ノズル51が暖付けられている。AwGMk-XAs growth is T from tf, 4 population 4
MG is introduced and 0 color is deposited on the surface of one substrate crystal 1 as in the case of FIG. 2(a). Next, add TMA to inlet port 3.
0, Atk was deposited in the same manner, and then,
Arsine is introduced through the inlet 5 to obtain an epitaxial thin film of AlxGa5XAs. For the impurity-doped Vi, P type, DMZ diluted with hydrogen is introduced through the inlet 31 into the T
Following the introduction of MA, P-type G&AS and P-type A
1. x Ga1-xls is obtained. For n-type, hydrogen sulfide diluted with hydrogen is introduced from the inlet 32 before introducing arsine, and n-type GaAs and n-type AtX Ga1-
Obtaining XAs - FIG. 5 FIGS. 5(b) and 5(e), similar to FIG. 5(&), are examples of an apparatus for doping impurities during epitaxial growth of AlxGa1-XAs. Fig. 5(b) shows a device similar to Fig. 3(&), with h, Sarani, TMA+7)4
Population 40, DMZ inlet 41, sulfurized water inlet 42
are provided, and each gas diluted with nitrogen is supplied to the gas shown in Figure 5 (&
); introduce in the ridge, P-type and n-type Ga
Obtain a base of Aa and AlxGa1-XAs. Figure 5 (
C) is an apparatus similar to that shown in FIG. 4 (ml), in which a hydrogen sulfide introduction port 50 is further provided on the side wall of the growth chamber 25, and a hydrogen sulfide introduction nozzle 51 is heated at the tip thereof.
成長室25の内部には、さらに、アルミニウム加熱用る
つぼ53と硫黄加熱用るつぼ56が設けられ、それらの
中に金属アルミニウム52と金属硫黄55とが入れられ
ている。ま九、るつぼ53と5゛6の蒸発口の前には回
転式シャッタ54と57が設けられている。ガス導入手
順は第5図(a)と同様に行い2.P形でキャリア密度
がt O”Cm−’ ノものからn形テ10”Cm’の
単結晶GaAa及びALxGal −XAB 薄膜を
得た。Inside the growth chamber 25, an aluminum heating crucible 53 and a sulfur heating crucible 56 are further provided, in which metal aluminum 52 and metal sulfur 55 are placed. 9. Rotary shutters 54 and 57 are provided in front of the evaporation ports of crucibles 53 and 56. The gas introduction procedure was carried out in the same manner as shown in FIG. 5(a).2. Single-crystal GaAa and ALxGal-XAB thin films of n-type T10''Cm' were obtained from those of P type with a carrier density of tO''Cm-'.
第6図は、四元系混晶であるInGaA、Pのエピタキ
シャル成長装置の実施例である@これは第4図(11と
同様な装置で、成長室25の@ilkには、さらにホス
フィン(PH3)の導入口60が設けられ、その先端に
はホスフィンの導入ノズル61が嗜付けられている。成
長室25の内部には、さらにインジクム加熱用るつぼ6
3が設けられ、その中に金属インジウム62が入れられ
ている。Figure 6 shows an example of an apparatus for epitaxial growth of InGaA and P, which are quaternary mixed crystals. ), and a phosphine introduction nozzle 61 is installed at its tip.
3 is provided, and metal indium 62 is placed therein.
また、るつぽ63の蒸発口の前には回転式シャツタ64
が設けられている。まず、ガリウム22をGaAs基板
結晶1の表面に蒸着し、次にインジウム62を蒸着、続
いて導入ノズル22及び61よりアルシン及びホスフィ
ン金導入しInGaAsPのエピタキシャル成長薄膜を
得た。In addition, in front of the evaporation port of the melting port 63, there is a rotary shutter 64.
is provided. First, gallium 22 was deposited on the surface of the GaAs substrate crystal 1, then indium 62 was deposited, and then arsine and phosphine gold were introduced through the introduction nozzles 22 and 61 to obtain an epitaxially grown InGaAsP thin film.
(発明の効果)
以上、説明してき九ようだ1本発明の結晶成長法は、例
えばGaの覆族に属する物質と、例えばアルシンのV族
の水素化物の反りを利用し、これらを交互に基板結晶上
に導入することにより、数オングストロームから数10
オングストロームの単位の膜厚制御が可能なl−V族化
合物半導体のエピタキシャル層の製造方法である。(Effects of the Invention) As has been explained above, the crystal growth method of the present invention utilizes the warpage of a substance belonging to the subgroup of Ga and a group V hydride of arsine, for example, and alternately attaches these to a substrate. By introducing it onto the crystal, it is possible to
This is a method for manufacturing an epitaxial layer of a l-V group compound semiconductor, which allows film thickness control in units of angstroms.
ま7t、Gaとアルシンの反応は320℃といった低温
で起こる定め、低温成長がOT能であり、工業的に価(
直の高いものである。However, the reaction between Ga and arsine occurs at a low temperature of 320°C, and low-temperature growth is an OT capability, making it industrially valuable (
It is highly direct.
さらに、三元及び四元系混晶であるAtxGal−xA
3や、InGaAsPの成長も可能であり、不純物添加
も行い得ることから、半導体レーザ、HEMT、FET
及び光検波器等の製造方法として価咳の高いものである
。Furthermore, AtxGal-xA, which is a ternary and quaternary mixed crystal,
3 and InGaAsP can also be grown, and impurity addition can be performed, so it can be used for semiconductor lasers, HEMTs, FETs.
It is a method of manufacturing optical detectors, etc., which has a high value.
第1図は本発明のエピタキシャル成長の原理図、第2図
(a)、第3図(a)及び第4図(a)はGaAsエピ
タキシャル成長装置の例を示す断面図、第2図の)、第
3図(b)、及び第4図[有])はそれぞれの結晶成長
法の手順の説明図、第3図(e)はガス導入サイクル数
と成長膜厚の関係を示すグラフ、第4図(e)はアルシ
ンの反応効率の基板温度依存性を示すグラフ、第5図(
a)、第5図中)及び第5図(e)は、不純物添加し7
’j AtxGal−X As エピタキシャル成長装
置の例を示す断面図、第6図は1nGaAsPエピタキ
シヤル成長装置の一例の断面図である。
1 a GaAs基板結晶 2:ガリウム 3:エピタ
キシャル成長層 3:エピタキシャル成長薄膜 4:T
MG導入口 5:アルシン導入口6:水素導入口 7.
14:石英反応管 8:石英サセプタ 9:抵抗加熱炉
10 : TMG導入口 11:アルシン導入口 1
2:加熱用ヒータ 13.26:真空排気系 20:ア
ルシン供給口 21:アルシンの導入ノズル22:金属
ガリウム 23:ガリウム加熱用石英るつぼ 24.5
4.57.64:回転式シャッタ 25:成長室 30
.40 : TMA導入口 31.41:DMz導入口
32.42.50:硫化水素導入口 51:硫化水素
導入ノズル 52:金属アルミニウム 53ニアルミニ
ウム加熱用るつぼ 55:金属硫黄 56:硫黄加熱用
るつぼ 60:ホスフィンの導入口61:ホスフィンの
導入ノズル 62:金属インジウム 63:インジウム
加熱用るつぼ特許出願人 新技術開発事業団
(ほか2名)
出願人代理人 弁理士 佐 藤 文 男第1図
第 2 図(a)
第 2 図(b)
第 3 図(b)
第 3 図(e)
ガス導入サイクル数
第 4 図 (a)
第 4 図(b)
第 4 図(c)
基板温度(℃)
[1000/T ]
lE 5 図(a)
第 5 図 (c )
第6図FIG. 1 is a diagram showing the principle of epitaxial growth of the present invention, FIGS. 2(a), 3(a) and 4(a) are sectional views showing an example of a GaAs epitaxial growth apparatus. Figure 3 (b) and Figure 4 (with) are explanatory diagrams of the steps of each crystal growth method, Figure 3 (e) is a graph showing the relationship between the number of gas introduction cycles and the grown film thickness, and Figure 4 (e) is a graph showing the substrate temperature dependence of the reaction efficiency of arsine;
a), Fig. 5) and Fig. 5(e) show 7
'j A sectional view showing an example of an AtxGal-X As epitaxial growth apparatus. FIG. 6 is a sectional view of an example of a 1nGaAsP epitaxial growth apparatus. 1 a GaAs substrate crystal 2: Gallium 3: Epitaxial growth layer 3: Epitaxial growth thin film 4: T
MG inlet 5: Arsine inlet 6: Hydrogen inlet 7.
14: Quartz reaction tube 8: Quartz susceptor 9: Resistance heating furnace 10: TMG inlet 11: Arsine inlet 1
2: Heater for heating 13.26: Vacuum exhaust system 20: Arsine supply port 21: Arsine introduction nozzle 22: Metallic gallium 23: Quartz crucible for heating gallium 24.5
4.57.64: Rotating shutter 25: Growth chamber 30
.. 40: TMA inlet 31.41: DMz inlet 32.42.50: Hydrogen sulfide inlet 51: Hydrogen sulfide inlet nozzle 52: Metal aluminum 53 Nialuminum heating crucible 55: Metal sulfur 56: Sulfur heating crucible 60: Phosphine inlet 61: Phosphine introduction nozzle 62: Indium metal 63: Indium heating crucible Patent applicant New Technology Development Corporation (and 2 others) Applicant's agent Patent attorney Fumi Sato (Figure 1, Figure 2) a) Figure 2 (b) Figure 3 (b) Figure 3 (e) Number of gas introduction cycles Figure 4 (a) Figure 4 (b) Figure 4 (c) Substrate temperature (℃) [1000/ T ] lE 5 Figure (a) Figure 5 (c) Figure 6
Claims (8)
化合物半導体基板結晶上に薄膜状に堆積させ、次にV族
元素の水素化物をIII族物質堆積層上へ導入してIII族物
質と表面反応をさせ、以上の操作を繰り返すことにより
数分子層から数10分子層ずつIII−V族化合物半導体
のエピタキシャル層を得ることを特徴とする化合物半導
体のエピタキシャル層の製造方法。(1) A group III material of a group III-V compound semiconductor is deposited in the form of a thin film on a III-V group compound semiconductor substrate crystal, and then a hydride of a group V element is introduced onto the group III material deposited layer to A method for producing an epitaxial layer of a compound semiconductor, which comprises performing a surface reaction with a group substance and repeating the above operations to obtain an epitaxial layer of a III-V compound semiconductor in several to several tens of molecular layers.
薄膜状に堆積させるのを、III族物質のアルキル化物の
水素還元又は熱分解、又はIII族物質の蒸着によること
を特徴とする特許請求の範囲第1項記載の製造方法。(2) The Group III substance is deposited in a thin film on the III-V compound semiconductor substrate crystal by hydrogen reduction or thermal decomposition of an alkylated Group III substance, or by vapor deposition of the Group III substance. A manufacturing method according to claim 1.
物としてアルシン又はホスフィンを用いることを特徴と
する特許請求の範囲第1項又は第2項記載の製造方法。(3) The manufacturing method according to claim 1 or 2, characterized in that gallium is used as the Group III substance and arsine or phosphine is used as the hydride of the Group V element.
ないし四元のIII−V族混晶を成長させることを特徴と
する特許請求の範囲第1項又は第2項記載の製造方法。(4) The manufacturing method according to claim 1 or 2, characterized in that a ternary or quaternary group III-V mixed crystal is grown using a plurality of group III-V atoms or compounds. .
であることを特徴とする特許請求の範囲第4項記載の製
造方法。(5) Group III-V mixed crystal is Al_XGa_1_-_XAs
The manufacturing method according to claim 4, characterized in that:
徴とする特許請求の範囲第4項記載の製造方法。(6) The manufacturing method according to claim 4, wherein the III-V group mixed crystal is InGaAsP.
族化合物半導体のエピタキシャル層に不純物添加を行う
ことを特徴とする特許請求の範囲第1項から第6項のい
ずれかに記載の製造方法。(7) III-V by atoms or compounds of group II or group VI
7. The manufacturing method according to claim 1, wherein an impurity is added to an epitaxial layer of a group compound semiconductor.
を用いることを特徴とする特許請求の範囲第7項記載の
製造方法。(8) The manufacturing method according to claim 7, characterized in that zinc is used as the Group II substance and sulfur is used as the Group VI substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255794A JP2620578B2 (en) | 1986-10-29 | 1986-10-29 | Method for producing compound semiconductor epitaxial layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255794A JP2620578B2 (en) | 1986-10-29 | 1986-10-29 | Method for producing compound semiconductor epitaxial layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63110718A true JPS63110718A (en) | 1988-05-16 |
JP2620578B2 JP2620578B2 (en) | 1997-06-18 |
Family
ID=17283722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61255794A Expired - Lifetime JP2620578B2 (en) | 1986-10-29 | 1986-10-29 | Method for producing compound semiconductor epitaxial layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2620578B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4773445B2 (en) * | 2004-06-07 | 2011-09-14 | ハネウェル・インターナショナル・インコーポレーテッド | Fluid dynamic pressure foil thrust bearing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134927A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing process of compound semiconductor single crystal thin film |
-
1986
- 1986-10-29 JP JP61255794A patent/JP2620578B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134927A (en) * | 1984-07-26 | 1986-02-19 | Res Dev Corp Of Japan | Growing process of compound semiconductor single crystal thin film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4773445B2 (en) * | 2004-06-07 | 2011-09-14 | ハネウェル・インターナショナル・インコーポレーテッド | Fluid dynamic pressure foil thrust bearing |
Also Published As
Publication number | Publication date |
---|---|
JP2620578B2 (en) | 1997-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mori et al. | GaAs growth by atomic layer epitaxy using diethylgalliumchloride | |
US3963538A (en) | Two stage heteroepitaxial deposition process for GaP/Si | |
JPS6134929A (en) | Growing device of semiconductor device | |
JP3879173B2 (en) | Compound semiconductor vapor deposition method | |
US3963539A (en) | Two stage heteroepitaxial deposition process for GaAsP/Si LED's | |
Nishizawa et al. | Deposition mechanism of GaAs epitaxy | |
Tsang | Chemical beam epitaxy of InGaAs | |
JPS63110718A (en) | Manufacture of epitaxial layer of compound semiconductor | |
JPS59188118A (en) | Manufacture of vapor phase epitaxial crystal | |
JP2577550B2 (en) | Impurity doping of III-V compound semiconductor single crystal thin films | |
JPS61260622A (en) | Growth for gaas single crystal thin film | |
Sitter et al. | Atomic-layer epitaxy of II–VI compound semiconductors | |
JP2620546B2 (en) | Method for producing compound semiconductor epitaxy layer | |
JPH07120625B2 (en) | Method for forming compound semiconductor single crystal thin film | |
JPS6134922A (en) | Manufacture of super lattice semiconductor device | |
JPS63227007A (en) | Vapor growth method | |
JPH0535719B2 (en) | ||
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JPS63319296A (en) | Production of semiconductor | |
JPS62158198A (en) | Production of single crystal layer of silicon carbide | |
JPS6134987A (en) | Manufacture of semiconductor laser | |
JPH0369879B2 (en) | ||
JPS62158197A (en) | Production of single crystal layer of silicon carbide | |
JPS6377112A (en) | Vapor growth method | |
JPS6131393A (en) | Vapor phase growth device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |