JPS63188938A - Method for vapor growth of gallium nitride compound semiconductor - Google Patents

Method for vapor growth of gallium nitride compound semiconductor

Info

Publication number
JPS63188938A
JPS63188938A JP62021126A JP2112687A JPS63188938A JP S63188938 A JPS63188938 A JP S63188938A JP 62021126 A JP62021126 A JP 62021126A JP 2112687 A JP2112687 A JP 2112687A JP S63188938 A JPS63188938 A JP S63188938A
Authority
JP
Japan
Prior art keywords
sapphire substrate
reaction
gas pipe
thin film
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62021126A
Other languages
Japanese (ja)
Other versions
JPH0573252B2 (en
Inventor
Katsuhide Manabe
勝英 真部
Nobuo Okazaki
伸夫 岡崎
Isamu Akasaki
勇 赤崎
Kazumasa Hiramatsu
和政 平松
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyoda Gosei Co Ltd
Original Assignee
Nagoya University NUC
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Toyoda Gosei Co Ltd filed Critical Nagoya University NUC
Priority to JP62021126A priority Critical patent/JPS63188938A/en
Priority to DE19883850582 priority patent/DE3850582T2/en
Priority to EP91113265A priority patent/EP0460710B1/en
Priority to EP88101267A priority patent/EP0277597B1/en
Priority to DE19883852402 priority patent/DE3852402T2/en
Publication of JPS63188938A publication Critical patent/JPS63188938A/en
Priority to US07/811,899 priority patent/US5218216A/en
Publication of JPH0573252B2 publication Critical patent/JPH0573252B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To realize the vapor growth of a gallium nitride compound semiconductor thin film by a method wherein a buffer layer composed of aluminum nitride is grown on an a-plane of a sapphire substrate. CONSTITUTION:A single-crystal sapphire substrate 24, which has been cleaned by an organic cleaning method and a heat treatment and whose main plane is an a-plane, is mounted on a susceptor; the sapphire substrate 24 is vapor- etched while H2 is flowing into a reaction chamber through a first reaction-gas pipe 25 and a second reaction-gas pipe 26. Then, after the temperature has been lowered, the substrate is heat-treated while H2, NH3 and trimethylaluminum are fed through the first reaction-gas pipe 25. During this heat treatment, a buffer layer 30 composed of AlN is formed. Because a gallium nitride compound semiconductor thin film is formed vapor growth on this buffer layer, the crystallinity is improved and it becomes easy to supply the sapphire substrate.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はサファイア基板上に成長する窒化ガリウム系化
合物半導体の結晶性を改善した気相成長方法に関する。
The present invention relates to a vapor phase growth method that improves the crystallinity of a gallium nitride compound semiconductor grown on a sapphire substrate.

【従来技術】[Prior art]

従来、有機金属化合物気相成長法(以下[MOVPEJ
と記す)を用いて、窒化ガリウム系化合物半導体(AA
XGa+−x N ;x=oを含む)薄膜をサファイア
基板上に気相成長させることが研究されている。 この方法は、第7図に示すような気相成長装置を用いて
実施される。その気相成長装置において、石英反応管7
にはマニホールド6が接続されており、そのマニホール
ド6には、N Hsの供給系統AとHa、N2の供給系
統Bと、有機金属化合物ガスのトリメチルガリウム(以
下rTMGJと記す)の供給系統Cと、有機金属化合物
ガスのトリメチルアルミニウム(以下rTMAJと記す
)の供給系統りと、ドーピング元素を含む反応ガス(以
下単に「ドーパントガス」という)であるジエチル亜鉛
(以下rDEZJと記す)の供給系統Eとが接続されて
いる。また、石英反応管7の中には、高周波加熱°用グ
ラファイトサセプタ9が配設されており、そのサセプタ
9上にはサファイア基板10が載置されており、そのサ
ファイア基板10は、高周波コイル8により加熱される
。各反応ガス及びキャリアガスは各供給系統からマニホ
−ルド6で混合され、その混合ガスが石英反応管7に導
かれサファイア基板10に吹き付けられることによりサ
ファイア基板10上にAlxGa、−8Nの薄膜が成長
する。 そして、各有機金属化合物ガスの混合比を変化させるこ
とにより、組成比を変化させたり、亜鉛をドープして絶
縁性(I型)のAj!xGa+−xNの薄膜を形成する
ことができる。
Conventionally, organometallic compound vapor phase epitaxy (hereinafter [MOVPEJ
gallium nitride-based compound semiconductor (AA
Research has been conducted on vapor phase growth of thin films (XGa+-xN; including x=o) on sapphire substrates. This method is carried out using a vapor phase growth apparatus as shown in FIG. In the vapor phase growth apparatus, a quartz reaction tube 7
A manifold 6 is connected to the manifold 6, and the manifold 6 has a supply system A for NHs, a supply system B for Ha and N2, and a supply system C for trimethyl gallium (hereinafter referred to as rTMGJ), an organometallic compound gas. , a supply system for trimethylaluminum (hereinafter referred to as rTMAJ), which is an organometallic compound gas, and a supply system E for diethylzinc (hereinafter, referred to as rDEZJ), which is a reactive gas containing a doping element (hereinafter simply referred to as "dopant gas"). is connected. Furthermore, a graphite susceptor 9 for high-frequency heating is disposed inside the quartz reaction tube 7, and a sapphire substrate 10 is placed on the susceptor 9. heated by. Reaction gases and carrier gases are mixed in a manifold 6 from each supply system, and the mixed gas is led to a quartz reaction tube 7 and sprayed onto a sapphire substrate 10, thereby forming a thin film of AlxGa, -8N on the sapphire substrate 10. grow up. Then, by changing the mixing ratio of each organometallic compound gas, the composition ratio can be changed, or by doping with zinc, an insulating (type I) Aj! A thin film of xGa+-xN can be formed.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

従来の成長方法はサファイア基板の結晶成長に関与する
主面は0面が良いとされていた。ところが、サファイア
基板のa面にAINのバッファ層を形成し、そのバッフ
ァ層の上にA lx G a I−XNの薄膜を成長さ
せると、Al1xGa、−xNの結晶性が良くなること
が判明した。 したがって基板の供給のし易いa面を主面とするサファ
イア・を基板にした青色の発光ダイオードを製造するこ
とができる。
In conventional growth methods, it has been considered that the 0 main plane of the sapphire substrate, which is involved in crystal growth, is best. However, it was found that by forming a buffer layer of AIN on the a-plane of a sapphire substrate and growing a thin film of AlxGaI-XN on the buffer layer, the crystallinity of Al1xGa, -xN improved. . Therefore, it is possible to manufacture a blue light emitting diode using a sapphire substrate having an a-plane main surface, which is easy to supply.

【問題点を解決するための手段】[Means to solve the problem]

上記問題点を解決するための発明の構成は、有機金屑化
合物ガスを用いた窒化ガリウム系化合物半導体薄膜の気
相成長方法において、サファイア基板のa面に窒化アル
ミニウムからなるバッファ層を成長させ、そのバッファ
層の上に窒化ガリウム系化合物半導体(Alx Ga+
−x N ;X=Oを含む)薄膜を気相成長させたこと
である。
The structure of the invention for solving the above problems is to grow a buffer layer made of aluminum nitride on the a-plane of a sapphire substrate in a vapor phase growth method of a gallium nitride-based compound semiconductor thin film using organic gold scrap compound gas, A gallium nitride-based compound semiconductor (Alx Ga+
-x N ; containing X=O) was grown in a vapor phase.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。第
1図は気相成長装置の構成を示した断面図である。石英
反応管21で囲われた反応室20では、サセプタ22が
操作棒23に支持されており、そのサセプタ22は操作
棒23によって位置の調整が行われる。また、サセプタ
22の主面22aには、主面24aの結晶面をa面とす
るサファイア基板24が配設されている。尚、8は高周
波コイルであり、サファイア基板24を加熱するための
ものである。 一方、反応室20のガスの流入側には、第1反応ガス管
25と第2反応ガス管26とが配設されている。第1反
応ガス管25は第2反応ガス管26と同心状に、第2反
応ガス管26の内部に配設されている。その第1反応ガ
ス管25は第17二ホールド27に接続され、第2反応
ガス管26は第2マニホールド28に接続されている。 そして、第1マニホールド27にはNH3の供給系統H
とキャリアガスの供給系統IとTMGの供給系統JとT
MAの供給系統にとが接続され、第2マニホールド28
にはキャリアガスの供給系統IとDEZの供給系統りと
が接続されている。 このような装置構成により、第1反応ガス管25の開口
部25aから、NH,とTMGとTMAとH3との混合
ガスが反応室20に流出し、第2反応ガス管26の開口
部26aから、DEZとH2との混合ガスが反応室20
に流出する。 N型のAlxGa+−xN薄膜を形成する場合には、第
1反応ガス管25だけから混合ガスを流出させれば良く
、■型のAj!xGa+−xN薄膜を形成する場合には
、第1反応ガス管25と第2反応ガス管26とからそれ
ぞれの混合ガスを流出させれば良い。■型のAl1xG
at−xN薄膜を形成する場合には、ドーパントガスで
あるDEZは第1反応ガス管25から流出する反応ガス
とサファイア基板24の近辺の反応室20aで初めて混
合されることになる。そして、DEZはサファイア基板
24に吹き付けられ熱分解し、ドーパント元素は成長す
るAj2XGa+−xNにドーピングされて、■型のA
l1xGa+−xNが得られる。この場合、第1反応ガ
ス管25と第2反応ガス管26とで分離して、反応ガス
とドーパントガスがサファイア基板24の付近の反応室
25aまで導かれるので、従来装置で生じるガスの導入
管におけるDEZとTMG又はTMAとの反応が抑制さ
れるため、良好なドーピングが行われる。 尚、第1反応管25及び第2反応管26の開口部25a
及び26aとサファイア基板24との間隔は10〜60
口に設定されるのが望ましい。また、サセプタ22の反
応ガスの流れる方向Xに対する傾斜角θは、45度に構
成されている。このように傾斜させることにより、サセ
プタ22をガス流に対し直角に構成した場合に比べて良
好な結晶が得られた。 次にこの気相成長装置を用いて、次の如くa面を主面と
するサファイア基板にGaN薄膜を形成した。 まず、有機洗浄及び熱処理により洗浄したa面を主面と
する単結晶のサファイア基板24をサセプタ22に装着
する。次に、H2を0.31/分で、第1反応ガス管2
5及び第2反応ガス管26から反応室20に流しながら
温度1100℃でサファイア基板24を気相エツチング
した。次に温度を950℃まで低下させて、第1反応ガ
ス管25からH7を31/分、NHりを21/分、TM
Aを7×10−6モル/分で供給して1分間熱処理した
。この熱処理によりAINのバッファ層がサファイア基
板24の上に約0.1−の厚さに形成された。1分経過
した時にTMAの供給を停止して、サファイア基板24
の温度を970℃に保持し、第1反応ガス管25からH
3を2.51/分、NH,をり、5117分、TMGを
1.7X 10−’モル/分で60分間供給し、膜厚的
7A1mのGaN薄膜を形成した。 このようにして、形成されたGaN薄膜の表面の顕微鏡
写真を第2図に示し、フォトルミネッセンスによる発光
特性を第4図に示す。 一方、C面((0001) )を主面とするサファイア
基板にも、上記方法と同様にして、GaN薄膜を成長さ
せた。その薄膜表面の顕微鏡写真を第3図に示し、フォ
トルミネッセンスによる発光特性を第5図に示す。 顕微鏡写真から分るように、C面のサファイア基板に成
長させたGaN薄膜に対し、a面のサファイア基板に成
長させたGaN薄膜は、六角形の結晶が大きく且つ多く
存在し、結晶性の良い六方晶が得られている。一方、フ
ォトルミネッセンス強度による特性において、半値幅は
C面に成長させたものが4.6meVであり、a面に成
長させたものが6meVとなっている。このことから、
フォトルミネッセンス強度でみる限り、結晶性はC面に
成長させたものとほぼ同等である。 次にサファイア基板のa面にGaNを結晶成長させて発
光ダイオードを作成する方法について説明する。 まず、有機洗浄及び熱処理により洗浄したa面を主面と
する単結晶のサファイア基板24をサセプタ22に装着
する。次に、H2を0.317分で、第1反応ガス管2
5及び第2反応ガス管26から反応室20に流しながら
温度1100tl”でサファイア基板24を気相エッチ
、ングした。次に温度を950℃まで低下させて、第1
反応ガス管25からH2を31/分、NH,を21/分
、TMAを7x 10−6モル/分で供給して1分間熱
処理した。この熱処理によりAINのバッファ層30が
約0.1umの厚さに形成された。1分経過した時にT
MAの供給を停止して、サファイア基板24の温度を9
70℃に保持し、第1反応ガス管25からH2を2.5
1/分、NH,を1.517分、TMGを1.7X10
−5モル/分で60分間供給し、膜厚的7μsのN型の
GaNから成る8層31を形成した。次に、そのサファ
イア基板24を反応室20か′ら取り出し、ホトエツチ
ング及びスパッタリング等により膜厚1000人程度O
3in、膜32をパターン形成した。 その後、このサファイア基板24を洗浄後、再度、サセ
プタ22に装着し気相エツチングした後、サファイア基
板24の温度を970℃に保持し、第1反応ガス管25
からは、H2を2.51/分、NH・3を1.517分
、TMGを1.7x 10−’% ル/分供給し、第2
反応ガス管26からは、DEZを5×10−6モル/分
で5分間供給して、■型のGaNから成る1層33を膜
厚1.Owlに形成した。この時、GaNの露出してい
る部分は、単結晶の1型のGaNが成長し1層33が得
られるが、S i O,WX32の上部には多結晶のG
aNから成る導電層34が形成される。その後、反応室
20からサファイア基板24を取り出し、1層33と導
電層34の上にアルミニウム電極35.36を蒸着し、
サファイア基板24を所定の大きさにカッティングして
発光ダイオードを形成した。この場合、電極35は1層
33の電極となり、電極36は導電層34と極めて薄い
SiO,II!X32を介して8層31の電極となる。 そして、1層33を8層31に対し正電位とすることに
より、接合面から光が発光する。 また、AAXGa+−xN系の発光ダイオードを形成す
るには、N層31とlff133とを形成する場合に、
第1反応管25からT M△を所定割合で流せば良い。 例えば、第1反応ガス管25からサファイア基板24の
温度を1105℃に保持し、H3を3J/分、NH,を
21/分、TMAを7.2×10−’モル/分、TMG
を1.7X 10−’モル/分で供給し、第2反応ガス
管26からDEZを5X10−’モル/分で供給するこ
とより、X=0.3のI型のAAxGa+−xN系半導
体薄膜が得られる。
The present invention will be described below based on specific examples. FIG. 1 is a sectional view showing the configuration of a vapor phase growth apparatus. In a reaction chamber 20 surrounded by a quartz reaction tube 21, a susceptor 22 is supported by an operating rod 23, and the position of the susceptor 22 is adjusted by the operating rod 23. Further, on the main surface 22a of the susceptor 22, a sapphire substrate 24 whose main surface 24a has an a-plane crystal plane is disposed. Note that 8 is a high frequency coil for heating the sapphire substrate 24. On the other hand, on the gas inflow side of the reaction chamber 20, a first reaction gas pipe 25 and a second reaction gas pipe 26 are arranged. The first reaction gas pipe 25 is arranged concentrically with the second reaction gas pipe 26 inside the second reaction gas pipe 26 . The first reaction gas pipe 25 is connected to the seventeenth second hold 27, and the second reaction gas pipe 26 is connected to the second manifold 28. The first manifold 27 has an NH3 supply system H.
and carrier gas supply system I and TMG supply system J and T
is connected to the MA supply system, and the second manifold 28
A carrier gas supply system I and a DEZ supply system are connected to. With this device configuration, a mixed gas of NH, TMG, TMA, and H3 flows into the reaction chamber 20 from the opening 25a of the first reaction gas pipe 25, and flows out from the opening 26a of the second reaction gas pipe 26. , a mixed gas of DEZ and H2 enters the reaction chamber 20.
leaks to. When forming an N-type AlxGa+-xN thin film, it is sufficient to flow out the mixed gas only from the first reaction gas pipe 25, and the ■-type Aj! In the case of forming an xGa+-xN thin film, it is sufficient to cause the respective mixed gases to flow out from the first reaction gas pipe 25 and the second reaction gas pipe 26. ■Mold Al1xG
When forming an at-xN thin film, the dopant gas DEZ is first mixed with the reaction gas flowing out from the first reaction gas pipe 25 in the reaction chamber 20a near the sapphire substrate 24. Then, DEZ is sprayed onto the sapphire substrate 24 and thermally decomposed, and the dopant element is doped into the growing Aj2XGa+-xN, forming a ■-type A
l1xGa+-xN is obtained. In this case, the first reaction gas pipe 25 and the second reaction gas pipe 26 separate the reaction gas and the dopant gas, and the reaction gas and dopant gas are guided to the reaction chamber 25a near the sapphire substrate 24. Since the reaction between DEZ and TMG or TMA is suppressed, good doping is achieved. Note that the openings 25a of the first reaction tube 25 and the second reaction tube 26
And the distance between 26a and the sapphire substrate 24 is 10 to 60
Preferably set in the mouth. Further, the inclination angle θ of the susceptor 22 with respect to the flow direction X of the reaction gas is set to 45 degrees. By tilting the susceptor 22 in this manner, better crystals were obtained than when the susceptor 22 was configured perpendicular to the gas flow. Next, using this vapor phase growth apparatus, a GaN thin film was formed on a sapphire substrate having the a-plane as its main surface as follows. First, a single-crystal sapphire substrate 24 having an a-plane main surface that has been cleaned by organic cleaning and heat treatment is attached to the susceptor 22 . Next, H2 was supplied to the first reaction gas pipe 2 at a rate of 0.31/min.
The sapphire substrate 24 was subjected to vapor phase etching at a temperature of 1100° C. while flowing into the reaction chamber 20 from the reaction gas pipes 26 and 26. Next, the temperature was lowered to 950°C, and H7 was fed from the first reaction gas pipe 25 at 31/min, NH gas was fed at 21/min, and TM
A was supplied at a rate of 7×10 −6 mol/min and heat treated for 1 minute. Through this heat treatment, a buffer layer of AIN was formed on the sapphire substrate 24 to a thickness of about 0.1-. When one minute has passed, the supply of TMA is stopped and the sapphire substrate 24 is removed.
The temperature of H is maintained at 970°C, and H is
3 was supplied at a rate of 2.51/min, NH was supplied at a rate of 5117 min, and TMG was supplied at a rate of 1.7×10 −' mol/min for 60 minutes to form a GaN thin film having a film thickness of 7 A1 m. FIG. 2 shows a microscopic photograph of the surface of the GaN thin film thus formed, and FIG. 4 shows the light emission characteristics due to photoluminescence. On the other hand, a GaN thin film was also grown on a sapphire substrate having a C-plane ((0001)) as its main surface in the same manner as above. FIG. 3 shows a microscopic photograph of the surface of the thin film, and FIG. 5 shows the light emission characteristics due to photoluminescence. As can be seen from the micrograph, the GaN thin film grown on the a-plane sapphire substrate has larger and more hexagonal crystals, and has better crystallinity than the GaN thin film grown on the c-plane sapphire substrate. A hexagonal crystal is obtained. On the other hand, regarding the characteristics based on photoluminescence intensity, the half-width is 4.6 meV when grown on the C-plane, and 6 meV when grown on the a-plane. From this,
As far as the photoluminescence intensity is concerned, the crystallinity is almost the same as that grown on the C-plane. Next, a method for producing a light emitting diode by growing GaN crystals on the a-plane of a sapphire substrate will be described. First, a single-crystal sapphire substrate 24 having an a-plane main surface that has been cleaned by organic cleaning and heat treatment is attached to the susceptor 22 . Next, apply H2 for 0.317 minutes to the first reaction gas pipe 2.
The sapphire substrate 24 was vapor-phase etched at a temperature of 1100 tl'' while flowing into the reaction chamber 20 from the 5 and second reaction gas pipes 26.Then, the temperature was lowered to 950°C, and the first
Heat treatment was performed for 1 minute by supplying H2 at 31/min, NH at 21/min, and TMA at 7×10 −6 mol/min from the reaction gas pipe 25. Through this heat treatment, the AIN buffer layer 30 was formed to a thickness of about 0.1 um. T when 1 minute has passed
Stop the supply of MA and lower the temperature of the sapphire substrate 24 to 9.
The temperature is maintained at 70°C, and 2.5 liters of H2 is supplied from the first reaction gas pipe 25.
1/min, NH, 1.517 min, TMG 1.7X10
-5 mol/min for 60 minutes to form eight layers 31 made of N-type GaN with a film thickness of 7 μs. Next, the sapphire substrate 24 is taken out from the reaction chamber 20', and a film thickness of about 1000 wafers is formed by photoetching, sputtering, etc.
A 3-inch film 32 was patterned. Thereafter, after cleaning this sapphire substrate 24, it was mounted on the susceptor 22 again and subjected to gas phase etching, and then the temperature of the sapphire substrate 24 was maintained at 970°C, and the first reaction gas pipe 25
From the
DEZ is supplied from the reaction gas pipe 26 at a rate of 5 x 10-6 mol/min for 5 minutes to form one layer 33 made of ■-type GaN to a thickness of 1. Formed in Owl. At this time, single-crystal type 1 GaN grows on the exposed part of GaN to obtain one layer 33, but polycrystalline G
A conductive layer 34 made of aN is formed. After that, the sapphire substrate 24 is taken out from the reaction chamber 20, and aluminum electrodes 35 and 36 are deposited on the first layer 33 and the conductive layer 34,
A light emitting diode was formed by cutting the sapphire substrate 24 into a predetermined size. In this case, the electrode 35 is an electrode of one layer 33, and the electrode 36 is an extremely thin SiO, II! electrode with the conductive layer 34. It becomes an electrode of 8 layers 31 via X32. Then, by setting the first layer 33 at a positive potential with respect to the eighth layer 31, light is emitted from the bonded surface. Furthermore, in order to form an AAXGa+-xN light emitting diode, when forming the N layer 31 and lff133,
It is sufficient to flow T M Δ from the first reaction tube 25 at a predetermined rate. For example, the temperature of the sapphire substrate 24 from the first reaction gas pipe 25 is maintained at 1105°C, H3 is 3 J/min, NH is 21/min, TMA is 7.2 × 10-' mol/min, TMG is
By supplying DEZ at a rate of 1.7X 10-' mol/min and DEZ at a rate of 5X 10-' mol/min from the second reaction gas pipe 26, a type I AAxGa+-xN semiconductor thin film of X=0.3 is produced. is obtained.

【発明の効果】【Effect of the invention】

本発明はサファイア基板の8面に窒化アルミニウムから
なるバッファ層を成長させ、そのバッファ層の上に窒化
ガリウム系化合物半導体(A j? xGa+−xN;
X=Oを含む)薄膜を気相成長さているので、結晶性が
良くなると共にサファイア基板の供給が容易となる。こ
のため、窒化ガリウム系化合物半導体発光素子の製造が
安価に行われる。
In the present invention, a buffer layer made of aluminum nitride is grown on eight sides of a sapphire substrate, and a gallium nitride-based compound semiconductor (A j? xGa+-xN;
Since the thin film (containing Therefore, the gallium nitride compound semiconductor light emitting device can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する一つの気相成長装置の構
成を示した構成図。第2図は主面の結晶面を8面とする
サファイア基板に成長させたGaN薄膜の表面組織を示
す顕微鏡写真。第3図は主面の結晶面を0面とするサフ
ァイア基板に成長させたGaN薄膜の表面組織を示す顕
微鏡写真。第4図は主面の結晶面を8面とするサファイ
ア基板に成長させたGaNaWffのフォトルミネッセ
ンス強度特性を示した測定図。第5図は主面の結晶面を
0面とするサファイア基板に成長させたGaN簿膜のフ
ォトルミネッセンス強度特性を示した測定図。第6図は
主面の結晶面を0面とするサファイア基板に成長させた
発光ダイオードの構成を示した構成図。第7図は従来の
気相成長装置の構成を示した構成図である。 7−石英反応管 8 ・高周波コイル 9゛サセプタ 
10・°・・サファイア基板 20 反応室 21 石
英反応管 22−サセプタ 23°°制御棒24・・・
サファイア基板 25 第1反応ガス管26−第2反応
ガス管 27−パ第1マニホールド 28−・−°第2
7二ホールド 30・・・バッファ層31−N層 32
・・・SiO2膜 33・・−・1層34−導電居 3
5.36・・電極 H・・・NH,の供給系統 I・・
キャリアガスの供給系統 J−・−TMGの供給系統 
K・・・TMAの供給系統 Lo・・DEZの供給系統 特許出願人  豊田合戊株式会社 同  名古屋大学長 代 理 人  弁理士 藤谷 修 第2図 (a) (b) xloo。 第3図 第5図 波長(nm)
FIG. 1 is a configuration diagram showing the configuration of one vapor phase growth apparatus for implementing the method of the present invention. FIG. 2 is a micrograph showing the surface structure of a GaN thin film grown on a sapphire substrate with eight principal crystal planes. FIG. 3 is a micrograph showing the surface structure of a GaN thin film grown on a sapphire substrate whose principal crystal plane is 0. FIG. 4 is a measurement diagram showing the photoluminescence intensity characteristics of GaNaWff grown on a sapphire substrate with eight main crystal planes. FIG. 5 is a measurement diagram showing the photoluminescence intensity characteristics of a GaN film grown on a sapphire substrate whose principal crystal plane is 0. FIG. 6 is a configuration diagram showing the configuration of a light emitting diode grown on a sapphire substrate whose main crystal plane is 0. FIG. 7 is a block diagram showing the structure of a conventional vapor phase growth apparatus. 7-Quartz reaction tube 8 ・High frequency coil 9゛Susceptor
10... Sapphire substrate 20 Reaction chamber 21 Quartz reaction tube 22-Susceptor 23° Control rod 24...
Sapphire substrate 25 First reaction gas pipe 26-second reaction gas pipe 27-first manifold 28-.-° second
72 hold 30...buffer layer 31-N layer 32
...SiO2 film 33...1 layer 34-conductive layer 3
5.36...Electrode H...NH, supply system I...
Carrier gas supply system J-・-TMG supply system
K...TMA supply system Lo...DEZ supply system Patent applicant Toyota Gosho Co., Ltd. Nagoya University Chief Attorney Osamu Fujitani Figure 2 (a) (b) xloo. Figure 3 Figure 5 Wavelength (nm)

Claims (1)

【特許請求の範囲】[Claims] 有機金属化合物ガスを用いた窒化ガリウム系化合物半導
体薄膜の気相成長方法において、サファイア基板のa面
に窒化アルミニウムからなるバッファ層を成長させ、そ
のバッファ層の上に窒化ガリウム系化合物半導体(Al
_XGa_1_−_XN;X=0を含む)薄膜を気相成
長させることを特徴とする窒化ガリウム系化合物半導体
薄膜の気相成長方法。
In a vapor phase growth method of a gallium nitride compound semiconductor thin film using organometallic compound gas, a buffer layer made of aluminum nitride is grown on the a-plane of a sapphire substrate, and a gallium nitride compound semiconductor (Al
A method for vapor phase growth of a gallium nitride-based compound semiconductor thin film, characterized in that a thin film (_XGa_1_−_XN; including X=0) is grown in a vapor phase.
JP62021126A 1987-01-31 1987-01-31 Method for vapor growth of gallium nitride compound semiconductor Granted JPS63188938A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62021126A JPS63188938A (en) 1987-01-31 1987-01-31 Method for vapor growth of gallium nitride compound semiconductor
DE19883850582 DE3850582T2 (en) 1987-01-31 1988-01-28 Gallium nitride semiconductor luminescence diode and process for its production.
EP91113265A EP0460710B1 (en) 1987-01-31 1988-01-28 Gallium nitride group compound semiconductor and luminous element comprising it and the process of producing the same
EP88101267A EP0277597B1 (en) 1987-01-31 1988-01-28 Gallium nitride group semiconductor light emitting diode and the process of producing the same
DE19883852402 DE3852402T2 (en) 1987-01-31 1988-01-28 Gallium nitride-like semiconductor compound and light emitting device consisting of the same, and method for the production thereof.
US07/811,899 US5218216A (en) 1987-01-31 1991-12-20 Gallium nitride group semiconductor and light emitting diode comprising it and the process of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021126A JPS63188938A (en) 1987-01-31 1987-01-31 Method for vapor growth of gallium nitride compound semiconductor

Publications (2)

Publication Number Publication Date
JPS63188938A true JPS63188938A (en) 1988-08-04
JPH0573252B2 JPH0573252B2 (en) 1993-10-14

Family

ID=12046193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021126A Granted JPS63188938A (en) 1987-01-31 1987-01-31 Method for vapor growth of gallium nitride compound semiconductor

Country Status (1)

Country Link
JP (1) JPS63188938A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006908A (en) * 1989-02-13 1991-04-09 Nippon Telegraph And Telephone Corporation Epitaxial Wurtzite growth structure for semiconductor light-emitting device
JPH03252175A (en) * 1990-02-28 1991-11-11 Toyoda Gosei Co Ltd Manufacture of gallium nitride compound semiconductor
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JP2002094111A (en) * 2001-07-27 2002-03-29 Toyoda Gosei Co Ltd Method for fabricating nitrogen-group iii element compound semiconductor light emitting device
JP2002100807A (en) * 2001-08-06 2002-04-05 Toyoda Gosei Co Ltd Method for manufacturing gallium nitride based compound semiconductor light-emitting element
US6472690B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor
US6607595B1 (en) 1990-02-28 2003-08-19 Toyoda Gosei Co., Ltd. Method for producing a light-emitting semiconductor device
US6734030B2 (en) 2001-03-06 2004-05-11 Sony Corporation Semiconductor light emitting device and method of fabricating semiconductor light emitting device
US6818465B2 (en) 2001-08-22 2004-11-16 Sony Corporation Nitride semiconductor element and production method for nitride semiconductor element
US6828591B2 (en) 2000-12-15 2004-12-07 Sony Corporation Semiconductor light emitting device and fabrication method thereof
US6831300B2 (en) 2001-02-21 2004-12-14 Sony Corporation Semiconductor light emitting device, manufacturing method of a semiconductor light emitting device and connection structure of an electrode layer
US6830946B2 (en) 2001-02-01 2004-12-14 Sony Corporation Device transfer method and panel
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US6870190B2 (en) 2001-03-06 2005-03-22 Sony Corporation Display unit and semiconductor light emitting device
US6924500B2 (en) 2000-07-18 2005-08-02 Sony Corporation Semiconductor light-emitting device and process for producing the same
KR100518353B1 (en) * 2001-03-27 2005-10-12 히다찌 케이블 리미티드 Semiconductor substrate made of group III nitride, and process for manufacture thereof
US7033436B2 (en) 2001-04-12 2006-04-25 Sony Corporation Crystal growth method for nitride semiconductor and formation method for semiconductor device
US7227189B2 (en) 2001-04-19 2007-06-05 Sony Corporation Vapor-phase growth method for a nitride semiconductor and a nitride semiconductor device
US7250320B2 (en) 2003-03-20 2007-07-31 Sony Corporation Semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, image display device, manufacturing method thereof, illuminating device and manufacturing method thereof
US7361220B2 (en) 2003-03-26 2008-04-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride single crystal, device used for the method and group III nitride single crystal obtained by the method
US8242513B2 (en) 2007-05-18 2012-08-14 Sony Corporation Method for growing semiconductor layer, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and electronic device
CN102945906A (en) * 2012-12-06 2013-02-27 上海顿格电子贸易有限公司 LED (light emitting diode) chip with horizontal structure
JP2013187366A (en) * 2012-03-08 2013-09-19 Hitachi Cable Ltd Nitride semiconductor manufacturing method
US8698168B2 (en) 2010-07-08 2014-04-15 Sharp Kabushiki Kaisha Semiconductor device having aluminum nitride layer with void formed therein

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
KR20110134878A (en) 2009-02-13 2011-12-15 덴끼 가가꾸 고교 가부시키가이샤 Composite substrate for led light emitting element, method of production of same, and led light emitting element
CN102484188B (en) 2009-07-31 2015-02-18 电气化学工业株式会社 Led Equipment Purpose Wafer, Method For Manufacturing Same, And Led-equipped Structure Using Led Equipment Purpose Wafer
KR20140072876A (en) 2011-09-13 2014-06-13 덴끼 가가꾸 고교 가부시키가이샤 Clad material for led light-emitting element holding substrate, and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173829A (en) * 1984-02-14 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> Growing method of compound semiconductor thin-film
JPS6191977A (en) * 1984-10-09 1986-05-10 ハネウエル・インコーポレーテッド Solid ultraviolet ray detector and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173829A (en) * 1984-02-14 1985-09-07 Nippon Telegr & Teleph Corp <Ntt> Growing method of compound semiconductor thin-film
JPS6191977A (en) * 1984-10-09 1986-05-10 ハネウエル・インコーポレーテッド Solid ultraviolet ray detector and manufacture thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006908A (en) * 1989-02-13 1991-04-09 Nippon Telegraph And Telephone Corporation Epitaxial Wurtzite growth structure for semiconductor light-emitting device
US6830992B1 (en) 1990-02-28 2004-12-14 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
JPH03252175A (en) * 1990-02-28 1991-11-11 Toyoda Gosei Co Ltd Manufacture of gallium nitride compound semiconductor
US6472690B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Gallium nitride group compound semiconductor
US6472689B1 (en) 1990-02-28 2002-10-29 Toyoda Gosei Co., Ltd. Light emitting device
US6607595B1 (en) 1990-02-28 2003-08-19 Toyoda Gosei Co., Ltd. Method for producing a light-emitting semiconductor device
US6984536B2 (en) 1990-02-28 2006-01-10 Toyoda Gosei Co., Ltd. Method for manufacturing a gallium nitride group compound semiconductor
US5296395A (en) * 1991-05-17 1994-03-22 Apa Optics, Inc. Method of making a high electron mobility transistor
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US6924500B2 (en) 2000-07-18 2005-08-02 Sony Corporation Semiconductor light-emitting device and process for producing the same
US7221001B2 (en) 2000-07-18 2007-05-22 Sony Corporation Semiconductor light-emitting device and process for producing the same
US6828591B2 (en) 2000-12-15 2004-12-07 Sony Corporation Semiconductor light emitting device and fabrication method thereof
US6830946B2 (en) 2001-02-01 2004-12-14 Sony Corporation Device transfer method and panel
US6921675B2 (en) 2001-02-01 2005-07-26 Sony Corporation Device transfer method and panel
US7233030B2 (en) 2001-02-01 2007-06-19 Sony Corporation Device transfer method and panel
US6831300B2 (en) 2001-02-21 2004-12-14 Sony Corporation Semiconductor light emitting device, manufacturing method of a semiconductor light emitting device and connection structure of an electrode layer
US6734030B2 (en) 2001-03-06 2004-05-11 Sony Corporation Semiconductor light emitting device and method of fabricating semiconductor light emitting device
US6870190B2 (en) 2001-03-06 2005-03-22 Sony Corporation Display unit and semiconductor light emitting device
KR100518353B1 (en) * 2001-03-27 2005-10-12 히다찌 케이블 리미티드 Semiconductor substrate made of group III nitride, and process for manufacture thereof
US7033436B2 (en) 2001-04-12 2006-04-25 Sony Corporation Crystal growth method for nitride semiconductor and formation method for semiconductor device
US7227189B2 (en) 2001-04-19 2007-06-05 Sony Corporation Vapor-phase growth method for a nitride semiconductor and a nitride semiconductor device
JP2002094111A (en) * 2001-07-27 2002-03-29 Toyoda Gosei Co Ltd Method for fabricating nitrogen-group iii element compound semiconductor light emitting device
JP2002100807A (en) * 2001-08-06 2002-04-05 Toyoda Gosei Co Ltd Method for manufacturing gallium nitride based compound semiconductor light-emitting element
US6818465B2 (en) 2001-08-22 2004-11-16 Sony Corporation Nitride semiconductor element and production method for nitride semiconductor element
US7250320B2 (en) 2003-03-20 2007-07-31 Sony Corporation Semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, image display device, manufacturing method thereof, illuminating device and manufacturing method thereof
US7361220B2 (en) 2003-03-26 2008-04-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride single crystal, device used for the method and group III nitride single crystal obtained by the method
US8242513B2 (en) 2007-05-18 2012-08-14 Sony Corporation Method for growing semiconductor layer, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and electronic device
US8698168B2 (en) 2010-07-08 2014-04-15 Sharp Kabushiki Kaisha Semiconductor device having aluminum nitride layer with void formed therein
JP2013187366A (en) * 2012-03-08 2013-09-19 Hitachi Cable Ltd Nitride semiconductor manufacturing method
CN102945906A (en) * 2012-12-06 2013-02-27 上海顿格电子贸易有限公司 LED (light emitting diode) chip with horizontal structure

Also Published As

Publication number Publication date
JPH0573252B2 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
JP3026087B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
US20020155712A1 (en) Method of fabricating group-III nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JPH0415200B2 (en)
JPH0864791A (en) Epitaxial growth method
JPS6065798A (en) Growing of gallium nitride single crystal
EP1474824B1 (en) Production method for group iii nitride semiconductor layer
JP5093740B2 (en) Semiconductor crystal film growth method
CN1077607C (en) Method and installation for GaN growth by light radiation-heated metallic organic chemical gas-state deposition
JPS63188977A (en) Light emitting element of gallium nitride compound semiconductor
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
TWI254465B (en) Method of manufacturing III-V group compound semiconductor
JPH1012555A (en) Method of manufacturing nitride compd. semiconductor crystal
JP3654307B2 (en) Manufacturing method of semiconductor device
JPH033233A (en) Growth method for compound semiconductor single crystal thin film
JP2631286B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
JP2631285B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
KR0124972B1 (en) Method of preparation for epitaxial film of gallium nitride
JP2704223B2 (en) Semiconductor element
JP3534252B2 (en) Vapor phase growth method
JPH07240374A (en) Iii-v group compound semiconductor crystal
JPS63188935A (en) Vapor growth system for gallium nitride compound semiconductor
JPS63188937A (en) Vapor growth system for gallium nitride compound semiconductor
JPS63188936A (en) Vapor growth system for gallium nitride compound semiconductor
JP2704224B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term