JPH0782991B2 - Method of growing compound semiconductor single crystal thin film - Google Patents

Method of growing compound semiconductor single crystal thin film

Info

Publication number
JPH0782991B2
JPH0782991B2 JP59153977A JP15397784A JPH0782991B2 JP H0782991 B2 JPH0782991 B2 JP H0782991B2 JP 59153977 A JP59153977 A JP 59153977A JP 15397784 A JP15397784 A JP 15397784A JP H0782991 B2 JPH0782991 B2 JP H0782991B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
single crystal
thin film
compound
crystal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59153977A
Other languages
Japanese (ja)
Other versions
JPS6134927A (en
Inventor
潤一 西澤
仁志 阿部
壮兵衛 鈴木
Original Assignee
新技術事業団
西沢 潤一
沖電気工業 株式会社
壮兵衛 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新技術事業団, 西沢 潤一, 沖電気工業 株式会社, 壮兵衛 鈴木 filed Critical 新技術事業団
Priority to JP59153977A priority Critical patent/JPH0782991B2/en
Priority to GB08518834A priority patent/GB2162862B/en
Priority to FR8511517A priority patent/FR2578680B1/en
Priority to DE19853526824 priority patent/DE3526824A1/en
Publication of JPS6134927A publication Critical patent/JPS6134927A/en
Priority to US08/077,119 priority patent/US5693139A/en
Publication of JPH0782991B2 publication Critical patent/JPH0782991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はIII−V族化合物半導体の単結晶成長層を単分
子層単位で半導体単結晶基板上にエピタキシャル形成す
るのに好適な化合物半導体単結晶薄膜の成長法に関す
る。特に少なく共2種類の原料ガスを交互に導入し、表
面交換反応でIII−V族化合物半導体単結晶をエピタキ
シャル成長する方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a compound semiconductor single crystal suitable for epitaxially forming a single crystal growth layer of a III-V compound semiconductor on a semiconductor single crystal substrate in a unit of a single molecular layer. A method for growing a thin film. Particularly, it relates to a method of epitaxially growing a group III-V compound semiconductor single crystal by a surface exchange reaction by introducing at least two kinds of source gases alternately.

〔先行技術とその問題点〕[Prior art and its problems]

従来から半導体の薄膜結晶を得るための気相エピタキシ
ー技術として、有機金属気相成長法(以下、MO−CVD法
と呼ぶ)、分子線エピタキシー法(以下、MBE法と呼
ぶ)、原子層エピタキシー(以下、ALE法と呼ぶ)など
が知られている。しかし、MO−CVD法はソースとしてIII
族、V族元素を水素ガス等をキャリアとして、同時に反
応室へ導入し、熱分解によって成長させるため、成長層
の品質が悪い。また、単分子層オーダーの制御が困難で
ある等の欠点がある。
Conventionally, as a vapor phase epitaxy technique for obtaining a semiconductor thin film crystal, a metal organic vapor phase epitaxy method (hereinafter, referred to as MO-CVD method), a molecular beam epitaxy method (hereinafter, referred to as MBE method), and an atomic layer epitaxy ( Hereinafter referred to as ALE method) is known. However, the MO-CVD method uses III as a source.
The quality of the growth layer is poor because the group and group V elements are simultaneously introduced into the reaction chamber using hydrogen gas as a carrier and grown by thermal decomposition. Further, there are drawbacks such that it is difficult to control the order of monomolecular layer.

一方、超高真空を利用した結晶成長法としてよく知られ
るMBE法は、物理吸着を第一段階とするために、結晶の
品質は化学反応を利用した気相成長法に劣る。GaAsのよ
うなIII−V族間の化合物半導体を成長させる時には、I
II族、V族元素をソースとして用い、ソース源自体を成
長室の中に設置している。このため、ソース源を加熱し
て得られる放出ガスと蒸発量の制御、および、ソースの
補給が困難であり、成長速度を長時間一定に保つことが
困難である。また、蒸発物の排気など真空装置が複雑に
なる。更には、化合物半導体の化学量論的組成(ストイ
キオメトリー)を精密に制御することが困難で、結局、
高品質の結晶を得ることができない欠点がある。
On the other hand, the MBE method, which is well known as a crystal growth method using ultra-high vacuum, is inferior to the vapor phase growth method using a chemical reaction because the physical adsorption is the first step. When growing a III-V compound semiconductor such as GaAs,
Group II and V elements are used as sources and the source itself is installed in the growth chamber. Therefore, it is difficult to control the emission gas and evaporation amount obtained by heating the source source, and to replenish the source, and it is difficult to keep the growth rate constant for a long time. Further, the vacuum device such as evacuation of the evaporated material becomes complicated. Furthermore, it is difficult to precisely control the stoichiometric composition (stoichiometry) of compound semiconductors, and as a result,
There is a drawback that high quality crystals cannot be obtained.

更にALE法は、T.Suntola(ツオモ・サントラ)がU.S.P.
No.4058430(1977)(特開昭51−77589号公報)で説明
しているように、MBE法を改良し半導体元素のそれぞれ
をパルス状に交互に供給し、単原子層をガラス基板に交
互に付着させ、薄膜を原子層ずつ成長させるもので、原
子層のオーダーで膜厚を制御できる利点があるが、MBE
法の延長でありMBEと同様に結晶性が良くない。また成
長した薄膜もCdTe、ZnTe等のII−IV族化合物半導体に限
られ、現在超LSI等の半導体装置の主力であるSiやGaAs
に関しては成功していない。GaAs等のIII−V族化合物
半導体で成功していないのはII−VI族化合物半導体はそ
の構成元素の蒸気圧が高いため、単原子層吸着が比較的
容易に実現されるが、III−V族化合物半導体について
はIII族元素の蒸気圧が極端に低いため、III族元素の単
分子層吸着条件が実現されにくいという問題もそのひと
つの理由である。ALEを改良して単原子層の上にガス状
化合物分子を導入し、表面での化学反応を利用した成長
も特開昭55−130896号公報に示されるように試みられて
はいるがZnSの多結晶もしくはTa2O5のアモルファスの薄
膜の成長であり単結晶エピタキシャル成長技術とはなっ
ていない。
In addition, T. Suntola (Tsuomo Soundtrack) is USP for the ALE method.
As described in No. 4058430 (1977) (Japanese Patent Laid-Open No. 51-77589), the MBE method is improved so that each of the semiconductor elements is alternately supplied in a pulsed manner, and the monoatomic layer is alternately arranged on the glass substrate. MBE is a method of growing a thin film atomic layer by atomic layer, which has the advantage of controlling the film thickness on the order of atomic layers.
It is an extension of the law and its crystallinity is not as good as MBE. Also, the grown thin film is limited to II-IV group compound semiconductors such as CdTe and ZnTe, and Si and GaAs, which are currently the mainstay of semiconductor devices such as VLSI, etc.
Has not been successful. III-V compound semiconductors such as GaAs have not been successful, but since the II-VI compound semiconductor has a high vapor pressure of its constituent elements, monoatomic layer adsorption can be realized relatively easily. One of the reasons is that the vapor pressure of the group III element is extremely low in the group compound semiconductor, so that it is difficult to realize the monolayer adsorption condition of the group III element. Although ALE is improved to introduce a gaseous compound molecule on the monoatomic layer and growth utilizing a chemical reaction on the surface is attempted as shown in JP-A-55-130896, ZnS This is growth of a polycrystalline or Ta 2 O 5 amorphous thin film and is not a single crystal epitaxial growth technique.

このように、MO−CVD法やMBE法では化学量論的組成を満
足する高品質の結晶を単分子層オーダーで形成すること
が困難な一方、ALE法では単結晶が得られない欠点があ
った。また特開昭55−130896号公報に示されるALEにお
いてはガス導入2500サイクルで1000ÅのTa2O5の成長、4
500サイクルで4000ÅのZnSの成長、あるいは2800サイク
ルで2200ÅのA2lO3の成長というように、ガス導入−サ
イクルで一分子層膜厚相当以下の成長しか実現できず、
単分子層膜厚に自己停止機能を有したエピタキシャル成
長技術になっていないため膜厚制御性や再現性、均一性
が悪いという欠点があった。前述したALEにおいては不
活性ガスをガス相拡散バリアとして用いないと表面交換
反応における反応工程の分離ができないものであるが、
この不活性ガスが原料のガス状化合物分子の表面吸着を
阻害する欠点があった。
As described above, it is difficult to form a high-quality crystal satisfying the stoichiometric composition on the order of a monolayer by the MO-CVD method or the MBE method, but there is a drawback that a single crystal cannot be obtained by the ALE method. It was Further, in the ALE disclosed in JP-A-55-130896, growth of 1000 Å Ta 2 O 5 in 2500 cycles of gas introduction, 4
For example, growth of 4000 Å ZnS in 500 cycles, or growth of 2200 Å A 2 lO 3 in 2800 cycles, such as gas introduction-cycle, can achieve only growth equivalent to or less than one molecular layer thickness,
Since it is not an epitaxial growth technique having a self-stop function for the thickness of the monomolecular layer, there is a drawback that the film thickness controllability, reproducibility and uniformity are poor. In the above-mentioned ALE, the reaction step in the surface exchange reaction cannot be separated unless an inert gas is used as a gas phase diffusion barrier.
This inert gas has a drawback that it hinders the surface adsorption of the gaseous compound molecules of the raw material.

〔発明の目的〕[Object of the Invention]

本発明は上記従来技術の欠点を除き、化学量論的組成を
制御することにより結晶成長層の品質を改善し、ガス導
入−サイクルに付き1分子層もしくは2分子層のエピタ
キシャル成長膜を形成することができる化合物半導体,
とくにIII−V族化合物半導体の単結晶薄膜の成長法を
提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks of the prior art and improves the quality of the crystal growth layer by controlling the stoichiometric composition to form a monolayer or bilayer epitaxial growth film per gas introduction-cycle. Compound semiconductors that can
In particular, it is an object to provide a method for growing a single crystal thin film of a III-V group compound semiconductor.

〔発明の概要〕[Outline of Invention]

このため、ALE法では、単元素の1原子層をガラス基板
上に形成したのに対し、本発明は半導体単結晶基板上に
成長させたいIII族、V族の成分元素を含む分子のガス
を外部から交互に導入するサイクルを繰り返すことによ
り半導体単結晶基板上に単結晶をエピタキシャル成長さ
せるが、その際、成長槽内の圧力、基板加熱温度、導入
するガス量の1サイクル1分子層もしくは1サイクル2
分子層の単結晶エピタキシャル成長するための最適値を
実験的に見い出し、半導体単結晶基板上に単結晶をIII
族元素とV族元素の蒸気圧の差に関係なく成長できるよ
うにしたことを特徴としている。また、本発明は半導体
単結晶基板の表面に波長180〜600nmの光を照射し、光の
エネルギーで表面泳動等の表面反応を促進し、より定温
で高品質な化合物半導体単結晶がエピタキシャル成長で
きるようにしたことを特徴としている。
Therefore, in the ALE method, one atomic layer of a single element is formed on a glass substrate, whereas in the present invention, a gas of a molecule containing a group III or V component element to be grown on a semiconductor single crystal substrate is used. A single crystal is epitaxially grown on a semiconductor single crystal substrate by repeating the cycle of alternately introducing from the outside. At that time, the pressure in the growth tank, the substrate heating temperature, and the amount of gas to be introduced are 1 cycle 1 molecular layer or 1 cycle Two
We have experimentally found the optimum value for the epitaxial growth of a single crystal of a molecular layer, and formed a single crystal on a semiconductor single crystal substrate.
The feature is that the growth can be performed regardless of the difference in vapor pressure between the group element and the group V element. Further, the present invention irradiates the surface of the semiconductor single crystal substrate with light having a wavelength of 180 to 600 nm to promote surface reactions such as surface migration with the energy of light, so that a high-quality compound semiconductor single crystal can be epitaxially grown at a constant temperature. It is characterized by having done.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

第1図は本発明の一実施例に係る化合物半導体単結晶成
長装置の構成図を示したもので、1は成長槽で材質はス
テンレス等の金属、2はゲートバルブ、3は成長槽1内
を超高真空に排気するための排気装置、4,5はIII−V族
化合物半導体のIII族、V族の成分元素のガス状の化合
物を導入するノズル、6,7はノズル4,5を開閉するバル
ブ、8はIII族の成分元素を含むガス状の化合物、9は
V族の成分元素を含むガス状の化合物、10は基板加熱用
のヒーターで石英ガラスに封入したタングステン(W)
線であり、電線等は省略して図示しているもの、11は測
温用の熱電対、12は化合物半導体の単結晶基板、13は成
長槽内の真空度を測るための圧力計である。
FIG. 1 is a block diagram of a compound semiconductor single crystal growth apparatus according to an embodiment of the present invention, in which 1 is a growth tank and the material is metal such as stainless steel, 2 is a gate valve, 3 is inside the growth tank 1. An exhaust device for evacuating the gas to an ultra-high vacuum, 4,5 are nozzles for introducing a gaseous compound of a group III or V group component element of the III-V group compound semiconductor, and 6, 7 are nozzles 4,5. A valve for opening and closing, 8 is a gaseous compound containing a group III constituent element, 9 is a gaseous compound containing a group V constituent element, 10 is tungsten (W) sealed in quartz glass by a heater for heating the substrate.
A wire is shown with the electric wires omitted, 11 is a thermocouple for temperature measurement, 12 is a single crystal substrate of compound semiconductor, and 13 is a pressure gauge for measuring the degree of vacuum in the growth tank. .

以上の構成で、成長槽1内の圧力、単結晶基板12の加熱
温度、ガスの導入量等をパラメータとして結晶成長状態
を調べた結果、下記の条件にて結晶成長させると、高品
質の単結晶薄膜を単分子層の単位でエピタキシャル形成
できることが実験的に確認できた。即ち、GaAsの単結晶
をGaAs単結晶基板12上にエピタキシャル成長させるに
は、先ずゲートバルブ2を開けて超高真空排気装置3に
より、成長槽1内を10-7〜10-8Pascal(以下、Paと略
す)程度に排気する。次に、GaAs単結晶基板12を300〜6
00℃にヒーター10により加熱し、Gaを含むガスとしてTM
G(トリメチルガリウム)8を成長槽1内の圧力が、10
-1〜107Paになる範囲で、より好ましくは10-1〜10-4Pa
になる範囲で、0.5〜10秒間バルブ6を開けて導入す
る。その後、バルブ6を閉じて成長槽1内のガスを排気
後、今後はAsを含むガスとしてAsH3(アルシン)9を成
長槽1内の圧力が10-1〜107Paになる範囲で、より好ま
しくは10-1〜10-2Paになる範囲で、2〜200秒間バルブ
7を開けて導入する。これにより、GaAs単結晶基板12上
にGaAsが少なくとも1分子層成長できる。ガス導入の低
圧側の限界値は、GaAs基板表面を100%の被着率で覆う
ための分子の個数から容易に決定できる。ガス導入圧力
とガス導入時間の積がGaAs基板表面に被着する分子の個
数を与えるので、導入圧力が低ければ導入時間を長くす
る必要がある。以上の操作を繰り返し、単分子層を次々
と成長させることにより、所望の分子層数のGaAsの単結
晶成長層を単分子層の単位で成長させることができる。
With the above configuration, as a result of examining the crystal growth state using the pressure in the growth tank 1, the heating temperature of the single crystal substrate 12, the amount of gas introduced, etc. as parameters, it was found that high quality single crystal was obtained when the crystal was grown under the following conditions. It was experimentally confirmed that the crystal thin film can be epitaxially formed in the unit of a monolayer. That is, in order to epitaxially grow a GaAs single crystal on the GaAs single crystal substrate 12, first, the gate valve 2 is opened and the inside of the growth tank 1 is set to 10 −7 to 10 −8 Pascal (hereinafter, Exhaust to about (Pa). Next, the GaAs single crystal substrate 12 is set to 300 to 6
It is heated to 00 ℃ by the heater 10 and TM as a gas containing Ga
G (trimethylgallium) 8 pressure in the growth tank 1 is 10
-1 to 10 7 Pa, more preferably 10 -1 to 10 -4 Pa
In this range, the valve 6 is introduced for 0.5 to 10 seconds. Then, after closing the valve 6 to exhaust the gas in the growth tank 1, AsH 3 (arsine) 9 as a gas containing As will be added in the range where the pressure in the growth tank 1 will be 10 -1 to 10 7 Pa. More preferably, the valve 7 is introduced for 2 to 200 seconds in the range of 10 -1 to 10 -2 Pa. As a result, at least one molecular layer of GaAs can be grown on the GaAs single crystal substrate 12. The lower limit value of gas introduction can be easily determined from the number of molecules for covering the GaAs substrate surface with 100% deposition rate. Since the product of the gas introduction pressure and the gas introduction time gives the number of molecules attached to the GaAs substrate surface, it is necessary to lengthen the introduction time if the introduction pressure is low. By repeating the above operation and growing the monomolecular layers one after another, it is possible to grow a single crystal growth layer of GaAs having a desired number of molecular layers in units of the monomolecular layers.

第2図(a)は、導入ガスとて、TMGとGaAsを用いた時
の成長温度600℃での1サイクル当りのTMGの導入量をパ
ラメーターとして1サイクル当りのGaAs膜の成長膜厚を
示すものである。1サイクル当りのTMGの導入量が増え
ると成長膜厚がGaAsの1分子層膜厚もしくは2分子層膜
厚で飽和する。第2図(a)は飽和直前まで示している
が、導入量をこれ以上1〜2桁増しても1分子層膜厚も
しくは2分子層膜厚で飽和し、一定膜厚となる。GaAs
(100)面の一分子層の厚さは2.83Åで、GaAs(111)面
の一分子層の厚さは3.26Åである。この飽和値以上のガ
スの導入量で成長してやれば、たとえ、ガス導入量やガ
ス導入圧力あるいはGaAs単結晶基板温度等が多小変動し
ても、確実に1サイクル1分子層もしくは1サイクル2
分子層に自己停止機能を持って成長するため、分子層単
位の精度の膜厚が制御できる。本発明は基板表面での交
換表面反応および表面吸着反応を用いているので単分子
層吸着反応を用いれば1サイクル1分子層、2分子層吸
着反応を用いれば1サイクル2分子層の成長が実現でき
る。2分子層吸着反応は単分子層吸着反応の飽和領域の
圧力よりガス導入圧力をさらに高くし、基板温度も高く
すれば良い。もちろんさらに圧力を高くすれば3分子層
以上の多分子層吸着となり1サイクル3分子層等の成長
も可能である。基板温度が高い方が多分子層吸着は容易
である。この飽和する条件でTMGとAsH3を交互に導入
し、その導入回数と、GaAsエピタキシャル成長層の膜厚
の関係を示したものが第2図(b)である。この図から
明らかなように、非常によい直線性を示すことから任意
の膜厚が完全に制御できることが判る。このようにし
て、得られたGaAsのエピタキシャル成長層を電子線回析
およびX線回析で調べたところ、非常に完全性の高い薄
膜単結晶となっていることが判明した。
FIG. 2 (a) shows the growth film thickness of the GaAs film per cycle with the introduction amount of TMG per cycle at a growth temperature of 600 ° C. using TMG and GaAs as the introduced gas. It is a thing. As the amount of TMG introduced per cycle increases, the growth film thickness saturates at the GaAs monolayer or bilayer thickness. Although FIG. 2 (a) shows until just before saturation, even if the introduction amount is further increased by 1 to 2 digits, it is saturated at the thickness of one molecular layer or the thickness of two molecular layers, and becomes a constant thickness. GaAs
The thickness of the monolayer of the (100) plane is 2.83Å, and the thickness of the monolayer of the GaAs (111) plane is 3.26Å. If the amount of gas introduced is equal to or higher than this saturation value, even if the amount of gas introduced, the gas introduction pressure, the GaAs single crystal substrate temperature, etc. fluctuates in a small amount, one cycle one molecular layer or one cycle 2
Since the growth is carried out in the molecular layer with the self-stop function, the film thickness can be controlled in the accuracy of the molecular layer. Since the present invention uses the exchange surface reaction and the surface adsorption reaction on the surface of the substrate, the growth of one cycle of one molecular layer can be realized by using the monomolecular layer adsorption reaction and one cycle of one molecular layer by using the two molecular layer adsorption reaction. it can. For the bilayer adsorption reaction, the gas introduction pressure and the substrate temperature may be set higher than the pressure in the saturation region of the monolayer adsorption reaction. Of course, if the pressure is further increased, multi-molecular layer adsorption of three or more molecular layers will occur, and growth of one-cycle tri-molecular layer or the like is also possible. The higher the substrate temperature, the easier the adsorption of multi-layers. FIG. 2B shows the relationship between the number of times TMG and AsH 3 were alternately introduced under the saturated condition and the thickness of the GaAs epitaxial growth layer. As is clear from this figure, since it shows very good linearity, it can be seen that any film thickness can be completely controlled. When the epitaxially grown layer of GaAs thus obtained was examined by electron beam diffraction and X-ray diffraction, it was found to be a thin film single crystal with extremely high integrity.

尚、Gaを含む原料ガスとしてはTMGのみに限られずTEG,D
EGaCl,DMGaClやCaCl3,GaBr3,GaIのようなガスを用いて
も同様に結晶性のよいGaAs薄膜が得られた。
The source gas containing Ga is not limited to TMG, but TEG, D
GaAs thin films with good crystallinity were also obtained by using gases such as EGaCl, DMGaCl, CaCl 3 , GaBr 3 , and GaI.

第3図は本発明の他の実施例を示したものであり、不純
物添加をするためのものである。14,15は不純物添加に
用いるガス状化合物を導入するノズル、16,17はノズル1
4,15を開閉するバルブ、18はII族の成分元素を含むガス
状の化合物、19はVI族の成分元素を含むガス状の化合物
である。不純物を添加する以外の部分は第1図の実施例
と同一であるので説明は省略する。
FIG. 3 shows another embodiment of the present invention, which is for adding impurities. 14, 15 are nozzles for introducing gaseous compounds used for impurity addition, 16 and 17 are nozzles 1.
A valve for opening and closing 4,15, 18 is a gaseous compound containing a group II constituent element, and 19 is a gaseous compound containing a group VI constituent element. Since the parts other than the addition of impurities are the same as those of the embodiment shown in FIG. 1, the description thereof will be omitted.

この構成で、p型成長層を形成する場合は、導入ガスと
してTMG(トリメチルガリウム)8、AsH3(アルシン)
9と添加する不純物ガスとしてDMZn(ジメチル亜鉛)18
の3つのガスをそれぞれ別個の時間に循環式に導入す
る。また、別の方法としてはDMG8とDMZn18を同時にAsH3
9とは交互に導入するか、AsH39とDMZn18を同時にTMG8と
は交互に導入することによって不純物添加ができる。更
にまた、別の方法としてはTMGとDMZnとを同時に導入、
真空排気、AsH3導入、真空排気という第1のサイクル
と、TMGのみ導入、真空排気、AsH3導入、真空排出とい
う第2のサイクルとを交互に繰り返すことによって、Zn
のドープされた層とドープされていない層を交互に、ま
たは多層ずつ交互に形成することもできる。
When a p-type growth layer is formed with this structure, TMG (trimethylgallium) 8 and AsH 3 (arsine) are used as introduction gases.
9 and DMZn (dimethylzinc) 18 as impurity gas to be added
The three gases are introduced in a circulating manner at different times. Another option is to use DMG8 and DMZn18 simultaneously in AsH 3
9 or alternately introduced into the can dopant by introducing alternating the AsH 3 9 and DMZn18 simultaneously TMG8. Furthermore, as another method, TMG and DMZn are simultaneously introduced,
Evacuation, AsH 3 introduced, a first cycle of evacuation, introducing only TMG, evacuation, by repeating AsH 3 introduced, and a second cycle of vacuum discharge alternately, Zn
It is also possible to form the doped layers and the undoped layers alternately or alternately in multiple layers.

尚、不純物ガスとしてはDMCd(ジメチルカドミウム)、
DMMg(ジメチルマグネシウム)、SiH4(モノシラン)、
GeH4(ゲルマン)などでもよい。また、DMCdとDMZnとを
同時に導入しても良い。
In addition, as impurity gas, DMCd (dimethyl cadmium),
DMMg (dimethyl magnesium), SiH 4 (monosilane),
GeH 4 (German) may be used. Also, DMCd and DMZn may be introduced at the same time.

次に、n型成長層の形成は、添加する不純物ガスとして
DMSe19(ジメチルセレン)をTMG8、AsH39とそれぞれ別
個の時間に循環式に導入する。別の方法としてはTMG8と
DMSe19を同時にAsH39とDMSe19とは交互に導入すること
によって不純物添加ができる。AsH39とDMSe19とを同時
に、TMG8とDMSe19とを交互に導入しても良い。
Next, the n-type growth layer is formed by adding an impurity gas.
DMSe19 (dimethyl selenium) the TMG8, AsH 3 9 respectively introduced into the circulating at separate times. Alternatively with TMG8
DMSe19 simultaneously AsH 3 9 and DMSe19 may doping by introducing alternately. AsH 3 9 and the DMSe19 at the same time, may be introduced alternately and TMG8 and DMSe19.

尚、このときの不純物ガスとしてはDMS(ジメチル硫
黄)、H2S(硫化水素)、H2Se(セレン化水素)などを
用いることができる。
As the impurity gas at this time, DMS (dimethyl sulfur), H 2 S (hydrogen sulfide), H 2 Se (hydrogen selenide), or the like can be used.

この場合、不純物ガスの導入圧力をAsH39、TMG8に比
べ、例えば10-3〜10-6程小さく取り、導入時間は0.5〜1
0秒にすることにより、厚さ方向に所望の不純物濃度分
布を有する分子層エピタキシャル成長層が形成できる。
また、添加する不純物ガスの量と時間を調整することに
より、pn接合、不均一不純物密度分布、npn、npin、pn
p、pnip等のバイポーラトランジスタ構造、npinp、npn-
np等の電界効果トランジスタや静電誘導トランジスタ、
pnpnのサイリスタ構造等を実現できることは勿論であ
る。
In this case, compared with the introduction pressures of the impurity gas in the AsH 3 9, TMG8, for example taking small as 10 -3 to 10 -6, the introduction time is 0.5 to 1
By setting the time to 0 seconds, a molecular layer epitaxial growth layer having a desired impurity concentration distribution in the thickness direction can be formed.
By adjusting the amount and time of the impurity gas to be added, pn junction, non-uniform impurity density distribution, npn, npin, pn
p, bipolar transistor structures such as pnip, npinp, npn -
field effect transistor such as np or static induction transistor,
It goes without saying that a pnpn thyristor structure or the like can be realized.

第4図は本発明の更に別の実施例を示したものであり、
混晶化合物半導体を成長させるものである。混晶として
Ga1-xAlxAsを例にとって説明する。20はIII族のAlのガ
ス状化合物を導入するノズル、21は20を開閉するバル
ブ、22はIII族のAlを含むガス状化合物である。50〜52
については後述する。他の部分は第1図の実施例と同一
であるので説明は省略する。
FIG. 4 shows still another embodiment of the present invention,
A mixed crystal compound semiconductor is grown. As a mixed crystal
Ga 1-x Al x As will be described as an example. Reference numeral 20 is a nozzle for introducing a gaseous compound of Group III Al, 21 is a valve for opening and closing 20, and 22 is a gaseous compound containing Group III Al. 50-52
Will be described later. The other parts are the same as those of the embodiment shown in FIG.

導入ガスとしてAsH38、TMG9、TMAl22(トリメチルアル
ミニウム)を用い、AsH38、TMG9およびTMAl22をそれぞ
れ別個の時間に循環式に基板温度300〜600℃で導入でき
る。このとき、TMAl22の導入圧力および導入時間をTMG9
に対して調節することによって、厚さ方向に所望の成分
比を有する混晶分子層エピタキシャル成長層をガス導入
1サイクルに付き1分子層膜厚もしくは2分子層膜厚で
形成できる。
AsH 3 8, TMG9, using TMAl22 the (trimethyl aluminum) as an introduction gas, can be introduced AsH 3 8, TMG9 and TMAl22 at each substrate temperature 300 to 600 ° C. in a circular fashion at separate times. At this time, the introduction pressure and introduction time of TMAl22 are set to TMG9.
The mixed crystal molecular layer epitaxial growth layer having a desired component ratio in the thickness direction can be formed to have a monomolecular layer thickness or a bimolecular layer thickness per gas introduction cycle by adjusting the above.

尚、TMG9とTMAl22は同時に導入しても良い。また、導入
ガス20にはTMGとTMAlを混合したガスでも良い。また、G
a1-xAlxAsを例にとったが、Ga1-xPx、InxGa1-xP、InxGa
1-xAs等の他のIII−V族の混晶でも良い。
Incidentally, TMG9 and TMAl22 may be introduced at the same time. Further, the introduction gas 20 may be a gas in which TMG and TMAl are mixed. Also, G
Taking a 1-x Al x As as an example, Ga 1-x P x , In x Ga 1-x P, In x Ga
Other III-V group mixed crystals such as 1-x As may be used.

また、第5図(a)に示すようなGa1-xAlxAs超格子構造
を成長するには第5図(b)に示すようなシーケンスを
用いれば良い。つまり、最初の2サイクルはTMG9とAsH3
8との交互導入、次の5サイクルはTMAl22とAsH38との交
互導入、次の2サイクルはTMG9とAsH38との交互導入す
る。次の4サイクルは不純物導入のサイクルで、ノズル
50を用い、バルブ51の開閉により、SiH4(シラン)52を
AsH38と同時にTMG9と交互に導入する。つまり、バルブ5
1とバルブ6との開閉の位相を一致させて4サイクル導
入する。次の2サイクルはアンドープGaAsの成長で、TM
G9とAsH38との交互導入、次の2サイクルはアンドープA
lAsの成長で、TMAl22とAsH38との交互導入をすれば良
い。
Further, in order to grow the Ga 1-x Al x As superlattice structure as shown in FIG. 5A, the sequence as shown in FIG. 5B may be used. In other words, the first two cycles are TMG9 and AsH 3
Alternate introduction with 8; next 5 cycles, alternate introduction of TMAl22 and AsH 3 8; next 2 cycles, alternate introduction of TMG 9 and AsH 3 8. The next 4 cycles are the cycle of impurity introduction and the nozzle
SiH 4 (silane) 52 by opening and closing valve 51 using 50
Alternately introduced into and AsH 3 8 at the same time as TMG9. That is, valve 5
4 cycles are introduced by matching the opening and closing phases of 1 and valve 6. The next two cycles are the growth of undoped GaAs, TM
Alternating introduction of G9 and AsH 3 8, the next two cycles undoped A
in the growth of lAs, it may be the alternate introduction of the TMAl22 and AsH 3 8.

第6図は本発明の更に別の実施例を示したものであり、
禁制帯幅と格子定数を独立に制御できる4元混晶以上の
格子歪補正された混晶化合物半導体を成長させるもので
ある。一例としてGa0.7Al0.3As0.990.01でGaAs基板上
に成長させると格子歪補正されることが知られているの
で混晶にGa1-xAlxAs1-yPyを例にとって説明する。
FIG. 6 shows still another embodiment of the present invention,
It is intended to grow a mixed crystal compound semiconductor with lattice distortion correction of quaternary mixed crystal or more capable of independently controlling the forbidden band width and the lattice constant. As an example, it is known that when Ga 0.7 Al 0.3 As 0.99 P 0.01 is grown on a GaAs substrate, the lattice distortion is corrected. Therefore, Ga 1-x Al x As 1-y P y will be described as an example of a mixed crystal. .

23,24は液晶元素を含むIII族のAl、V族のPのガス状化
合物を導入するノズル、25,26はノズル23,24のそれぞれ
を開閉するバルブ、27,28はIII族のAl、V族のpの成分
を元素に含むガス状化合物である。他の部分は第1図と
同一であるので説明は省略する。導入ガスとしてAsH
38、TMG9、TMAl27,PH3(ホスフィン)28を用い、これら
のガスを循環式に導入する。このとき、III族同志、V
族同志は同時に導入しても良い。また、あらかじめガス
を混合しておいても良い。成長温度、成長圧力などは第
1図に示す実施例とほぼ同様であり、ガス混合比又は導
入圧力、導入時間を調整することによって格子歪補正さ
れた液晶化合物半導体エピタキシャル成長層を形成でき
る。
23 and 24 are nozzles for introducing a group III Al containing a liquid crystal element and a group V gaseous compound of P, 25 and 26 are valves for opening and closing the nozzles 23 and 24, 27 and 28 are group III Al, It is a gaseous compound containing an element of p component of group V. Since the other parts are the same as those in FIG. 1, the description thereof will be omitted. AsH as introduced gas
3 8, TMG9, using TMAl27, PH 3 (phosphine) 28, introducing these gases into circulation. At this time, group III comrades, V
Clan comrades may be introduced at the same time. Further, the gas may be mixed in advance. The growth temperature, the growth pressure and the like are almost the same as those in the embodiment shown in FIG. 1, and the lattice distortion-corrected liquid crystal compound semiconductor epitaxial growth layer can be formed by adjusting the gas mixture ratio or the introduction pressure and the introduction time.

尚、以上の各実施例においては、いずれも半導体単結晶
基板12の加熱源を成長槽1内に設けた例について述べて
きたが、例えば第7図に示すように、加熱源として赤外
線ランプ30を用い、これを成長槽1外のランプハウス31
内に設け、そのランプハウス31から出力する赤外線を石
英ガラス32を介して半導体単結晶基板12に照射すること
により、サセプター33に保持させた半導体結晶基板12を
加熱するようにしてもよい。このようにすれば、成長槽
1内から単結晶の成長に必要ない部材を除くことがで
き、ヒーター加熱に伴う重金属等の不要なガス成分の発
生を未然に防止することができる。
In each of the above embodiments, an example in which the heating source for the semiconductor single crystal substrate 12 is provided in the growth tank 1 has been described. For example, as shown in FIG. The lamp house 31 outside the growth tank 1
The semiconductor crystal substrate 12 held in the susceptor 33 may be heated by irradiating the semiconductor single crystal substrate 12 with infrared rays output from the lamp house 31 through the quartz glass 32 provided inside. By doing so, members that are not necessary for growing a single crystal can be removed from the growth tank 1, and generation of unnecessary gas components such as heavy metals due to heating by the heater can be prevented.

また、成長槽1には、光学系40を取り付け、その外部に
水銀ランプ、重水素ランプ、Xeランプ、エキシマーレー
ザ、Arレーザ等の光源41を設け、波長180〜600nmの光を
半導体結晶基板12に照射するようにしてもよい。このよ
うにした場合には表面マイグレーション(泳動)、吸着
・離脱・吸着分子の分解等の表面反応が促進され、半導
体単結晶基板温度を下げることができ、その結果、表面
モルフォロジーや電気的特性等に関し更に高品質の単結
晶をエピタキシャル成長させることができるようにな
る。単分子吸着層が180〜600nmの光のエネルギーで基板
表面を泳動し、より安定な格子位置に取り込まれるので
高品質な結晶が得られる。
An optical system 40 is attached to the growth tank 1, and a light source 41 such as a mercury lamp, a deuterium lamp, an Xe lamp, an excimer laser, and an Ar laser is provided outside the growth system 1, and a semiconductor crystal substrate 12 emits light having a wavelength of 180 to 600 nm. You may make it irradiate. In this case, surface reactions such as surface migration (migration), adsorption / desorption / decomposition of adsorbed molecules can be promoted, and the temperature of the semiconductor single crystal substrate can be lowered. As a result, surface morphology, electrical characteristics, etc. With respect to the above, it becomes possible to epitaxially grow a high quality single crystal. The monomolecular adsorption layer migrates on the surface of the substrate with the energy of light of 180 to 600 nm and is taken into a more stable lattice position, so that a high quality crystal can be obtained.

ところで、以上述べてきた実施例においては、超高真空
装置等はイオンポンプ等周知なものを使用することがで
きる。また、半導体単結晶基板を出し入れするための補
助真空槽、結晶引出し装置等を付加することは容易にで
き、量産性の優れたものにできることは言う迄もない。
また、単結晶成長に用いるガスは主にGaAsについて説明
をしてきたがInP、AlP、InGaAs、GaP等他のIII−V族化
合物に適用できることは勿論である。更に、単結晶基板
はGaAsに限らず他の化合物半導体単結晶基板に成長させ
るヘテロエピタキシャル成長等でも良い。
By the way, in the embodiment described above, a well-known one such as an ion pump can be used as the ultra-high vacuum device. Further, it goes without saying that it is possible to easily add an auxiliary vacuum chamber for loading and unloading the semiconductor single crystal substrate, a crystal pulling-out device, etc., and it is possible to achieve excellent mass productivity.
Although GaAs has been mainly described as the gas used for single crystal growth, it is needless to say that it can be applied to other III-V group compounds such as InP, AlP, InGaAs, and GaP. Further, the single crystal substrate is not limited to GaAs but may be heteroepitaxial growth or the like in which another compound semiconductor single crystal substrate is grown.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、ノズルを用いて単結晶基
板表面のみに原料ガスを導入しているので、余分なとこ
ろにまわり込んだ残渣ガスや成長槽壁面に吸着し、再脱
離するガスの影響も少なく表面交換反応が容易に実現で
きる。本発明によればキャリアガス等の不活性ガスを用
いていないので、不活性ガスが基板表面に吸着し、原料
ガスの表面吸着を阻害することもなく、100%の被覆率
で原料ガスが吸着できる。また本発明によれば、ガス導
入1サイクルに付き1分子層ずつ自己停止機能を持って
エピタキシャル成長できるため、ガス導入サイクルを数
えるだけで、何ら特別な膜厚モニターを用いたり、精密
なガス導入量制御機構等を用いたりしなくても単分子層
単位で分子層数を数えることのできる精度を有した半導
体単結晶薄膜のエピタキシャル成長が実現できる。また
III−V族化合物半導体の場合のようにIII族元素の蒸気
圧が極端に低い場合でも、化学量論的組成を満たすこと
が容易で半導体単結晶基板上に良質な単結晶を形成させ
ることができる。本発明によればTMG、TEGのような表面
吸着時に立体障害を起こすような大きい分子サイズの原
料ガスを用いても表面反応の結果分子層で表面を100%
覆うことが可能な導入圧力および基板温度を用いている
ので、従来技術のMOCVDで用いられていた原料ガスがす
べて本発明に適用できるという利点がある。また、不純
物の添加を一層ずつ行なうことができるので、非常に急
峻な不純物密度分布を得ることができる等の利点を有し
ている。特に、GaAs等のIII−V族化合物半導体薄膜の
極限精度の膜厚制御が可能なので非常に高速なトランジ
スタ、集積回路、ダイオード発光素子等の製作に対して
優れた作用効果を発揮する。本発明によればガス導入1
サイクルに付き1分子層もしくは2分子層ずつエピタキ
シャル成長するので、ALE法に比して短時間でかつ高精
度・高再現性で所望の膜厚を得ることができる。本発明
によれば、MBE法やMBE法を基礎としたALE法のようにソ
ース源が成長槽の内部に設置されていないので、残渣ガ
スやソース源からの余分な放出ガスの問題もなく、また
操作も容易である。本発明によれば光照射により表面泳
動等の表面反応が促進されているので、より低温で高品
質の単結晶が得られる。
As described above, according to the present invention, since the raw material gas is introduced only to the surface of the single crystal substrate by using the nozzle, it is adsorbed to the residual gas and the growth tank wall that have spilled over to the extra place, and is desorbed again. Surface exchange reaction can be easily realized with little influence of gas. According to the present invention, since an inert gas such as a carrier gas is not used, the inert gas is adsorbed on the substrate surface and does not inhibit the surface adsorption of the raw material gas, and the raw material gas is adsorbed at a coverage rate of 100%. it can. Further, according to the present invention, since it is possible to epitaxially grow one molecular layer per one gas introduction cycle with a self-stop function, it is possible to use a special film thickness monitor or a precise gas introduction amount only by counting gas introduction cycles. Epitaxial growth of a semiconductor single crystal thin film having a precision capable of counting the number of molecular layers in a single molecular layer unit can be realized without using a control mechanism or the like. Also
Even when the vapor pressure of the group III element is extremely low as in the case of the III-V group compound semiconductor, it is easy to satisfy the stoichiometric composition, and a good quality single crystal can be formed on the semiconductor single crystal substrate. it can. According to the present invention, even if a raw material gas having a large molecular size that causes steric hindrance during surface adsorption such as TMG and TEG is used, the result of the surface reaction is 100% of the surface with the molecular layer.
Since the introduction pressure and the substrate temperature that can be covered are used, there is an advantage that all the source gases used in the MOCVD of the prior art can be applied to the present invention. Further, since the impurities can be added one by one, there is an advantage that a very steep impurity density distribution can be obtained. In particular, since it is possible to control the film thickness of a III-V compound semiconductor thin film such as GaAs with an extremely high accuracy, it is possible to exert an excellent action and effect on the manufacture of very high speed transistors, integrated circuits, diode light emitting elements and the like. Gas introduction according to the invention 1
Since one molecular layer or two molecular layers are epitaxially grown per cycle, a desired film thickness can be obtained in a shorter time and with higher accuracy and reproducibility than the ALE method. According to the present invention, unlike the ALE method based on the MBE method and MBE method, since the source source is not installed inside the growth tank, there is no problem of residual gas or extra emission gas from the source source, It is also easy to operate. According to the present invention, surface reactions such as surface migration are promoted by light irradiation, so that a high-quality single crystal can be obtained at a lower temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る結晶成長装置の構成
図、第2図(a)は第1図における1サイクル当りのTM
G導入量と成長膜厚との関係を示すグラフ図、第2図
(b)は第1図における成長槽膜厚とバルブ開閉数との
関係を示すグラフ図、第3図、第4図はそれぞれ本発明
の他の実施例に係る結晶成長装置の構成図、第5図は第
4図の装置を用いて超格子構造を形成する場合の説明図
で、同図(a)は超格子構造説明図、同図(b)はガス
導入シーケンス図、第6図、第7図はそれぞれ本発明の
更に別の実施例に係る結晶成長装置の構成図である。 1……成長槽、2……ゲートバルブ、3……排気装置、
4,5,14,15,20,23,24……ノズル、6,7,16,17,21,25,26…
…バルブ、8,9,18,19,22,27,28……ガス状化合物、10…
…ヒーター、11……熱電対、12……半導体単結晶基板、
13……圧力計
FIG. 1 is a block diagram of a crystal growth apparatus according to an embodiment of the present invention, and FIG. 2 (a) is a TM per cycle in FIG.
FIG. 2 (b) is a graph showing the relationship between the amount of G introduced and the growth film thickness, FIG. 2 (b) is a graph showing the relationship between the growth tank film thickness and the valve opening / closing number in FIG. 1, FIG. 3 and FIG. FIG. 5 is a configuration diagram of a crystal growth apparatus according to another embodiment of the present invention, FIG. 5 is an explanatory view of forming a superlattice structure using the apparatus of FIG. 4, and FIG. Explanatory drawing, the same figure (b) is a gas introduction sequence diagram, and FIG. 6, FIG. 7 are the block diagrams of the crystal growth apparatus which concerns on another Example of this invention, respectively. 1 ... Growth tank, 2 ... Gate valve, 3 ... Exhaust device,
4,5,14,15,20,23,24 …… Nozzle, 6,7,16,17,21,25,26…
… Valves, 8,9,18,19,22,27,28 …… Gaseous compounds, 10…
… Heater, 11 …… Thermocouple, 12 …… Semiconductor single crystal substrate,
13 ... pressure gauge

───────────────────────────────────────────────────── フロントページの続き (71)出願人 999999999 鈴木 壮兵衛 宮城県仙台市霊屋下1番3号 (72)発明者 西澤 潤一 宮城県仙台市米ヶ袋1丁目6番16号 (72)発明者 阿部 仁志 宮城県仙台市緑ヶ丘1−22―11 (72)発明者 鈴木 壮兵衛 宮城県仙台市霊屋下1番3号 (56)参考文献 特開 昭58−98917(JP,A) 特開 昭55−130896(JP,A) 「日経エレクトロニクス」,1981年11月 9日号,P.86−88 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 999999999 Suzuki Sohei 1-3 No. 3 Reijiya, Sendai City, Miyagi Prefecture (72) Inventor Junichi Nishizawa 1-16-16 Yonegabukuro, Sendai City, Miyagi Prefecture (72) Inventor Hitoshi Abe 1-22-11 Midorigaoka, Sendai City, Miyagi Prefecture (72) Inventor Sohei Suzuki No. 1-3 Reijiya, Sendai City, Miyagi Prefecture (56) Reference JP-A-58-98917 (JP, A) JP-A-55- 130896 (JP, A) "Nikkei Electronics", November 9, 1981, P. 86-88

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】III族元素を含むガス状化合物分子のみを
成長槽内の圧力が10-1〜10-7パスカルになる範囲で0.5
〜10秒間半導体単結晶基板上に前記成長槽外部より挿入
して先端を該半導体結晶基板上に向けた第1のノズルを
介して導入し、排気後、V族元素を含むガス状化合物分
子のみを前記成長槽内の圧力が10-1〜10-7パスカルにな
る範囲で2〜200秒間前記半導体単結晶基板上に前記成
長槽外部より挿入して先端を前記半導体単結晶基板上に
向けた第2のノズルを介して導入する一連の操作を前記
半導体単結晶基板を300〜600℃に加熱して繰り返すこと
により、化合物半導体の単結晶薄膜を前記一連の操作一
サイクルに付き単分子槽の厚み単位で成長させ、これを
繰り返すことにより所望の分子層数の化合物半導体の単
結晶薄膜を成長させることを特徴とする化合物半導体単
結晶薄膜の成長法。
1. Gaseous compound molecules containing a group III element alone are used at a pressure within the growth tank of 10 -1 to 10 -7 Pascal to 0.5.
For about 10 seconds, the compound is inserted into the semiconductor single crystal substrate from the outside of the growth tank, the tip is introduced through the first nozzle facing the semiconductor crystal substrate, and after evacuation, only the gaseous compound molecule containing the group V element The pressure in the growth tank is within a range of 10 -1 to 10 -7 Pascal for 2 to 200 seconds and is inserted from the outside of the growth tank onto the semiconductor single crystal substrate, and the tip is directed onto the semiconductor single crystal substrate. By repeating a series of operations introduced through the second nozzle by heating the semiconductor single crystal substrate to 300 to 600 ° C., a single crystal thin film of a compound semiconductor is formed in a single molecule tank for one cycle of the series of operations. A method for growing a compound semiconductor single crystal thin film, which comprises growing a single crystal thin film of a compound semiconductor having a desired number of molecular layers by repeating the growth in units of thickness and repeating the growth.
【請求項2】特許請求の範囲第1項記載において、前記
半導体結晶基板に180〜600nmの光を照射することを特徴
とする化合物半導体単結晶薄膜の成長法。
2. A method for growing a compound semiconductor single crystal thin film according to claim 1, wherein the semiconductor crystal substrate is irradiated with light having a wavelength of 180 to 600 nm.
【請求項3】特許請求の範囲第1項記載において、前記
半導体単結晶基板上には少なくとも2種類の化合物半導
体の単結晶薄膜を連続的に成長させる化合物半導体単結
晶薄膜の成長法。
3. The method for growing a compound semiconductor single crystal thin film according to claim 1, wherein a single crystal thin film of at least two kinds of compound semiconductors is continuously grown on the semiconductor single crystal substrate.
【請求項4】特許請求の範囲第3項記載において、少な
くとも2種類以上の化合物半導体の一つがGaAsであり、
他がGa1-xAlxAsである化合物半導体単結晶薄膜成長法。
4. The compound semiconductor according to claim 3, wherein at least one of the two or more kinds of compound semiconductors is GaAs,
The other is Ga 1-x Al x As compound semiconductor single crystal thin film growth method.
【請求項5】特許請求の範囲第1項記載において、前記
ガス状化合物分子の少なくとも一方と同時または別個に
前記化合物半導体の不純物元素となる元素を含むガス状
分子を第3のノズルを介し導入することにより、厚さ方
向に所望の不純物濃度分布を有する化合物半導体の単結
晶薄膜を単分子層の単位で連続的に成長させる化合物半
導体単結晶薄膜の成長法。
5. The gas molecule according to claim 1, wherein a gas molecule containing an element to be an impurity element of the compound semiconductor is introduced through a third nozzle simultaneously or separately with at least one of the gas compound molecules. By doing so, a method for growing a compound semiconductor single crystal thin film, in which a single crystal thin film of a compound semiconductor having a desired impurity concentration distribution in the thickness direction is continuously grown in units of single molecular layers.
【請求項6】特許請求の範囲第1項記載において、所定
の繰り返しサイクル毎に少なくとも1回、前記ガス状化
合物分子の少なくとも一方と同時に、不純物元素を含む
ガス状分子を導入することにより、不純物元素を含む分
子層と不純物元素を含まない分子層とを周期的に連続的
に形成する化合物半導体単結晶薄膜の成長法。
6. The impurity according to claim 1, wherein a gaseous molecule containing an impurity element is introduced at least once in a predetermined repeating cycle simultaneously with at least one of the gaseous compound molecules. A method for growing a compound semiconductor single crystal thin film, wherein a molecular layer containing an element and a molecular layer containing no impurity element are continuously formed periodically.
【請求項7】特許請求の範囲第6項記載において、少な
くとも2種類以上の化合物半導体の不純物元素を含むガ
ス状分子を導入する化合物半導体単結晶薄膜の成長法。
7. A method for growing a compound semiconductor single crystal thin film according to claim 6, wherein gaseous molecules containing at least two kinds of compound semiconductor impurity elements are introduced.
【請求項8】特許請求の範囲第6項記載において、少な
くとも2種類以上の化合物半導体の不純物元素を混合し
た化合物半導体の成分元素を含む前記ガス状化合物分子
を個別にそれぞれ異なったサイクルもしくは同じサイク
ルで異なる時間導入することにより異なった分子層に異
なった不純物元素を含ませる化合物半導体単結晶薄膜の
成長法。
8. The gas compound molecule according to claim 6, wherein the gaseous compound molecules containing the constituent elements of the compound semiconductor in which at least two or more kinds of compound semiconductor impurity elements are mixed are individually different cycles or the same cycle. A method for growing a compound semiconductor single crystal thin film in which different molecular layers contain different impurity elements by introducing it for different times.
【請求項9】特許請求の範囲第1項記載において、前記
化合物半導体がGaAsである化合物半導体単結晶薄膜の成
長法。
9. The method for growing a compound semiconductor single crystal thin film according to claim 1, wherein the compound semiconductor is GaAs.
【請求項10】特許請求の範囲第9項において、Ga元素
を含むガス状化合物分子としてTMG,TEG,DEGaCl,GaBr3,G
aI3のうちのいずれかを用い、As元素を含むガス状化合
物分子としてTMAs,AsCl3,AsBr3,AsH3のうちいずれかを
用いることを特徴とする化合物半導体単結晶薄膜の成長
法。
10. A claims 9 wherein, TMG as a gaseous compound molecules containing Ga element, TEG, DEGaCl, GaBr 3, G
A method for growing a compound semiconductor single crystal thin film, characterized in that any one of aI 3 is used and any one of TMAs, AsCl 3 , AsBr 3 , and AsH 3 is used as a gaseous compound molecule containing an As element.
【請求項11】特許請求の範囲第1項において前記化合
物半導体がAlを含むIII−V族化合物半導体結晶薄膜で
あり、Alを含むガス状化合物分子にTMAl,TEAl,DMACl、A
lCl3,AlBr3,AlI3のうちいずれかを用い、前記化合物半
導体のAl以外の成分を含む前記ガス状化合物分子と同時
にまたは別個に前記成長槽に所定の圧力で所定の時間導
入し排気することによって少なくとも1分子層を成長さ
せ、更に以上のサイクルを繰り返すことにより所望の分
子層数の単結晶薄膜を単分子層の単位で成長させること
を特徴とする化合物半導体単結晶薄膜の成長法。
11. The compound semiconductor according to claim 1, wherein the compound semiconductor is a III-V group compound semiconductor crystal thin film containing Al, and TMAl, TEAl, DMACl, A is added to a gaseous compound molecule containing Al.
Using any one of lCl 3 , AlBr 3 and AlI 3 , the gaseous compound molecule containing a component other than Al of the compound semiconductor is introduced into the growth tank at a predetermined pressure for a predetermined time and exhausted simultaneously or separately. A method for growing a compound semiconductor single crystal thin film, characterized in that at least one molecular layer is grown thereby, and a single crystal thin film having a desired number of molecular layers is grown in units of a single molecular layer by repeating the above cycle.
【請求項12】特許請求の範囲第10項あるいは第11項記
載において、前記化合物半導体のp型不純物元素を含む
ガス状分子としてDMZn,DEZn,DECd,DMHg,DEHg,B2H6のう
ちいずれかを、またn型不純物元素を含むガス状分子と
してSiH4,GeH4,SnH4,PbH4,ZnSe,ZnTe,H2S,HzSe,H2Teの
いずれかを前記化合物半導体の成分元素を含む前記ガス
状化合物分子の少なくとも一方と同時または別個に導入
することにより、厚さ方向に所望の不純物濃度分布を有
する前記化合物半導体の単結晶薄膜を単分子層の単位で
成長させる化合物半導体単結晶薄膜の成長法。
12. The method according to claim 10 or 11, wherein any one of DMZn, DEZn, DECd, DMHg, DEHg and B 2 H 6 is used as the gaseous molecule containing the p-type impurity element of the compound semiconductor. Or SiH 4 , GeH 4 , SnH 4 , PbH 4 , ZnSe, ZnTe, H 2 S, H z Se, H 2 Te as a gaseous molecule containing an n-type impurity element as a component of the compound semiconductor. A compound semiconductor in which a single crystal thin film of the compound semiconductor having a desired impurity concentration distribution in the thickness direction is grown in a unit of a monolayer by being introduced simultaneously or separately with at least one of the gaseous compound molecules containing an element. Single crystal thin film growth method.
【請求項13】特許請求の範囲第10項、第11項、第12項
のいずれかの記載において、所定の繰り返しサイクル毎
に少なくとも1回、前記化合物半導体の成分元素を含む
前記ガス状化合物分子の少なくとも一方と同時に、前記
化合物半導体の不純物元素を含むガス状分子を導入する
ことにより、不純物元素を含む分子層と不純物元素を含
まない分子層とを周期的に形成する化合物半導体単結晶
薄膜の成長法。
13. The gaseous compound molecule according to any one of claims 10, 11 and 12, wherein the gaseous compound molecule contains a component element of the compound semiconductor at least once in each predetermined repeating cycle. Of at least one of the compound semiconductor single crystal thin film periodically forming a molecular layer containing an impurity element and a molecular layer containing no impurity element by introducing a gaseous molecule containing an impurity element of the compound semiconductor. Growth method.
【請求項14】特許請求の範囲第12項あるいは第13項記
載において、少なくとも2種類以上の化合物半導体の不
純物元素を混合した化合物半導体の成分元素を含む前記
ガス状化合物分子を個別にそれぞれ異なったサイクルも
しくは同じサイクルで異なる時間導入することにより異
なった分子層に異なった不純物元素を含ませる化合物半
導体単結晶薄膜の成長法。
14. The gas compound molecule according to claim 12 or 13, wherein the gaseous compound molecules containing a constituent element of a compound semiconductor in which at least two kinds of impurity elements of a compound semiconductor are mixed are different from each other. A method of growing a compound semiconductor single crystal thin film in which different impurity layers are contained in different molecular layers by introducing the same cycle or different times in the same cycle.
JP59153977A 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film Expired - Lifetime JPH0782991B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59153977A JPH0782991B2 (en) 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film
GB08518834A GB2162862B (en) 1984-07-26 1985-07-25 A method of growing a thin film single crystalline semiconductor
FR8511517A FR2578680B1 (en) 1984-07-26 1985-07-26 PROCESS FOR FORMING A MONOCRYSTALLINE THIN FILM OF SEMICONDUCTOR COMPOUND
DE19853526824 DE3526824A1 (en) 1984-07-26 1985-07-26 METHOD FOR FORMING A MONOCRISTALLINE THIN FILM FROM A CONNECTION SEMICONDUCTOR
US08/077,119 US5693139A (en) 1984-07-26 1993-06-15 Growth of doped semiconductor monolayers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153977A JPH0782991B2 (en) 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4322680A Division JP2567331B2 (en) 1992-11-06 1992-11-06 Method of growing compound semiconductor single crystal thin film

Publications (2)

Publication Number Publication Date
JPS6134927A JPS6134927A (en) 1986-02-19
JPH0782991B2 true JPH0782991B2 (en) 1995-09-06

Family

ID=15574213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153977A Expired - Lifetime JPH0782991B2 (en) 1984-07-26 1984-07-26 Method of growing compound semiconductor single crystal thin film

Country Status (1)

Country Link
JP (1) JPH0782991B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652630B2 (en) * 1986-04-02 1997-09-10 理化学研究所 Crystal growth method
JPH0777200B2 (en) * 1986-10-02 1995-08-16 日本電信電話株式会社 Method for manufacturing compound semiconductor device
JP2620578B2 (en) * 1986-10-29 1997-06-18 新技術事業団 Method for producing compound semiconductor epitaxial layer
JP2620546B2 (en) * 1986-10-29 1997-06-18 新技術事業団 Method for producing compound semiconductor epitaxy layer
JP2587623B2 (en) * 1986-11-22 1997-03-05 新技術事業団 Epitaxial crystal growth method for compound semiconductor
JP2587624B2 (en) * 1986-11-28 1997-03-05 新技術事業団 Epitaxial crystal growth method for compound semiconductor
JPH0462834A (en) * 1990-06-25 1992-02-27 Nec Corp Manufacture of thin semiconductor film
JPH0817161B2 (en) * 1992-11-06 1996-02-21 新技術事業団 Method for manufacturing superlattice semiconductor device
JP2567331B2 (en) * 1992-11-06 1996-12-25 新技術事業団 Method of growing compound semiconductor single crystal thin film
JP3468866B2 (en) * 1994-09-16 2003-11-17 富士通株式会社 Semiconductor device using three-dimensional quantum confinement
JP3045115B2 (en) * 1997-09-30 2000-05-29 日本電気株式会社 Method for manufacturing optical semiconductor device
CN107902695A (en) * 2017-11-21 2018-04-13 红河砷业有限责任公司 A kind of method for efficiently preparing high-purity aluminium arsenide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI57975C (en) * 1979-02-28 1980-11-10 Lohja Ab Oy OVER ANCHORING VIDEO UPDATE FOR AVAILABILITY
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「日経エレクトロニクス」,1981年11月9日号,P.86−88

Also Published As

Publication number Publication date
JPS6134927A (en) 1986-02-19

Similar Documents

Publication Publication Date Title
US5693139A (en) Growth of doped semiconductor monolayers
US5294286A (en) Process for forming a thin film of silicon
US4767494A (en) Preparation process of compound semiconductor
US5250148A (en) Process for growing GaAs monocrystal film
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
JPH0766909B2 (en) Element semiconductor single crystal thin film growth method
JPH0766910B2 (en) Semiconductor single crystal growth equipment
JPH0782991B2 (en) Method of growing compound semiconductor single crystal thin film
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
US6334901B1 (en) Apparatus for forming semiconductor crystal
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
Irvine UV photo-assisted crystal growth of II-VI compounds
JP2567331B2 (en) Method of growing compound semiconductor single crystal thin film
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JP2577544B2 (en) Method for manufacturing semiconductor device
KR960004591B1 (en) Doped crystal growing method
JP2577543B2 (en) Single crystal thin film growth equipment
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPS61260622A (en) Growth for gaas single crystal thin film
JP3182584B2 (en) Compound thin film forming method
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JP3109149B2 (en) Compound semiconductor crystal growth method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term