JPH04170397A - Production of gallium nitride thin film - Google Patents

Production of gallium nitride thin film

Info

Publication number
JPH04170397A
JPH04170397A JP30039490A JP30039490A JPH04170397A JP H04170397 A JPH04170397 A JP H04170397A JP 30039490 A JP30039490 A JP 30039490A JP 30039490 A JP30039490 A JP 30039490A JP H04170397 A JPH04170397 A JP H04170397A
Authority
JP
Japan
Prior art keywords
thin film
substrate
raw material
gallium nitride
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30039490A
Other languages
Japanese (ja)
Inventor
Akira Ueno
明 上野
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30039490A priority Critical patent/JPH04170397A/en
Publication of JPH04170397A publication Critical patent/JPH04170397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve quality by intermittently supplying raw materials contg. Ga on the surface of a substrate. CONSTITUTION:The inside of a vacuum vessel 1 is evacuated to a high vacuum and after the substrate 3 consisting of GaAs, etc., is heated to 500 to 750 deg.C, an Hg lamp 9 is lighted. Hg lamp light 10a contg. light of <=200nm wavelength is collimated by a collimator 11. These collimated beams are made into two beams 10b 10c of the same intensity by a half mirror 12. The substrate 3 is irradiated with the beam 10b. The intensity of the beam 10b is adjusted to the intensity suitable for the growth of the thin film and the cracking of NH3. A raw material contg. Ga, such as trimethyl Ga, is then supplied from a gas cylinder 6a, a raw material contg. N, such as NH3, from a gas cylinder 6b and gaseous H2 from a gas cylinder 6c at respective prescribed volumetric ratios to form the GaN thin film. Only the raw material contg. the Ga is supplied to the substrate surface and the surface is irradiated with the light. The formation of the GaN thin film and the packing of the N into the holes of the N in the thin film are alternately repeated to obtain the GaN thin film. One kind among Se, Si, Ge, and Sn are supplied to the substrate surface during the production of the GaN thin film to obtain the n type conductive thin film. The p type conductive GaN thin film is obtd. by using one kind among Cd, Be, Mg, Zn, and Li.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は青色発光ダイオードや青色半導体レーザへの応
用が期待される窒化ガリウム薄膜の製造方法に関し、特
に低温でも高品質の窒化ガリウム薄膜が製造できる方法
に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing a gallium nitride thin film, which is expected to be applied to blue light emitting diodes and blue semiconductor lasers, and particularly relates to a method for producing a gallium nitride thin film of high quality even at low temperatures. It's about how you can do it.

[従来の技術] 窒化ガリウム(G a N)は、約3.4eVの広エネ
ルギーギャップをもつ直接遷移型の化合物半導体で青色
から紫外領域にわたる発光素子として有望な材料である
。従来、GaN薄膜の製造法として有機金属気相成長(
MOCVD)法が知られている。これは、トリメチルガ
リウム(Ga (CH))とアンモニア(NH3)を加
熱した基板(通常、サファイア(α−A1203))表
面上で分解1反応させ、GaN薄膜を製造しようとする
ものである。
[Prior Art] Gallium nitride (G a N) is a direct transition type compound semiconductor with a wide energy gap of about 3.4 eV, and is a promising material as a light-emitting element ranging from blue to ultraviolet. Conventionally, metal organic vapor phase epitaxy (
MOCVD) method is known. This is an attempt to manufacture a GaN thin film by subjecting trimethyl gallium (Ga (CH)) and ammonia (NH3) to a decomposition reaction on the surface of a heated substrate (usually sapphire (α-A1203)).

[発明が解決しようとする課題] しかし、NH3の分解には高温を要するため。[Problem to be solved by the invention] However, decomposition of NH3 requires high temperatures.

上述の方法では基板温度を900℃〜1100℃にする
必要があり、膜中に多数の窒素の空孔が生じ、製造した
GaN薄膜はそのままでn型伝導性を示す薄膜となって
しまい、高低抗のGaN薄膜が得られにくいと言う欠点
があった。このため。
In the above method, it is necessary to raise the substrate temperature to 900°C to 1100°C, which creates a large number of nitrogen vacancies in the film, and the produced GaN thin film becomes a thin film that exhibits n-type conductivity as it is. There was a drawback that it was difficult to obtain a thin GaN film. For this reason.

不純物ドープによる伝導性の制御、すなわちp型伝導の
GaN薄膜の製造が困難であった。
It has been difficult to control conductivity by doping impurities, that is, to manufacture p-type conductive GaN thin films.

本発明は窒素の空孔が少なく、高低抗で、不純物ドープ
により容易にn型伝導性ないしはn型伝導性の薄膜にし
得る伝導性制御の可能なGa’N薄膜の製造方法を提供
することを目的とするものである。
The present invention provides a method for producing a Ga'N thin film with few nitrogen vacancies, high and low resistance, and which can be easily made into an n-type conductive or n-type conductive thin film by doping with impurities and whose conductivity can be controlled. This is the purpose.

[課題を解決するための手段] 本発明では前記課題を解決するために9次の構成を有す
るものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention has a nine-order configuration.

(1)基板表面にガリウムを含む原料及び窒素を含む原
料を供給しつつ前記基板表面に光を照射して窒化ガリウ
ム薄膜を製造する方法において、前記ガリウムを含む原
料の供給を間欠的に行なうことを特徴とする窒化ガリウ
ム薄膜の製造方法。
(1) In the method of manufacturing a gallium nitride thin film by irradiating light onto the substrate surface while supplying a raw material containing gallium and a raw material containing nitrogen to the substrate surface, the raw material containing gallium is supplied intermittently. A method for producing a gallium nitride thin film characterized by:

(2)窒素を含む原料がアンモニアであり、光が波長2
00nm以下の光を含む光である前記1項に記載の窒化
ガリウム薄膜の製造方法。
(2) The raw material containing nitrogen is ammonia, and the light has a wavelength of 2
2. The method for producing a gallium nitride thin film according to item 1 above, wherein the light includes light of 00 nm or less.

(3)窒化ガリウム薄膜製造中の基板の温度が500℃
〜750℃である前記1項に記載の窒化ガリウム薄膜の
製造方法。
(3) The temperature of the substrate during gallium nitride thin film production is 500℃
The method for producing a gallium nitride thin film according to item 1 above, wherein the temperature is 750°C.

(4)窒化ガリウム薄膜製造中に更にSe、Si。(4) Se and Si are further added during the production of gallium nitride thin film.

GeまたはSnを含む原料から選ばれた少なくとも1種
を基板表面に供給する前記1〜3項のいずれかに記載の
窒化ガリウム薄膜の製造方法。
4. The method for producing a gallium nitride thin film according to any one of items 1 to 3 above, wherein at least one selected from raw materials containing Ge or Sn is supplied to the substrate surface.

(5)窒化ガリウム薄膜製造中に更にCd、Be。(5) Cd and Be are added during the production of gallium nitride thin film.

Mg、ZnまたはLiを含む原料から選ばれた少なくと
も1種を基板表面に供給する前記1〜3項のいずれかに
記載の窒化ガリウム薄膜の製造方法。
4. The method for producing a gallium nitride thin film according to any one of items 1 to 3 above, wherein at least one material selected from raw materials containing Mg, Zn, or Li is supplied to the substrate surface.

[作 用コ 本発明では、GaN薄膜を製造する場合、まず。[Production use] In the present invention, when manufacturing a GaN thin film, first.

加熱された基板表面にガリウム原料及び窒素原料を同時
に供給しつつ光を基板表面に照射してGaN薄膜を形成
する。このままでは、GaN薄膜中まだ多数の窒素の空
孔が存在する。このため、その後、ガリウム原料の供給
をいったん打ち切り。
A GaN thin film is formed by irradiating light onto the heated substrate surface while simultaneously supplying a gallium raw material and a nitrogen raw material to the heated substrate surface. If this continues, many nitrogen vacancies will still exist in the GaN thin film. As a result, the supply of gallium raw materials was temporarily discontinued.

窒素原料のみが基板表面に供給される状態を作り。Create a condition where only nitrogen raw material is supplied to the substrate surface.

この間に基板表面に照射された光により窒素原料が分解
され、生成した窒素原子がGaN膜中の窒素の空孔を補
う。このように光を照射しながらのGaN薄膜の形成と
GaN薄膜中の窒素の空孔への窒素の充填とを交互に繰
り返すことによって従来のMOCVD法よりは低温で窒
素の空孔の少い高抵抗のGaN薄膜が製造でき、不純物
ドープにより伝導性の制御が可能となる。
During this time, the nitrogen raw material is decomposed by the light irradiated onto the substrate surface, and the generated nitrogen atoms fill the nitrogen vacancies in the GaN film. In this way, by alternately repeating the formation of a GaN thin film while irradiating light and the filling of nitrogen vacancies in the GaN thin film, it is possible to create a high temperature film with fewer nitrogen vacancies at a lower temperature than the conventional MOCVD method. A resistive GaN thin film can be manufactured, and its conductivity can be controlled by doping with impurities.

また、第2の発明においては、アンモニアを用い200
nm以下の波長の光を含む光を照射するので、より窒素
原料の分解、反応が容易になる。
In addition, in the second invention, ammonia is used to
Since light including light having a wavelength of nm or less is irradiated, the decomposition and reaction of the nitrogen raw material becomes easier.

第3の発明においては、従来法よりはるかに低温で製造
するにもかかわらず、得られる薄膜の結晶性は低下せず
、また、低温で製造できるので、窒素の空孔がより少な
くできる。
In the third invention, although the thin film is manufactured at a much lower temperature than the conventional method, the crystallinity of the obtained thin film does not deteriorate, and since the thin film can be manufactured at a low temperature, the number of nitrogen vacancies can be further reduced.

第4の発明においてはSe、  Sj、 Ge、  S
nなどを含む原料を用いてドープされるので、容易にn
型導電性の薄膜を得ることができる。
In the fourth invention, Se, Sj, Ge, S
Since it is doped using a raw material containing n, etc., it is easy to dope with n.
A type conductive thin film can be obtained.

また、第5の発明においてはCd、  Be、 Mg。Further, in the fifth invention, Cd, Be, Mg.

Zn、Liなどを含む原料を用いてドープされるので、
容易にp型導電性の薄膜を得ることができる。
Since it is doped using raw materials containing Zn, Li, etc.
A p-type conductive thin film can be easily obtained.

[実施例コ 以下2本発明を実施例により詳細に説明する。[Example code] The present invention will be explained in detail below using two examples.

第1図は本発明の製造方法の一実施例で用いられる光C
VD装置の構造を示す概略図である。同図において、1
は真空容器、2は真空ポンプ、3は基板、4は基板ホル
ダ、5はヒータ、6aはGa(CH3)3ガスボンベ、
6bはNH3ガスボンベ、5cはH2ガスガスボンベ、
  7a、  b、  cはマスフローコントローラ、
8a、b、cはノズル、9はHgランプ、10a、b、
cはHgランプ光、11はコリメータ、12はハーフミ
ラ−913はパワーメータ、14は合成石英などからな
る窓である。
Figure 1 shows the light C used in one embodiment of the manufacturing method of the present invention.
1 is a schematic diagram showing the structure of a VD device. In the same figure, 1
is a vacuum container, 2 is a vacuum pump, 3 is a substrate, 4 is a substrate holder, 5 is a heater, 6a is a Ga(CH3)3 gas cylinder,
6b is an NH3 gas cylinder, 5c is an H2 gas cylinder,
7a, b, c are mass flow controllers,
8a, b, c are nozzles, 9 is an Hg lamp, 10a, b,
11 is a collimator, 12 is a half mirror, 913 is a power meter, and 14 is a window made of synthetic quartz or the like.

実際の薄膜成長は次のような手順で行なう。まず表面を
清浄にした基板3を基板ホルダ4に装着する。本実施例
では基板3はα−A1203を用いた。次に真空容器1
を真空ポンプ2により例えば10’Torr以下程度の
高真空まで排気する。
Actual thin film growth is performed in the following steps. First, the substrate 3 whose surface has been cleaned is mounted on the substrate holder 4. In this example, α-A1203 was used as the substrate 3. Next, vacuum container 1
is evacuated by the vacuum pump 2 to a high vacuum of, for example, 10' Torr or less.

次に基板3をヒータ5により結晶成長に適切な温度にす
る。本実施例では700℃とした。次にHgランプ9を
点灯する。Hgランプ光10aはコリメータ11により
平行光にされ、その後、ハーフミラ−12により同強度
の二つの光10b、10cとなり、光10bは窓14を
通って基板3に照射される。光10cの強度をパワーメ
ータ13により測定することにより基板3に照射される
光10bの強度を知ることができる。光10bの強度を
Hgランプ9を調節することにより、薄膜成長及びNH
3の分解に必要な強度にする。本実施例では30 mW
/ c m 2とした。次にGa (CH3)3ガスボ
ンベ6a及びN H3ガスボンベ6bから供給される夫
々の原料ガスの流量をマスフローコントローラ7a、b
により適当な流量比になるよう調節し、ノズル8a、b
により基板3表面に供給する。また、同時にノズル8C
よりH2ガスボンベ6Cから供給されるH2ガスを真空
容器1内に導入する。本実施例における流量は、 Ga
(CH3)3ガスがQ、45secm、NH3ガスが2
70secm、H,、ガスが50secmとした。用い
たHgランプ光の分光分布図は第2図に示すとおりであ
り、用いた原料であるGa(CH3)3ガス及びNH3
ガス分子の気相中での吸収帯は20.0nm以下にある
ので、光は原料の分解9反応を促進して低温においても
結晶性の良好なGaN薄膜が形成できる。しかしながら
、この状態においても、まだ、多数の窒素の空孔が存在
するので、Ga (CH3)3ガスの供給をいったん止
め、NH3ガスのみ(この場合、H2ガスは流しても流
さな(でもよい)が基板3表面に供給される状態にして
、基板3表面に照射されるHgランプ光10bによるN
H3ガス分子の分解により生成された窒素原子でGaN
膜中の窒素の空孔を補う操作を行なう。このように光を
照射しながらのGaN薄膜の形成とGaN薄膜中の窒素
の空孔への窒素の充填とを交互に繰り返すことによって
GaN薄膜を製造した。なお、Ga (CHa )3ガ
スの供給時間と非供給時間の比率は本実施例では1:1
0とした。
Next, the substrate 3 is brought to a temperature suitable for crystal growth using the heater 5. In this example, the temperature was set at 700°C. Next, the Hg lamp 9 is turned on. The Hg lamp light 10a is made into parallel light by a collimator 11, and then turned into two lights 10b and 10c of the same intensity by a half mirror 12. The light 10b passes through a window 14 and is irradiated onto the substrate 3. By measuring the intensity of the light 10c with the power meter 13, the intensity of the light 10b irradiated onto the substrate 3 can be determined. By adjusting the intensity of the light 10b using the Hg lamp 9, thin film growth and NH
Make the strength necessary for disassembly in step 3. In this example, 30 mW
/cm2. Next, the flow rates of the raw material gases supplied from the Ga (CH3)3 gas cylinder 6a and the N H3 gas cylinder 6b are controlled by the mass flow controllers 7a, b.
The nozzles 8a and b are adjusted to have an appropriate flow rate ratio.
is supplied to the surface of the substrate 3. Also, at the same time, nozzle 8C
Then, H2 gas supplied from the H2 gas cylinder 6C is introduced into the vacuum container 1. The flow rate in this example is Ga
(CH3)3 gas is Q, 45sec, NH3 gas is 2
70 sec, H, gas was 50 sec. The spectral distribution diagram of the Hg lamp light used is as shown in Figure 2.
Since the absorption band of gas molecules in the gas phase is below 20.0 nm, light promotes the decomposition 9 reaction of the raw material, and a GaN thin film with good crystallinity can be formed even at low temperatures. However, even in this state, there are still many nitrogen vacancies, so the supply of Ga (CH3)3 gas is temporarily stopped, and only NH3 gas (in this case, H2 gas may or may not be supplied). ) is supplied to the surface of the substrate 3, and N by the Hg lamp light 10b irradiated onto the surface of the substrate 3.
GaN is formed by nitrogen atoms generated by decomposition of H3 gas molecules.
An operation is performed to compensate for nitrogen vacancies in the membrane. A GaN thin film was manufactured by alternately repeating the formation of a GaN thin film while irradiating light and the filling of nitrogen vacancies in the GaN thin film with nitrogen. Note that the ratio of the supply time and non-supply time of Ga (CHa)3 gas is 1:1 in this example.
It was set to 0.

以上のような方法で製造したGaN薄膜は、従来のMO
CVD法に比べて数百℃以上も低い700℃という基板
温度で製造したにもかかわらず窒素の空孔などの格子欠
陥のない極めて良質な単結晶膜となり、不純物ドープに
よる伝導゛性制御の可能な高抵抗の電気的性質を示し、
また優れた光学的性質を示した。また、GaN薄膜製造
中にCd。
The GaN thin film produced by the method described above is different from the conventional MO
Even though it was manufactured at a substrate temperature of 700°C, which is several hundred degrees lower than that of the CVD method, the resulting single-crystal film is of extremely high quality without lattice defects such as nitrogen vacancies, and conductivity can be controlled by doping with impurities. It exhibits high resistance electrical properties,
It also showed excellent optical properties. In addition, Cd was added during the production of GaN thin films.

Be、Mg、Zn、Liの内の1種類を含む原料気体分
子を基板表面に供給することによってp型伝導のGaN
薄膜(キャリヤ密度1018以上)が製造できることを
、また、GaN薄膜製造中にSe、Si、Ge、Snの
内の1種類を含む原料気体分子を基板表面に供給するこ
とによってn型伝導のGaN薄膜(キャリヤ密度101
8以上)が製造できることを確認した。
GaN with p-type conduction is produced by supplying raw material gas molecules containing one of Be, Mg, Zn, and Li to the substrate surface.
It was also shown that a thin film (carrier density of 1018 or more) can be produced by supplying raw material gas molecules containing one of Se, Si, Ge, and Sn to the substrate surface during GaN thin film production. (Carrier density 101
8 or higher) was confirmed to be able to be manufactured.

なお上述の実施例では、H2ガスを用いたが。Note that in the above embodiment, H2 gas was used.

必ずしも必要ではない。しかし、H2ガスは反応の促進
とGaN薄膜へ中の炭素原子の混入を防ぐ効果があり、
用いると好ましい。
Not necessarily necessary. However, H2 gas has the effect of accelerating the reaction and preventing carbon atoms from entering the GaN thin film.
It is preferable to use it.

また2本発明で用いられるガリウムを含む原料としては
Ga (CH3)3のはかGa (C2N5 )3など
が用いられ、上述の例に限られるものではない。
Further, the raw material containing gallium used in the present invention includes Ga (CH3)3, Ga (C2N5)3, etc., and is not limited to the above-mentioned examples.

本発明で用いられる窒素を含む原料としては、NH3の
ほか、N 2 Hi、やN2など各種の窒素含有化合物
を用いることができる。
As the nitrogen-containing raw material used in the present invention, in addition to NH3, various nitrogen-containing compounds such as N2Hi and N2 can be used.

また、基板としてα−A1203のほか、例えばGaA
s、Si、SiC等他の基板を用いてもよい。
In addition to α-A1203 as a substrate, for example, GaA
Other substrates such as S, Si, and SiC may also be used.

さらに、光源はHgランプに限らず、波長が原料ガス分
子の分解に適当なものであれば同様の効果が得られる。
Furthermore, the light source is not limited to an Hg lamp, and the same effect can be obtained as long as the wavelength is suitable for decomposing raw gas molecules.

例えば、その他の光源の具体例としては、重水素ランプ
、エキシマレーザ(A r F)などが挙げられる。
For example, specific examples of other light sources include a deuterium lamp, an excimer laser (A r F), and the like.

また、薄膜製造中の基板温度は、500℃以上750°
C以下が好適である。この範囲内では、窒素の充填時間
が極めて長くなるような欠点がなく、GaNのN原子の
空孔が少なく良好な結晶性の膜が得られる。
In addition, the substrate temperature during thin film production is 500°C or higher and 750°C.
C or less is preferable. Within this range, there is no drawback that the nitrogen filling time becomes extremely long, and a film with good crystallinity with few vacancies of N atoms in GaN can be obtained.

なお前記GaN薄膜形成中の圧力は、760T。Note that the pressure during the formation of the GaN thin film was 760T.

「r〜l Torr程度が好適である。"A level of approximately r to l Torr is suitable.

また、照射する光の強度については光源の種類や原料化
合物の種類などによって変わるが、−船釣には10mW
/Cm 〜IW/Cm2、好ましくは100mW/cm
 〜500mW/cm2の範囲が用いられる。
In addition, the intensity of the irradiated light varies depending on the type of light source and the type of raw material compound, but - for boat fishing it is 10mW.
/Cm ~ IW/Cm2, preferably 100mW/cm
A range of ~500 mW/cm2 is used.

原料ガスの流量の割合については、体積基準でガリウム
を含む原料、1に対し、窒素を含む原料が500〜50
00好ましくは800〜1200程度であり、更にH2
ガスを用いる場合には、ガリウムを含む原料に1に対し
て10〜120の割合で用いるのが一般的である。
Regarding the ratio of the flow rate of the raw material gas, on a volume basis, the raw material containing gallium is 1 to 500 to 50 for the raw material containing nitrogen.
00 is preferably about 800 to 1200, and H2
When using a gas, it is generally used in a ratio of 10 to 120 parts per part of the raw material containing gallium.

ガリウムを含む原料の供給時間と非供給時間の割合は、
各種の条件によって異なってくるが、例えば、1:5〜
1:100、好ましくは1:8〜1:20である。
The ratio of supply time and non-supply time of raw materials containing gallium is
Although it varies depending on various conditions, for example, 1:5 ~
The ratio is 1:100, preferably 1:8 to 1:20.

Se、Si、Ge、Snなどを含む原料を用いてドープ
を行なう場合のこれらの原料としては、例えば5eHR
(但し、Rは炭素数1〜4 2−n のアルキル基、nは0〜2の整数を表す。)で示される
化合物や、5iHR(但し、Rは炭  4−n 素数1〜4のアルキル基、nは0〜4の整数を表す。)
で示される化合物、GeHR(但し、  4−n Rは炭素数1〜4のアルキル基、nはO〜4の整数を表
す。)で示される化合物、Sn HIIR4−n(但し
、Rは炭素数1〜4のアルキル基、nは0〜4の整数を
表す。)で示される化合物など、水素化物やアルキル化
物などが挙げられる。
When doping is performed using raw materials containing Se, Si, Ge, Sn, etc., examples of these raw materials include 5eHR.
(However, R is an alkyl group having 1 to 4 2-n carbon atoms, and n is an integer of 0 to 2.) group, n represents an integer from 0 to 4.)
Compounds represented by GeHR (4-n R is an alkyl group having 1 to 4 carbon atoms, n is an integer of 0 to 4), Sn HIIR4-n (R is a carbon number 1-4 alkyl group, n represents an integer of 0-4), hydrides, alkylated products, and the like.

Cd、Be、Mg、Zn、Liなどを含む原料を用いて
ドープを行なう場合のこれらの原料としては、例えばC
dHR(但し、Rは炭素数  2−n 1〜4のアルキル基、nはO〜2の整数を表す。)で示
される化合物や、BeHR(但し、Rn  2−[+ は炭素数1〜4のアルキル基、nは0〜2の整数を表す
。)で示される化合物、MgH,R,Il(ただし、R
は炭素数1〜4のアルキル基、nは0〜2の整数を表す
。)で示される化合物、ZnHR(但し、Rは炭素数1
〜4のアルキル  2−n 基、nは0〜2の整数を表す。)で示される化合物、L
iH,LiR(但し、Rは炭素数1〜4のアルキル基を
表す。)で示される化合物など、水素化物やアルキル化
物などが挙げられる。
When doping is performed using raw materials containing Cd, Be, Mg, Zn, Li, etc., examples of these raw materials include Cd, Be, Mg, Zn, Li, etc.
Compounds represented by dHR (where R is an alkyl group having 2-n 1 to 4 carbon atoms, and n is an integer of 0-2) and BeHR (where Rn 2-[+ is an alkyl group having 1 to 4 carbon atoms); alkyl group, n represents an integer of 0 to 2), MgH, R, Il (however, R
represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 2. ), ZnHR (where R is 1 carbon number)
-4 alkyl 2-n groups, n represents an integer of 0-2. ), a compound represented by L
Examples include compounds represented by iH and LiR (wherein R represents an alkyl group having 1 to 4 carbon atoms), hydrides, alkylated products, and the like.

これらのドープ量は、用いる原料の種類や、目的とする
電導度によって異なるが、目安としては、キャリヤ密度
で10〜1019程度である。
The amount of doping varies depending on the type of raw material used and the desired conductivity, but as a guideline, the carrier density is about 10 to 1019.

[発明の効果] 以上述べてきたように9本発明によれば、窒素原子の空
孔のない高抵抗のGaN薄膜を製造することができる。
[Effects of the Invention] As described above, according to the present invention, a high-resistance GaN thin film without nitrogen atom vacancies can be manufactured.

また、本発明は不純物ドープによる伝導性制御が可能な
GaN薄膜の製造方法を提供でき、青色発光ダイオード
や青色半導体レーザ製造に極めて有用である。
Further, the present invention can provide a method for manufacturing a GaN thin film whose conductivity can be controlled by doping with impurities, and is extremely useful for manufacturing blue light emitting diodes and blue semiconductor lasers.

更に、第2の発明においては、アンモニアを用い200
nm以下の波長の光を含む光を照射するので、より窒素
原料の分解、反応が容易になる。
Furthermore, in the second invention, using ammonia, 200
Since light including light having a wavelength of nm or less is irradiated, the decomposition and reaction of the nitrogen raw material becomes easier.

第3の発明においては、従来法よりはるかに低温で製造
するにもかかわらず、得られる薄膜の結晶性は低下せず
、また、低温で製造できるので、窒素の空孔がより少な
くできる。
In the third invention, although the thin film is manufactured at a much lower temperature than the conventional method, the crystallinity of the obtained thin film does not deteriorate, and since the thin film can be manufactured at a low temperature, the number of nitrogen vacancies can be further reduced.

第4の発明においてはSe、Si、Ge、Snなどを含
む原料を用いてドープされるので、容易にn型導電性の
薄膜を得ることができる。
In the fourth invention, since the material is doped using a raw material containing Se, Si, Ge, Sn, etc., an n-type conductive thin film can be easily obtained.

また、第5の発明においてはCd、Be、Mg。Moreover, in the fifth invention, Cd, Be, Mg.

Zn、Liなどを含む原料を用いてドープされるので、
容易にp型導電性の薄膜を得ることができる。
Since it is doped using raw materials containing Zn, Li, etc.
A p-type conductive thin film can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で用いられる光CvD装置の
構造を示す概略図、第2図は本発明の一実施例で用いら
れるHgランプの分光分布図である。 1・・・真空容器、  2・・・真空ポンプ、  3・
・・基板。 4・・・基板ホルダ、  5・・・ヒータ、   6a
・・・Ga(CH)  ガスボンベ、   6b・・・
NH3ガスボンベ、   5c=・H2ガスボンベ、7
a、b、c・・・マスフローコントローラ、8a、b、
c・・・ノズル、   9・Hgランプ、   10a
、b、c−・Hgランプ光、  11・・・コリメータ
、  12・・・ハーフミラ−113・・・パワーメー
タ、  14・・・窓。 14・・・思
FIG. 1 is a schematic diagram showing the structure of an optical CvD device used in an embodiment of the present invention, and FIG. 2 is a spectral distribution diagram of an Hg lamp used in an embodiment of the present invention. 1... Vacuum container, 2... Vacuum pump, 3.
··substrate. 4... Substrate holder, 5... Heater, 6a
...Ga(CH) gas cylinder, 6b...
NH3 gas cylinder, 5c=・H2 gas cylinder, 7
a, b, c...mass flow controller, 8a, b,
c... Nozzle, 9.Hg lamp, 10a
, b, c--Hg lamp light, 11... Collimator, 12... Half mirror 113... Power meter, 14... Window. 14... Thoughts

Claims (5)

【特許請求の範囲】[Claims] (1)基板表面にガリウムを含む原料及び窒素を含む原
料を供給しつつ前記基板表面に光を照射して窒化ガリウ
ム薄膜を製造する方法において、前記ガリウムを含む原
料の供給を間欠的に行なうことを特徴とする窒化ガリウ
ム薄膜の製造方法。
(1) In the method of manufacturing a gallium nitride thin film by irradiating light onto the substrate surface while supplying a raw material containing gallium and a raw material containing nitrogen to the substrate surface, the raw material containing gallium is supplied intermittently. A method for producing a gallium nitride thin film characterized by:
(2)窒素を含む原料がアンモニアであり、光が波長2
00nm以下の光を含む光である請求項1に記載の窒化
ガリウム薄膜の製造方法。
(2) The raw material containing nitrogen is ammonia, and the light has a wavelength of 2
2. The method for producing a gallium nitride thin film according to claim 1, wherein the light includes light of 00 nm or less.
(3)窒化ガリウム薄膜製造中の基板の温度が500℃
〜750℃である請求項1に記載の窒化ガリウム薄膜の
製造方法。
(3) The temperature of the substrate during gallium nitride thin film production is 500℃
The method for producing a gallium nitride thin film according to claim 1, wherein the temperature is 750°C.
(4)窒化ガリウム薄膜製造中に更にSe、Si、Ge
またはSnを含む原料から選ばれた少なくとも1種を基
板表面に供給する請求項1〜3のいずれかに記載の窒化
ガリウム薄膜の製造方法。
(4) Se, Si, and Ge are added during the production of gallium nitride thin film.
The method for manufacturing a gallium nitride thin film according to any one of claims 1 to 3, wherein at least one selected from raw materials containing Sn or Sn is supplied to the surface of the substrate.
(5)窒化ガリウム薄膜製造中に更にCd、Be、Mg
、ZnまたはLiを含む原料から選ばれた少なくとも1
種を基板表面に供給する請求項1〜3のいずれかに記載
の窒化ガリウム薄膜の製造方法。
(5) During the production of gallium nitride thin film, Cd, Be, Mg
, at least one selected from raw materials containing Zn or Li
The method for producing a gallium nitride thin film according to any one of claims 1 to 3, wherein seeds are supplied to the surface of the substrate.
JP30039490A 1990-11-05 1990-11-05 Production of gallium nitride thin film Pending JPH04170397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30039490A JPH04170397A (en) 1990-11-05 1990-11-05 Production of gallium nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30039490A JPH04170397A (en) 1990-11-05 1990-11-05 Production of gallium nitride thin film

Publications (1)

Publication Number Publication Date
JPH04170397A true JPH04170397A (en) 1992-06-18

Family

ID=17884264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30039490A Pending JPH04170397A (en) 1990-11-05 1990-11-05 Production of gallium nitride thin film

Country Status (1)

Country Link
JP (1) JPH04170397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772187A1 (en) * 1997-12-09 1999-06-11 Thomson Csf Producing III-N semiconductor nitride by epitaxial growth in presence of photolytically decomposed ammonia
US7456445B2 (en) 2004-05-24 2008-11-25 Showa Denko K.K. Group III nitride semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772187A1 (en) * 1997-12-09 1999-06-11 Thomson Csf Producing III-N semiconductor nitride by epitaxial growth in presence of photolytically decomposed ammonia
US7456445B2 (en) 2004-05-24 2008-11-25 Showa Denko K.K. Group III nitride semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
US5300185A (en) Method of manufacturing III-V group compound semiconductor
Ozeki Atomic layer epitaxy of III–V compounds using metalorganic and hydride sources
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
US6334901B1 (en) Apparatus for forming semiconductor crystal
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH04170397A (en) Production of gallium nitride thin film
JPH04170398A (en) Production of gallium nitride thin film
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPH04187597A (en) Production of thin film of gallium nitride
JP2736655B2 (en) Compound semiconductor crystal growth method
JPH0535719B2 (en)
JPH0744154B2 (en) Light irradiation type low temperature MOCVD method and apparatus
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPS63319296A (en) Production of semiconductor
JPH01215014A (en) Growth of semiconductor crystal
JPH04254499A (en) Production of compound semiconductor crystal
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH0442891A (en) Production of semiconductor thin film