JPS63188937A - Vapor growth system for gallium nitride compound semiconductor - Google Patents

Vapor growth system for gallium nitride compound semiconductor

Info

Publication number
JPS63188937A
JPS63188937A JP62021125A JP2112587A JPS63188937A JP S63188937 A JPS63188937 A JP S63188937A JP 62021125 A JP62021125 A JP 62021125A JP 2112587 A JP2112587 A JP 2112587A JP S63188937 A JPS63188937 A JP S63188937A
Authority
JP
Japan
Prior art keywords
reaction
gas
pipe
gas pipe
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62021125A
Other languages
Japanese (ja)
Inventor
Katsuhide Manabe
勝英 真部
Nobuo Okazaki
伸夫 岡崎
Isamu Akasaki
勇 赤崎
Kazumasa Hiramatsu
和政 平松
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Toyoda Gosei Co Ltd
Original Assignee
Nagoya University NUC
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Toyoda Gosei Co Ltd filed Critical Nagoya University NUC
Priority to JP62021125A priority Critical patent/JPS63188937A/en
Priority to US07/148,633 priority patent/US4911102A/en
Priority to DE3802732A priority patent/DE3802732A1/en
Publication of JPS63188937A publication Critical patent/JPS63188937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain an type I AlxGa1-XN thin film having good crystallinity by a method wherein a dopant gas and another reaction gas are mixed for the first time by a mixing pipe which is situated near a susceptor and a mixed gas is blown toward the susceptor through an opening of the mixing pipe. CONSTITUTION:A first reaction-gas pipe 25 and a second reaction-gas pipe 26 are installed on the side where a gas flows into a reaction chamber 20; the first reaction-gas pipe 25 is arranged inside the second reaction-gas pipe 26 concentrically with the second reaction-gas pipe 26. The tip part of the first reaction-gas pipe 25 and the second reaction-gas pipe 26 is connected with a spherically shaped mixing pipe 29. A mixed gas composed of a group of NH3 and trimethylgallium and another group of trimethylaluminum and H2 flows into the mixing pipe 29 through the first reaction-gas pipe 25; another mixed gas composed of diethylzinc and H2 flows into the mixing pipe 29 through the second reaction-gas pipe 26. After both kinds of reaction gases have been mixed inside the mixing pipe 29, they are blown toward a sapphire substrate 24 through an opening 29a of the mixing pipe. By this setup, it is possible to grow an type I AlxGa1-XN thin film of high quality.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はI型の窒化ガリウム系化合物半導体の結晶性を
改善した気相成長装置に関する。
The present invention relates to a vapor phase growth apparatus that improves the crystallinity of I-type gallium nitride compound semiconductors.

【従来技術】[Prior art]

従来、有機金属化合物気相成長法(以下「MOVPEJ
と記す)を用いて、窒化ガリウム系化合物半導体(A 
II X G a +−w N ;X=Oを含む)薄膜
をサファイア基板上に気相成長させることが研究されて
いる。 この方法は、第3図に示すような気相成長装置を用いて
実施される。その気相成長装置において、石英反応管7
にはマニホールド6が接続されており、そのマニホール
ド6には、NH,の供給系統AとN2、N2の供給系統
Bと、有機金属化合物ガスのトリメチルガリウム(以下
rTMGJと記す)の供給系統Cと、有機金属化合物ガ
スのトリメチルアルミニウム(以下rTMAJと記す)
の供給系統りと、ドーピング元素を含む反応ガス(以下
単に「ドーパントガス」という)であるジエチル亜鉛(
以下rDEZJと記す)の供給系統Eとが接続されてい
る。また、石英反応管7の中には、高周波加熱用グラフ
ァイトサセプタ9が配設されており、そのサセプタ9上
にはサファイア基板10が載置されており、そのサファ
イア基板10は、高周波コイル8により加熱される。各
反応ガス及びキャリアガスは各供給系統からマニホール
ド6で混合され、その混合ガスが石英反応管7に導かれ
サファイア基板10に吹き付けられることによりサファ
イア基板10上にAAxGa+−XNの薄膜が成長する
。 そして、各有機金属化合物ガスの混合比を変化させるこ
とにより、組成比を変化させたり、亜鉛をドープしてT
型のAlxGa+−XNの薄膜を形成することができる
Conventionally, organometallic compound vapor phase epitaxy (hereinafter referred to as "MOVPEJ")
) using a gallium nitride-based compound semiconductor (A
Research has been conducted on vapor phase growth of thin films (II x G a + - w N ; containing X=O) on sapphire substrates. This method is carried out using a vapor phase growth apparatus as shown in FIG. In the vapor phase growth apparatus, a quartz reaction tube 7
A manifold 6 is connected to the manifold 6, and the manifold 6 has a supply system A for NH, a supply system B for N2 and N2, and a supply system C for trimethyl gallium (hereinafter referred to as rTMGJ), an organometallic compound gas. , organometallic compound gas trimethylaluminum (hereinafter referred to as rTMAJ)
diethylzinc (hereinafter simply referred to as "dopant gas"), which is a reactive gas containing a doping element (hereinafter simply referred to as "dopant gas").
A supply system E (hereinafter referred to as rDEZJ) is connected. Furthermore, a graphite susceptor 9 for high-frequency heating is disposed inside the quartz reaction tube 7 , and a sapphire substrate 10 is placed on the susceptor 9 . heated. Reaction gases and carrier gases are mixed in a manifold 6 from each supply system, and the mixed gas is led to a quartz reaction tube 7 and blown onto a sapphire substrate 10, thereby growing a thin film of AAxGa+-XN on the sapphire substrate 10. Then, by changing the mixing ratio of each organometallic compound gas, the composition ratio can be changed, or by doping with zinc, T
A thin film of type AlxGa+-XN can be formed.

【発明が解決しようとする問題点】 このように従来の装置では、DEZのドーパントガスと
TMG、TMA等の他の反応ガスは、石英反応管7に入
る前のマニホールド6で混合されていた。ところが、T
MGとDEZは室温で反応性が高いため、サファイア基
板10から離れたところで予め両ガスが混合されると、
DEZとNH3の反応が進行し、サファイア基板10上
に成長するI型のAAxGa+−XNの結晶性が良くな
いことが実験により分かった。 即ち、反応性の高いドーパントガスはサファイア基板1
0の付近で他の反応ガスと混合し、AlxGa+−XN
が成長する過程でドーパントガスを分解し、ドーピング
元素をその成長するAA、Ga+−XN中にドープする
と結晶性の高い薄膜が得られるという結論が得られた。 本発明は係る結論に基づいてなされたものであり、その
目的とするところは、結晶性の高いI型のAj!xGa
+−XNの薄膜を得ることである。
Problems to be Solved by the Invention As described above, in the conventional apparatus, the DEZ dopant gas and other reactive gases such as TMG and TMA were mixed in the manifold 6 before entering the quartz reaction tube 7. However, T
Since MG and DEZ are highly reactive at room temperature, if the two gases are mixed in advance away from the sapphire substrate 10,
It was found through experiments that the reaction between DEZ and NH3 progressed, and that the crystallinity of type I AAxGa+-XN grown on the sapphire substrate 10 was poor. That is, the highly reactive dopant gas is
AlxGa+-XN is mixed with other reaction gases near 0.
It was concluded that a highly crystalline thin film can be obtained by decomposing the dopant gas during the growth process and doping the doping element into the growing AA, Ga+-XN. The present invention was made based on such a conclusion, and its purpose is to obtain Aj! of type I with high crystallinity. xGa
The objective is to obtain a thin film of +-XN.

【問題点を解決するための手段】[Means to solve the problem]

上記問題点を解決するための発明の構成は、有機金属化
合物ガスを用いた窒化ガリウム系化合物半導体(A42
x Ga、−XN ;X=0を含む)薄膜の気相成長装
置において、AlxGa+−XNを成長させる反応ガス
を反応室に導く第1反応ガス管と、ドーピング元素を含
む反応ガスを反応室に導く第2反応ガス管と、それらの
両反応ガス管の先端部に連設しそれらの両反応ガス管に
より導かれた両反応ガスを混合してサセプタの付近に設
けられた開口部からサセプタに流出させる混合管とを設
けたことである。
The structure of the invention for solving the above problems is based on a gallium nitride-based compound semiconductor (A42
In a thin film vapor phase growth apparatus (including xGa, -XN; A second reaction gas pipe is connected to the tips of the two reaction gas pipes, and the two reaction gases guided by the two reaction gas pipes are mixed and supplied to the susceptor through an opening provided near the susceptor. The reason is that a mixing pipe for discharging the water is provided.

【作用】[Effect]

第1反応ガス管と第2反応ガス管の先端部は、反応室に
設けられたサセプタの付近で開口する混合管に連設して
いる。そして、その両反応ガス管はドーパントガスと他
の反応ガスとを混合管まで分離して導いており、ドーパ
ントガスと他の反応ガスは混合管にて初めて混合される
。その混合管はサセプタの近辺に位置しており、その開
口部からサセプタに向かって混合ガスが吹き付けられる
。 そして、基板付近でドーパントガスは熱分解され、ドー
ピング元素が気相成長するAA!xGa+−XN薄膜中
にドーピングされ、結晶性の良い■型のAj2xGa+
−XN薄膜が得られる。
The tips of the first reaction gas tube and the second reaction gas tube are connected to a mixing tube that opens near a susceptor provided in the reaction chamber. Both reaction gas tubes separately guide the dopant gas and other reaction gases to the mixing tube, and the dopant gas and other reaction gases are mixed for the first time in the mixing tube. The mixing tube is located near the susceptor, and the mixed gas is blown toward the susceptor from its opening. Then, the dopant gas is thermally decomposed near the substrate, and the doping element grows in a vapor phase.AA! ■-type Aj2xGa+ with good crystallinity doped into xGa+-XN thin film
-XN thin film is obtained.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。第
1図は本発明の具体的な一実施例に係る気相成長装置の
構成を示した断面図である。石英反応管21で囲われた
反応室2oでは、サセプタ22が操作棒23に支持され
ており、そのサセプタ22は操作棒23によって位置の
調整が行われる。また、サセプタ22の主面にはサファ
イア基板24が配設されている。尚、8は高周波コイル
であり、サファイア基板24を加熱するためのものであ
る。 一方、反応室20のガスの流入側には、第1反応ガス管
25と第2反応ガス管26とが配設されている。第1反
応ガス管25は第2反応ガス管26と同心状に、第2反
応ガス管26の内部に配設されている。そして、第1反
応ガス管25と第2反応ガス管26の先端部は球状の混
合管29に連設している。混合管29の開口部29aは
サファイア基板24に向かって開口しており、開口部2
9aとサファイア基板24との間隔は10〜60mmに
制御棒23によって調整される。 また、第1反応ガス管25は第17二ホールド27に接
続され、第2反応ガス管26は第2マニホールド28に
接続されている。そして、第1マニホールド27にはN
Hsの供給系統Hとキャリアガスの供給系統工とTMG
の供給系統JとTMAの供給系統にとが接続され、第2
マニホールド28にはキャリアガスの供給系統IとDE
Zの供給系統りとが接続されている。 このような装置構成により、第1反応ガス管25から、
NH,とTMGとTMAとH7との混合ガスが混合管2
9に流出し、第2反応ガス管26から、DEZとH3と
の混合ガスが混合管29に流出する。そして、両系統の
反応ガスは混合管29で混合された後、その開口部29
aからサファイア基板24に吹き付けられる。このとき
、混合管29内では、渦流を生じ、両系統の反応ガスが
良く混合される。 N型のAlXGa+−x N薄膜を形成する場合には、
第1反応ガス管25だけから混合ガスを流出させれば良
く、■型のΔ1xGal−XN薄膜を形成する場合には
、第1反応ガス管25と第2反応ガス管26とからそれ
ぞれの混合ガスを流出させれば良い。■型のAlうGa
1−XN#膜を形成する場合には、ドーパントガスであ
るDEZは第1反応ガス管25から流出する反応ガスと
混合管29内で初めて混合されることになる。そして、
DEZはサファイア基板24に吹き付けられ熱分解し、
ドーパント元素は成長するAlxGa+−XNにドーピ
ングされて、■型のΔβxGa+−XNが得られる。こ
の場合、第1反応ガス管25と第2反応ガス管26とで
分離して、反応ガスとドーパントガスがサファイア基板
24の付近の混合管29まで導かれるので、従来装置で
生じるガスの導入管におけるDEZと、T M G又は
TMAとの反応が抑制されるため、良好なドーピングが
行われる。 尚、サセプタ22の反応ガスの流れる方向Xに対する傾
斜角θは、45度に構成されている。このように傾斜さ
せることにより、サセプタ22をガス流に対し直角に構
成した場合に比べて良好な結晶が得られた。 この気相成長装置で得られたI型のA II X G 
a+−x Nは、顕微鏡写真、X線のロッキングカーブ
、フォトルミネッセンス測定により、従来の気相成長装
置で成長したものに比べ、良質な結晶性を示すことが確
認された。 尚、上記実施例では、混合管29を球状に構成している
が、この形状には限定されない。また、8箪形状に混合
室を2つ設ければ、反応ガスの混合性が更に良くなる。 次に本装置を用いて、第2図に示す構成の発光ダイオー
ドを作成する方法について説明する。 まず、有機洗浄及び熱処理により洗浄した(0001)
面を主面とする単結晶のサファイア基板24をサセプタ
22に装着する。次に、H2を0.317分で、第1反
応ガス管25及び′s2反応ガス管26から混合管29
を介して反応室20に流しながら温度1100℃でサフ
ァイア基板24を気相エツチングした。次に温度を95
0℃まで低下させて、第1反応ガス管25からH2を3
17分、NHsを211/分、TMAを7X 10−’
モル/分で供給して1分間熱処理した。この熱処理によ
りAINのバッファ層30が約0.1μsの厚さに形成
された。1分経過した時にTMAの供給を停止して、サ
ファイア基板24の温度を970℃に保持し、第反応ガ
ス管25からH7を2.51/分、NH,を1.5β/
分、TMGを1.7X 10−’モル/分で60分間供
給し、膜厚約7−のN型の°GaNから成るN層31を
形成した。次に、そのサファイア基板24を反応室20
から取り出し、ホトエツチング及びスパッタリング等に
より膜厚100人程鹿の5102膜32をパターン形成
した。その後、このサファイア基板24を洗浄後、再度
、サセプタ22に装着し気相エツチングした後、サファ
イア基板24の温度を970℃に保持し、第1反応ガス
管25からは、H3を2.517分、NH,を1.51
/分、TMGを1.7X 10−’モル/分供給し、第
2反応ガス管26からは、DEZを5X 10−’モル
/分で5分間供給して、■型のGaNから戊る1層33
を膜厚1.0μsに形成した。この時、GaNの露出し
ている部分は、単結晶の■型のGaNが戊長し1層33
が得られるが、SiO□膜32膜上2には多結晶のGa
Nから成る導電層34が形成される。 その後、反応室20からサファイア基板24を取り出し
、1層33と導電層34の上にアルミニウム電極35.
36を蒸着し、サファイア基板24を所定の大きさにカ
ッティングして発光ダイオードを形成した。この場合、
電極35は1層33の電極となり、電極36は導電層3
4と極めて薄いSiQ、膜32を介してN層31の電極
となる。 そして、1層33をN層31に対し正電位とすることに
より、接合面から光が発光する。 また、AlXGa1−XN系の発光ダイオードを形成す
るには、N層31と1層33とを形成する場合に、第1
反応管25からTMAを所定割合で流せば良い。例えば
、サファイア基板24の温度を1105℃に保持し、第
1反応ガス管25からH2を3A/分、N Haを21
/分、TMAを7.2×10−6モル/分、TMGを1
.7X 10−’モル/分で供給し、第2反応ガス管2
6からDEZを5X 10−’モル/分で供給すること
より、X=0.3の■型のAlXGa1−XN系半導体
薄膜が得られる。
The present invention will be described below based on specific examples. FIG. 1 is a sectional view showing the configuration of a vapor phase growth apparatus according to a specific embodiment of the present invention. In the reaction chamber 2o surrounded by the quartz reaction tube 21, a susceptor 22 is supported by an operating rod 23, and the position of the susceptor 22 is adjusted by the operating rod 23. Further, a sapphire substrate 24 is disposed on the main surface of the susceptor 22. Note that 8 is a high frequency coil for heating the sapphire substrate 24. On the other hand, on the gas inflow side of the reaction chamber 20, a first reaction gas pipe 25 and a second reaction gas pipe 26 are arranged. The first reaction gas pipe 25 is arranged concentrically with the second reaction gas pipe 26 inside the second reaction gas pipe 26 . The tips of the first reaction gas pipe 25 and the second reaction gas pipe 26 are connected to a spherical mixing pipe 29 . The opening 29a of the mixing tube 29 opens toward the sapphire substrate 24, and the opening 29a opens toward the sapphire substrate 24.
The distance between 9a and the sapphire substrate 24 is adjusted to 10 to 60 mm by the control rod 23. Further, the first reaction gas pipe 25 is connected to a seventeenth second hold 27, and the second reaction gas pipe 26 is connected to a second manifold 28. Then, the first manifold 27 has N
Hs supply system H and carrier gas supply system engineering and TMG
The supply system J of TMA is connected to the supply system J of TMA, and the second
The manifold 28 has carrier gas supply systems I and DE.
It is connected to the Z supply system. With such an apparatus configuration, from the first reaction gas pipe 25,
A mixed gas of NH, TMG, TMA, and H7 is mixed in the mixing tube 2.
A mixed gas of DEZ and H3 flows out from the second reaction gas pipe 26 to the mixing pipe 29 . After the reaction gases of both systems are mixed in the mixing tube 29, the opening 29
It is sprayed onto the sapphire substrate 24 from a. At this time, a vortex is generated in the mixing tube 29, and the reaction gases of both systems are well mixed. When forming an N-type AlXGa+-xN thin film,
It is sufficient to flow out the mixed gas only from the first reaction gas pipe 25, and in the case of forming a type Δ1xGal-XN thin film, the mixed gas flows from the first reaction gas pipe 25 and the second reaction gas pipe 26, respectively. All you have to do is let it flow out. ■Type of Al-Ga
When forming a 1-XN# film, the dopant gas DEZ is first mixed with the reaction gas flowing out from the first reaction gas pipe 25 in the mixing pipe 29. and,
DEZ is sprayed onto the sapphire substrate 24 and thermally decomposed,
The dopant element is doped into the growing AlxGa+-XN to obtain a ■-type ΔβxGa+-XN. In this case, the first reactant gas pipe 25 and the second reactant gas pipe 26 separate the reactant gas and the dopant gas, and the reactant gas and dopant gas are led to the mixing pipe 29 near the sapphire substrate 24. Since the reaction between DEZ and TMG or TMA is suppressed, good doping is achieved. Incidentally, the inclination angle θ of the susceptor 22 with respect to the flow direction X of the reaction gas is set to 45 degrees. By tilting the susceptor 22 in this manner, better crystals were obtained than when the susceptor 22 was configured perpendicular to the gas flow. Type I A II X G obtained with this vapor phase growth apparatus
It was confirmed by micrographs, X-ray rocking curves, and photoluminescence measurements that a+-x N exhibits better crystallinity than that grown using a conventional vapor phase growth apparatus. In the above embodiment, the mixing tube 29 has a spherical shape, but it is not limited to this shape. Moreover, if two mixing chambers are provided in the shape of an octagon, the mixing properties of the reaction gases will be further improved. Next, a method for producing a light emitting diode having the configuration shown in FIG. 2 using this apparatus will be described. First, it was cleaned by organic cleaning and heat treatment (0001)
A single-crystal sapphire substrate 24 having a main surface is attached to the susceptor 22. Next, H2 was added for 0.317 minutes from the first reaction gas pipe 25 and 's2 reaction gas pipe 26 to the mixing pipe 29.
The sapphire substrate 24 was subjected to vapor phase etching at a temperature of 1100° C. while flowing into the reaction chamber 20 through the gas. Then set the temperature to 95
The temperature is lowered to 0°C, and 3 H2 is supplied from the first reaction gas pipe 25.
17 min, NHs 211/min, TMA 7X 10-'
It was supplied at a rate of mol/min and heat-treated for 1 minute. Through this heat treatment, the AIN buffer layer 30 was formed to a thickness of about 0.1 μs. When 1 minute has elapsed, the supply of TMA is stopped, the temperature of the sapphire substrate 24 is maintained at 970°C, and H7 is supplied from the first reaction gas pipe 25 at 2.51/min and NH at 1.5β/min.
TMG was supplied for 60 minutes at a rate of 1.7×10 mol/min to form an N layer 31 made of N-type GaN with a thickness of about 7 mol/min. Next, the sapphire substrate 24 is placed in the reaction chamber 20.
A 5102 film 32 with a thickness of about 100 layers was formed by photo-etching, sputtering, etc. Thereafter, after cleaning this sapphire substrate 24, it was mounted on the susceptor 22 again and subjected to gas phase etching.The temperature of the sapphire substrate 24 was then maintained at 970°C, and H3 was supplied from the first reaction gas pipe 25 for 2.517 minutes. , NH, is 1.51
/min, TMG is supplied at 1.7X 10-' mol/min, DEZ is supplied from the second reaction gas pipe 26 at 5X 10-' mol/min for 5 minutes, and 1. layer 33
was formed to a film thickness of 1.0 μs. At this time, in the exposed part of GaN, the single-crystal ■-type GaN is elongated and becomes one layer 33.
However, polycrystalline Ga is formed on the SiO□ film 32.
A conductive layer 34 made of N is formed. After that, the sapphire substrate 24 is taken out from the reaction chamber 20, and an aluminum electrode 35 is placed on the first layer 33 and the conductive layer 34.
36 was vapor-deposited, and the sapphire substrate 24 was cut into a predetermined size to form a light emitting diode. in this case,
The electrode 35 serves as an electrode for one layer 33, and the electrode 36 serves as an electrode for one layer 33.
4 and becomes an electrode of the N layer 31 via the SiQ film 32. Then, by setting the first layer 33 at a positive potential with respect to the N layer 31, light is emitted from the bonded surface. In addition, in order to form an AlXGa1-XN-based light emitting diode, when forming the N layer 31 and the first layer 33, the first
TMA may be flowed from the reaction tube 25 at a predetermined ratio. For example, the temperature of the sapphire substrate 24 is maintained at 1105° C., H2 is supplied from the first reaction gas pipe 25 at 3 A/min, and N Ha is supplied at 21
/min, TMA 7.2 x 10-6 mol/min, TMG 1
.. 7X 10-' mol/min, second reactant gas tube 2
By supplying DEZ from 6 to 5×10 −' mol/min, a ■-type AlXGa1-XN semiconductor thin film with X=0.3 is obtained.

【発明の効果】【Effect of the invention】

本発明はAA、Ga、−、Nを成長させる反応ガスを反
応室に導く第1反応ガス管と、ドーピング元素を含む反
応ガスを反応室に導く第2反応ガス管と、それらの両反
応ガス管の先端部に連設しそれらの両反応ガス管により
導かれた両反応ガスを混合してサセプタの付近に設けら
れた開口部からその混合ガスをサセプタに吹き付ける混
合管とを有しているので、ドーピング元素を含む反応ガ
スは他の反応ガスと反応することなく、基板付近まで導
くことができしかも混合管で均一に混合されるので、良
質のl型のAlXGa1−XN薄膜を成長させることが
できる。
The present invention provides a first reaction gas pipe for introducing a reaction gas for growing AA, Ga, -, and N into a reaction chamber, a second reaction gas pipe for introducing a reaction gas containing a doping element into the reaction chamber, and both of these reaction gases. It has a mixing tube that is connected to the tip of the tube, mixes the two reaction gases guided by the two reaction gas tubes, and sprays the mixed gas onto the susceptor from an opening provided near the susceptor. Therefore, the reactive gas containing the doping element can be guided to the vicinity of the substrate without reacting with other reactive gases, and is evenly mixed in the mixing tube, making it possible to grow a high-quality l-type AlXGa1-XN thin film. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な一実施例に係る気相成長装置
の構成を示した構成図。第2図はその装置で製造される
発光ダイオードの構成を示した構成図。第3図は従来の
気相成長装置の構成を示した構成図である。 ?−・−・石英反応管 8′°°高周波コイル 9・°
゛°°サセプタ0・°サファイア基板 20・・反応室
 21−・・−石英反応管 22・°°サセプタ 23
−制御棒24”・サファイア基板 25・・・第1反応
ガス管26・・°第2反応ガス管 27・°″第1マニ
ホールド 28・・第2マニホールド 29・・・混合
管 29a・・・・開口部 3o・−・・バッファ層 
31・・・N層32 ・・5IO2膜 33 ・°I層
 34・−“導電層35.36パ°電極 H・“N H
sの供給系統 I −・キャリアガスの供給系統 Jo
・・・TMGの供給系統に−・・TMAの供給系統 L
・・・・DEZの供給系統特許出願人  豊田合成株式
会社 同   名古屋大学長
FIG. 1 is a configuration diagram showing the configuration of a vapor phase growth apparatus according to a specific embodiment of the present invention. FIG. 2 is a configuration diagram showing the configuration of a light emitting diode manufactured by the device. FIG. 3 is a block diagram showing the structure of a conventional vapor phase growth apparatus. ? −・−・Quartz reaction tube 8′°°High frequency coil 9・°
゛°°Susceptor 0・°Sapphire substrate 20・・Reaction chamber 21−・・・Quartz reaction tube 22・°°Susceptor 23
- Control rod 24''・Sapphire substrate 25...First reaction gas tube 26...°Second reaction gas tube 27・°''First manifold 28...Second manifold 29...Mixing tube 29a... Opening 3o --- Buffer layer
31...N layer 32...5IO2 film 33 ・°I layer 34 ・-"Conductive layer 35.36P°electrode H・"N H
s supply system I - Carrier gas supply system Jo
...TMG supply system - TMA supply system L
...DEZ supply system patent applicant Toyoda Gosei Co., Ltd. President of Nagoya University

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化合物ガスを用いた窒化ガリウム系化合
物半導体(Al_XGa_1_−_XN;X=0を含む
)薄膜の気相成長装置において、 Al_XGa_1_−_XNを成長させる反応ガスを反
応室に導く第1反応ガス管と、ドーピング元素を含む反
応ガスを反応室に導く第2反応ガス管と、それらの両反
応ガス管の先端部に連設しそれらの両反応ガス管により
導かれた両反応ガスを混合してサセプタの付近に設けら
れた開口部からサセプタに流出させる混合管とを有する
ことを特徴とする窒化ガリウム系化合物半導体の気相成
長装置。
(1) In a vapor phase growth apparatus for a gallium nitride-based compound semiconductor (Al_XGa_1_-_XN; including X=0) thin film using organometallic compound gas, a first reaction in which a reaction gas for growing Al_XGa_1_-_XN is introduced into a reaction chamber. A gas pipe, a second reaction gas pipe that guides a reaction gas containing a doping element into a reaction chamber, and a second reaction gas pipe that is connected to the tips of both reaction gas pipes and mixes both reaction gases guided by those two reaction gas pipes. What is claimed is: 1. A vapor phase growth apparatus for a gallium nitride-based compound semiconductor, comprising: a mixing tube for causing the mixture to flow into the susceptor from an opening provided near the susceptor.
(2)前記サセプタは、前記反応ガスの流れる方向に対
し15度〜75度の範囲で傾斜していることを特徴とす
る特許請求の範囲第1項記載の窒化ガリウム系化合物半
導体の気相成長装置。
(2) Vapor phase growth of a gallium nitride-based compound semiconductor according to claim 1, wherein the susceptor is inclined at an angle of 15 degrees to 75 degrees with respect to the flow direction of the reaction gas. Device.
JP62021125A 1987-01-31 1987-01-31 Vapor growth system for gallium nitride compound semiconductor Pending JPS63188937A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62021125A JPS63188937A (en) 1987-01-31 1987-01-31 Vapor growth system for gallium nitride compound semiconductor
US07/148,633 US4911102A (en) 1987-01-31 1988-01-26 Process of vapor growth of gallium nitride and its apparatus
DE3802732A DE3802732A1 (en) 1987-01-31 1988-01-29 METHOD AND DEVICE FOR BREEDING GALLIUM NITRIDE FROM THE GAS PHASE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021125A JPS63188937A (en) 1987-01-31 1987-01-31 Vapor growth system for gallium nitride compound semiconductor

Publications (1)

Publication Number Publication Date
JPS63188937A true JPS63188937A (en) 1988-08-04

Family

ID=12046166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021125A Pending JPS63188937A (en) 1987-01-31 1987-01-31 Vapor growth system for gallium nitride compound semiconductor

Country Status (1)

Country Link
JP (1) JPS63188937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291114A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291114A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor

Similar Documents

Publication Publication Date Title
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
US4911102A (en) Process of vapor growth of gallium nitride and its apparatus
JPH0415200B2 (en)
US6146458A (en) Molecular beam epitaxy method
EP0460710B1 (en) Gallium nitride group compound semiconductor and luminous element comprising it and the process of producing the same
JPS6065798A (en) Growing of gallium nitride single crystal
JP3485285B2 (en) Vapor phase growth method and vapor phase growth apparatus
JP2001181097A (en) Vapor growth apparatus of nitride
JPS63188977A (en) Light emitting element of gallium nitride compound semiconductor
JP2631286B2 (en) Gas phase growth method of gallium nitride based compound semiconductor
JP2733518B2 (en) Compound semiconductor film vapor phase growth system
JPS63188937A (en) Vapor growth system for gallium nitride compound semiconductor
JP2002544116A (en) Method and apparatus for epitaxially growing a material on a substrate
JP2004296640A (en) GROWTH METHOD OF GaN SEMICONDUCTOR LAYER, SEMICONDUCTOR SUBSTRATE MANUFACTURING METHOD USING THE SAME, AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
JPS63188932A (en) Method for vapor growth of gallium nitride compound semiconductor
JP2849642B2 (en) Compound semiconductor vapor deposition equipment
JPS63188935A (en) Vapor growth system for gallium nitride compound semiconductor
JP2818776B2 (en) Gallium nitride based compound semiconductor vapor phase growth equipment
JPH111396A (en) Production of nitride compound semiconductor
JPS63188936A (en) Vapor growth system for gallium nitride compound semiconductor
KR0124972B1 (en) Method of preparation for epitaxial film of gallium nitride
TWI776533B (en) METHOD FOR GROWING VERTICALLY-ALIGNED GaN SINGLE-CRYSTALLINE MICROROD ARRAYS ON NON-SINGLE-CRYSTALLINE SUBSTRATES
JP3534252B2 (en) Vapor phase growth method
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
JP3090145B2 (en) Compound semiconductor vapor deposition equipment