JPH0864791A - Epitaxial growth method - Google Patents

Epitaxial growth method

Info

Publication number
JPH0864791A
JPH0864791A JP19830594A JP19830594A JPH0864791A JP H0864791 A JPH0864791 A JP H0864791A JP 19830594 A JP19830594 A JP 19830594A JP 19830594 A JP19830594 A JP 19830594A JP H0864791 A JPH0864791 A JP H0864791A
Authority
JP
Japan
Prior art keywords
substrate
epitaxial growth
grown
dislocations
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19830594A
Other languages
Japanese (ja)
Inventor
Akira Takamori
晃 高森
Masaya Mannou
正也 萬濃
Seiji Onaka
清司 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19830594A priority Critical patent/JPH0864791A/en
Publication of JPH0864791A publication Critical patent/JPH0864791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To provide a lattice non-matching epitaxial growth method of obtaining an epitaxial growth layer which has a low dislocation density, high quality, and is suitable for manufacturing a semiconductor light emitting device such as a light emitting diode, a laser diode or the like. CONSTITUTION: An amorphous GaN film 35 is grown on a sapphire substrate 31 in an initial crystal growth stage. The amorphous GaN film 35 is formed into stripes by etching. A GaN film 34 is epitaxially grown on the amorphous GaN film 35 in a second crystal growth stage. By this setup, lattice defects or dislocations are concentrated in a specific region 36, so that the active region of a required semiconductor light emitting device is capable of lessening relatively in defect density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サファイア基板上への
窒化ガリウム系化合物半導体のエピタキシャル成長に代
表される格子不整合系のエピタキシャル成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lattice-mismatched epitaxial growth method represented by epitaxial growth of gallium nitride-based compound semiconductor on a sapphire substrate.

【0002】[0002]

【従来の技術】GaN等のIII−V族ナイトライド系混
晶エピタキシャル層を用いた半導体発光素子の課題はG
aNバルク基板結晶が容易に作成できず、代替基板とし
て使える、GaNに格子定数が近いバルク結晶が得られ
ない。従来は、代替結晶基板として、α-Al23(サ
ファイア)、SiC、Si、GaAsなどが用いられ、
主としてMOCVD(有機金属気相成長法)あるいはハ
ライドVPE(化学気相成長法)で作製されている。α
-Al23(サファイア)の(0001)C面がGaNの格
子定数に近いためもっとも広く用いられているものの、
13.8%という極めて大きな格子不整合を持ち、成長中に
結晶格子に加わるひずみ応力によるミスフィット転位
(以下、単に転位と呼ぶ)が発生しやすく、高品質のエ
ピタキシャル成長層が得られないという問題がある。
2. Description of the Related Art The problem of a semiconductor light emitting device using a III-V group nitride mixed crystal epitaxial layer such as GaN is G.
An aN bulk substrate crystal cannot be easily prepared, and a bulk crystal having a lattice constant close to that of GaN, which can be used as an alternative substrate, cannot be obtained. Conventionally, α-Al 2 O 3 (sapphire), SiC, Si, GaAs, etc. have been used as an alternative crystal substrate.
It is mainly manufactured by MOCVD (metal organic chemical vapor deposition) or halide VPE (chemical vapor deposition). α
-Al 2 O 3 (sapphire) is most widely used because the (0001) C-plane is close to the lattice constant of GaN.
It has an extremely large lattice mismatch of 13.8%, misfit dislocations (hereinafter simply referred to as dislocations) tend to occur due to strain stress applied to the crystal lattice during growth, and there is a problem that a high-quality epitaxial growth layer cannot be obtained. .

【0003】[0003]

【発明が解決しようとする課題】上記従来技術によれ
ば、サファイア基板上にGaNを成長する場合、まず6
角柱状のGaNの3次元成長が起こり、はじめは小さな
6角柱状の結晶が次第に成長、結合、消滅を繰り返して
より大きな結晶に成長する過程が一般的に考えられてい
る。しかし、この過程で、基板との界面で発生する歪み
応力の一部は緩和されるが、なお高密度の転位がエピタ
キシャル層内を成長方向(0001)に沿って生成・成長
し、高品質のエピタキシャル層の成長を行うことができ
なかった。
According to the above-mentioned prior art, when GaN is grown on a sapphire substrate, first, 6
It is generally considered that a three-dimensional growth of prismatic GaN occurs, and initially a small hexagonal prismatic crystal gradually grows, bonds and disappears to grow into a larger crystal. However, in this process, although some of the strain stress generated at the interface with the substrate is relaxed, high-density dislocations are still generated and grown in the epitaxial layer along the growth direction (0001), and high-quality dislocations are obtained. The epitaxial layer could not be grown.

【0004】本発明は、転位などの格子欠陥が少なく
て、良質なエピタキシャル成長層を備えた発光ダイオー
ドやレーザダイオード等の半導体発光素子の作製に適し
た半導体結晶成長方法を提供することにある。
It is an object of the present invention to provide a semiconductor crystal growth method suitable for producing a semiconductor light emitting device such as a light emitting diode or a laser diode which has few lattice defects such as dislocations and is provided with a high quality epitaxial growth layer.

【0005】[0005]

【課題を解決するための手段】本発明の骨子は、サファ
イア基板上にGaNを成長する場合に代表される格子不
整合系のエピタキシャル成長において、発生する格子欠
陥、転位の発生を特定の領域に集中させて、所望の半導
体発光素子の活性領域での欠陥密度を相対的に低減する
ことにより、従来の成長法よりも高品質の半導体発光素
子を提供することにある。
SUMMARY OF THE INVENTION The essence of the present invention is to concentrate lattice defects and dislocations generated in a specific region in a lattice-mismatched epitaxial growth typified when GaN is grown on a sapphire substrate. By relatively reducing the defect density in the active region of a desired semiconductor light emitting device, it is possible to provide a semiconductor light emitting device of higher quality than the conventional growth method.

【0006】[0006]

【作用】従来の方法では、基板との界面で格子歪みによ
って場所的にランダムに発生した欠陥は転位となって、
エピタキシャル層の成長が進行するに従い、成長方向と
同じ方向に蛇行しながら結晶中を伝搬し、成長後のエピ
タキシャル層の面内で均一な密度で生成される。
In the conventional method, defects randomly generated locally due to lattice strain at the interface with the substrate become dislocations,
As the growth of the epitaxial layer progresses, it propagates in the crystal while meandering in the same direction as the growth direction, and is generated with a uniform density in the plane of the epitaxial layer after the growth.

【0007】発生した転位は、結晶成長中でも応力によ
って運動することが知られている。転位を移動させるの
に必要な外部応力は非常に小さく、おそらく105dyn/cm2
以下であると言われており、基板結晶に外部応力を加え
ると容易に転位の運動を促進することができる。
It is known that the generated dislocations move due to stress even during crystal growth. The external stress required to move dislocations is very small, probably 10 5 dyn / cm 2
It is said that the dislocation motion can be easily promoted by applying external stress to the substrate crystal.

【0008】転位は一般に成長方向に延びるが、面内方
向に応力が加わると転位の面内方向の運動成分が大きく
なる。外部応力によって一旦、基板上にパターンニング
されたアモルファス層上に成長されたエピタキシャル層
に達すると、転位の運動は止る。アモルファス層上に成
長されたエピタキシャル層はやはりアモルファスに近い
状態であるため、結晶部分に比べて外部応力が加わりに
くいために、そこに達した転位はその領域からさらに運
動することはない。
Dislocations generally extend in the growth direction, but when stress is applied in the in-plane direction, the motion component of the dislocation in the in-plane direction increases. Once the external stress reaches the epitaxial layer grown on the amorphous layer patterned on the substrate, the dislocation motion ceases. Since the epitaxial layer grown on the amorphous layer is also in a state close to an amorphous state, external stress is less likely to be applied as compared with the crystalline portion, so that the dislocation reaching there does not move further from that region.

【0009】通常転位は、結晶の内部で切れることはな
く、必ずループを作るか、結晶成長中に基板のエッジ部
分に到達する。閉ループを形成した場合はエピタキシャ
ル層上層部へは伝搬しない。転位がエッジ部分に到達し
た場合は転位は消滅し、転位密度が低減する。
Usually, dislocations do not break inside the crystal and always form loops or reach the edge portion of the substrate during crystal growth. When a closed loop is formed, it does not propagate to the upper layer of the epitaxial layer. When the dislocation reaches the edge portion, the dislocation disappears and the dislocation density decreases.

【0010】金属材料の場合でも、熱サイクルによって
転位の運動を促進し、自由表面に逃がすことによる転位
の低減化がよく行われている。本発明の原理は上記作用
に基づく。すなわち、基板上の特定部分にアモルファス
層または欠陥密度のきわめて大きい結晶が積層されるよ
うにし、欠陥・転位を集中させて、転位の閉ループを作
るか、基板エッジと同等の役割を持たせることで所望の
領域のエピタキシャル層の転位密度を低減するものであ
る。
Even in the case of a metal material, the movement of dislocations is promoted by a thermal cycle and the dislocations are often reduced by allowing them to escape to the free surface. The principle of the present invention is based on the above operation. That is, by stacking an amorphous layer or a crystal with a very high defect density on a specific part of the substrate and concentrating defects / dislocations to form a closed loop of dislocations, or by providing a role equivalent to the substrate edge. It is intended to reduce the dislocation density of the epitaxial layer in a desired region.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の一実施例で用いられる成長
装置の断面概略図である。図中11は石英製の反応管で、
この反応管11内にはガス導入口12から原料ガスが導入さ
れる。反応管11内にはカーボン製のサセプタ13が配置さ
れており、試料基板14はこのサセプタ上面に設置され
る。サセプタはエピタキシャル層の組成および膜圧の面
内均一性を得るために、回転機構を備えている。反応管
の周囲に配置された高周波コイル15によってサセプタは
誘導加熱される。サセプタ内に配置された熱伝対16によ
て基板加熱温度のモニタおよび制御ができるようになっ
ている。ガス排気口17は真空ポンプ18に接続されてお
り、反応管内の圧力調節およびガスの排気ができるよう
になっている。
FIG. 1 is a schematic sectional view of a growth apparatus used in one embodiment of the present invention. In the figure, 11 is a quartz reaction tube.
A raw material gas is introduced into the reaction tube 11 through the gas introduction port 12. A susceptor 13 made of carbon is placed in the reaction tube 11, and the sample substrate 14 is placed on the upper surface of this susceptor. The susceptor is provided with a rotation mechanism in order to obtain in-plane uniformity of composition and film pressure of the epitaxial layer. The susceptor is induction-heated by the high-frequency coil 15 arranged around the reaction tube. A thermocouple 16 located in the susceptor allows the substrate heating temperature to be monitored and controlled. The gas exhaust port 17 is connected to a vacuum pump 18 so that the pressure inside the reaction tube can be adjusted and the gas can be exhausted.

【0013】つぎに本発明の主要部分となる試料基板に
成長中に歪みを与えるためのサセプタの機構について説
明する。基板底部に接触するサセプタの中心部には電磁
コイル19により上下運動する振動子20が配置されてお
り、基板を押し上げるような動きをすることで歪みが与
えられるようになっている。その際、試料基板全体が動
かないように基板周辺部はモリブデンで作られたリング
状の基板ホルダー21によって固定されている。
Next, the mechanism of the susceptor for imparting strain during growth to the sample substrate, which is the main part of the present invention, will be described. An oscillator 20 that moves up and down by an electromagnetic coil 19 is arranged at the center of the susceptor that comes into contact with the bottom of the substrate, and distortion is given by pushing up the substrate. At that time, the periphery of the substrate is fixed by a ring-shaped substrate holder 21 made of molybdenum so that the entire sample substrate does not move.

【0014】次に、上記装置を用いた結晶成長方法につ
いて説明する。まず、有機溶剤、塩酸系の薬品処理およ
び純水洗浄により表面を清浄化した面方位(0001)のα
-Al23(サファイア)基板14を上記サセプタ13上に
設置し、基板ホルダー21によって固定する。ガス導入口
12から精製装置を通した高純度の水素ガスを導入し、反
応管11内の大気を置換する。数分間水素ガスを導入した
後に真空ポンプ18を作動させ管内の圧力を10Torrに
保つ。圧力が安定したところで高周波コイル15によって
サセプタを誘導加熱し、試料基板14の温度が1200℃に達
してから約10分間保持し基板表面の清浄化を行う。次い
で基板温度を400℃に降温してから原料ガスであるTM
G(トリメチルガリウム)およびNH3(アンモニア)
をガス導入口12から導入しアモルファス状のGaN膜を
膜圧0.1μmになるまで堆積させる。このとき、基板温度
が通常の成長条件に比べて低いためNH3の分解効率が
低いことを考慮して、NH3とTMGの流量比は10000:
1とする。このとき成長温度が上記温度よりも高いと、3
次元成長すなわち6角柱状の島状成長がおこり、均一な
アモルファス状のGaN膜が得られない。
Next, a crystal growth method using the above apparatus will be described. First of all, α of the plane orientation (0001) was obtained by cleaning the surface with an organic solvent, hydrochloric acid chemical treatment and washing with pure water.
An -Al 2 O 3 (sapphire) substrate 14 is placed on the susceptor 13 and fixed by a substrate holder 21. Gas inlet
High-purity hydrogen gas that has passed through the purifier from 12 is introduced to replace the atmosphere in the reaction tube 11. After introducing hydrogen gas for several minutes, the vacuum pump 18 is operated to keep the pressure in the tube at 10 Torr. When the pressure is stable, the susceptor is induction-heated by the high-frequency coil 15, and is held for about 10 minutes after the temperature of the sample substrate 14 reaches 1200 ° C. to clean the substrate surface. Next, after lowering the substrate temperature to 400 ° C, the raw material gas TM
G (trimethylgallium) and NH 3 (ammonia)
Is introduced from the gas introduction port 12 and an amorphous GaN film is deposited until the film pressure reaches 0.1 μm. At this time, considering that the substrate temperature is lower than that under normal growth conditions and the decomposition efficiency of NH 3 is low, the flow rate ratio of NH 3 and TMG is 10000:
Set to 1. At this time, if the growth temperature is higher than the above temperature,
Dimensional growth, that is, hexagonal prismatic island-shaped growth occurs, and a uniform amorphous GaN film cannot be obtained.

【0015】堆積後は基板温度が下がってから、一旦試
料基板を反応管11から取り出し、フォトリソグラフィー
工程により図2に示すように、サファイア基板のR面に
直交する方向にストライプ状にGaN堆積膜を残す。ス
トライプの幅および間隔はそれぞれ5μmおよび50μmと
する。充分な純水洗浄の後、再び試料基板を反応管11内
に戻し、今度は水素ガスの代わりにNH3ガスを流しな
がら、上述の要領で試料基板14の温度が1100℃になるま
で加熱し、試料基板表面の清浄化を行う。
After the substrate temperature has dropped after the deposition, the sample substrate is once taken out from the reaction tube 11 and is subjected to a photolithography process as shown in FIG. 2 to form a stripe-shaped GaN deposition film in a direction orthogonal to the R plane of the sapphire substrate. Leave. The stripe width and spacing are 5 μm and 50 μm, respectively. After sufficiently washing with pure water, the sample substrate is returned to the reaction tube 11 again, and this time, while flowing NH 3 gas instead of hydrogen gas, the sample substrate 14 is heated until the temperature reaches 1100 ° C. as described above. , Clean the sample substrate surface.

【0016】次いで、TMGおよびNH3をガス導入口1
2から導入し通常の2段階成長法でGaN膜をエピタキシ
ャル成長させる。すなわち基板温度を600℃まで下げ、
0.05μmの膜厚までは3次元成長すなわち6角柱状の島状
成長が促進されるようにし、その後基板温度を1050℃に
上げて続けて膜厚が5.0μmとなるエピタキシャル成長を
行う。このときNH3とTMGの流量比は300:1であ
る。これをわかりやすく説明したのが図2である。
Next, TMG and NH 3 are introduced into the gas inlet 1
The GaN film is epitaxially grown by the ordinary two-step growth method introduced from step 2. That is, lower the substrate temperature to 600 ℃,
Three-dimensional growth, that is, hexagonal prismatic island-shaped growth is promoted up to a film thickness of 0.05 μm, and then the substrate temperature is raised to 1050 ° C. to continue epitaxial growth to a film thickness of 5.0 μm. At this time, the flow rate ratio of NH3 and TMG is 300: 1. FIG. 2 explains this in an easy-to-understand manner.

【0017】図2(a)に示すように、最初の結晶成長
でサファイア基板31上にアモルファス状のGaN膜3
5を成長させ、そして(b)に示すように、アモルファ
スGaN膜35をストライプ状に加工する。次に、2回
目の結晶成長で、前記アモルファスGaN膜35の上
に、GaN膜34をエピタキシャル成長させる(c)。
これにより格子欠陥や転位は、特定の領域36に集中
し、所望の半導体発光素子の活性領域での欠陥密度を相
対的に低減できるというものである。
As shown in FIG. 2A, the amorphous GaN film 3 is formed on the sapphire substrate 31 by the first crystal growth.
5 is grown, and the amorphous GaN film 35 is processed into a stripe shape as shown in FIG. Next, in the second crystal growth, the GaN film 34 is epitaxially grown on the amorphous GaN film 35 (c).
As a result, lattice defects and dislocations are concentrated in a specific region 36, and the defect density in the active region of a desired semiconductor light emitting element can be relatively reduced.

【0018】以上のような方法により得られる、GaN
エピタキシャル層の結晶品質について述べる。
GaN obtained by the above method
The crystal quality of the epitaxial layer will be described.

【0019】図3は、従来の二段階成長法により、面方
位(0001)のα-Al23(サファイア)基板31上に成
長した厚さ5μmのGaNエピタキシャル層33、34断面
の透過電子顕微鏡像から得られた転位の分布を示してい
る。基板31との界面37から格子不整合による歪みが原因
で一様に発生した転位32はエピタキシャル成長方向に蛇
行しながらエピタキシャル層表面に延びている。図中、
途中から見えている、あるいは途中で消えている転位
は、断面に垂直な方向に転位が延びているために透過電
子顕微鏡の視野から外れているためで、転位が消滅して
いるわけではない。透過電子顕微鏡像から転位密度を見
積もると、109/cm2以上の転位が一様に発生し、格子整
合系のエピタキシャル成長であるGaAs基板上のGa
AsやAlGaAsのエピタキシャル成長における転位
の発生密度に比べると6桁から7桁も多くなる。
FIG. 3 shows a transmission electron of a 5 μm thick GaN epitaxial layer 33, 34 section grown on an α-Al 2 O 3 (sapphire) substrate 31 having a plane orientation (0001) by a conventional two-step growth method. The distribution of dislocations obtained from the microscope image is shown. Dislocations 32 uniformly generated from the interface 37 with the substrate 31 due to strain due to lattice mismatch extend to the surface of the epitaxial layer while meandering in the epitaxial growth direction. In the figure,
The dislocations that are visible or disappear in the middle are out of the field of view of the transmission electron microscope because the dislocations extend in the direction perpendicular to the cross section, and the dislocations do not disappear. When the dislocation density is estimated from a transmission electron microscope image, dislocations of 10 9 / cm 2 or more are uniformly generated, which is a lattice-matched epitaxial growth of Ga on a GaAs substrate.
The density of dislocations in epitaxial growth of As and AlGaAs is increased by 6 to 7 digits.

【0020】一方、本実施例によるところのGaNエピ
タキシャル層断面の透過電子顕微鏡像から得られた転位
の分布を図4に示す。厚さ3μmまでにかなりの転位がス
トライプ状に形成されたアモルファス状のGaN膜35の
上の結晶欠陥の集中した部分36に達していることがわか
る。ストライプの中央部分の転位密度は105/cm2以下で
あった。図3の従来例に比べきわめて結晶性の優れたG
aN膜が得られていることがわかる。
On the other hand, FIG. 4 shows the distribution of dislocations obtained from a transmission electron microscope image of the cross section of the GaN epitaxial layer according to this example. It can be seen that considerable dislocations reach the portion 36 where the crystal defects are concentrated on the amorphous GaN film 35 formed in a stripe shape up to the thickness of 3 μm. The dislocation density in the central portion of the stripe was 10 5 / cm 2 or less. Compared to the conventional example shown in FIG. 3, G has extremely excellent crystallinity.
It can be seen that an aN film is obtained.

【0021】また基板結晶に成長中に歪みを加えた場合
の実施例について述べる。2段階目の成長時に電磁コイ
ル19を作動し、振動子20を上下運動させて試料基板に外
部応力を加えた。上下運動のストロークは直径2インチ
の試料基板を用いる場合1mmとする。また、振動の周期
は成長速度により異なるが、数原子層分の成長毎に振動
するように設定する。この場合も同様の効果が得られた
が、基板との界面37から発生した転位は二段階目のエピ
タキシャル層34の初めから転位が急速に面内方向に延び
ており、外部応力を加えない場合よりも、転位の運動が
速く、より効果的にアモルファス状のGaN膜35の上の
結晶欠陥部へ集中することがわかる。
An example in which strain is applied to the substrate crystal during growth will be described. During the growth in the second stage, the electromagnetic coil 19 was operated to move the oscillator 20 up and down to apply external stress to the sample substrate. The stroke for vertical movement is 1 mm when using a 2-inch diameter sample substrate. Moreover, although the cycle of vibration varies depending on the growth rate, it is set so as to vibrate every time a few atomic layers are grown. In this case as well, the same effect was obtained, but when dislocations generated from the interface 37 with the substrate were extended in the in-plane direction from the beginning of the second-stage epitaxial layer 34, and no external stress was applied. It can be seen that the dislocations move faster and are more effectively concentrated on the crystal defects on the amorphous GaN film 35.

【0022】本実施例では、アモルファス状のGaN膜
のストライプを基板上に形成したが、SiO2などの酸
化膜層を用いても同様の効果が得られる。図5は厚さ0.
1μmのSiO2膜38でストライプを形成した基板上に、
GaN膜の選択成長を行った場合の断面の転位分布を示
す。上述した実施例と同様の効果が得られることがわか
る。
In this embodiment, the stripes of the amorphous GaN film are formed on the substrate, but the same effect can be obtained by using an oxide film layer such as SiO 2 . Figure 5 shows a thickness of 0.
On a substrate with a stripe formed of 1 μm SiO 2 film 38,
The dislocation distribution in the cross section when the GaN film is selectively grown is shown. It can be seen that the same effect as that of the above-described embodiment can be obtained.

【0023】また、本実施例は、面方位(0001)のα-
Al23(サファイア)基板上へのGaNエピタキシャ
ル成長について述べたが、本発明はこの実施例方法に限
定されるものではなく、その他あらゆる格子不整合系の
エピタキシャル成長において実施でき、同様の効果を得
られるものである。
Further, in this embodiment, α-of the plane orientation (0001) is used.
Although the GaN epitaxial growth on the Al 2 O 3 (sapphire) substrate has been described, the present invention is not limited to the method of this embodiment and can be carried out in any other lattice-mismatched epitaxial growth to obtain the same effect. It is what is done.

【0024】以上より、本発明による方法が格子不整合
系のエピタキシャル成長において転位密度の少ない高品
質のエピタキシャル層を得るのに十分有効であること
が、実証できる。
From the above, it can be demonstrated that the method according to the present invention is sufficiently effective in obtaining a high quality epitaxial layer with a low dislocation density in the epitaxial growth of a lattice mismatching system.

【0025】[0025]

【発明の効果】以上、詳述したように本発明によれば、
格子不整合系のエピタキシャル成長において、発生する
格子欠陥、転位の発生を特定の領域に集中させて、所望
の領域での転位密度を低減することができるので、半導
体レーザなど高品質の結晶性を要求される半導体発光素
子の作製が可能となる。
As described in detail above, according to the present invention,
In epitaxial growth of lattice-mismatched systems, the generation of lattice defects and dislocations generated can be concentrated in a specific region, and the dislocation density in the desired region can be reduced, so high-quality crystallinity such as for semiconductor lasers is required. It becomes possible to manufacture the semiconductor light emitting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるエピタキシャル成長装
置の断面概略図
FIG. 1 is a schematic sectional view of an epitaxial growth apparatus in an example of the present invention.

【図2】本発明の実施例におけるサファイア基板結晶の
表面上にストライプ状にアモルファスGaN膜を形成す
る工程とその基板上にエピタキシャル成長する工程を説
明するための断面概略図
FIG. 2 is a schematic cross-sectional view for explaining a step of forming an amorphous GaN film in a stripe shape on the surface of a sapphire substrate crystal and an epitaxial growth step on the substrate in an example of the present invention.

【図3】従来例におけるサファイア基板に成長したGa
Nエピタキシャル層断面の転位の分布図
FIG. 3 shows Ga grown on a sapphire substrate in a conventional example.
Distribution diagram of dislocations in N epitaxial layer cross section

【図4】本発明の実施例におけるサファイア基板に成長
したGaNエピタキシャル層断面の転位の分布図
FIG. 4 is a distribution diagram of dislocations in a cross section of a GaN epitaxial layer grown on a sapphire substrate according to an example of the present invention.

【図5】本発明の別の実施例におけるサファイア基板に
成長したGaNエピタキシャル層断面の転位の分布図
FIG. 5 is a distribution diagram of dislocations in a cross section of a GaN epitaxial layer grown on a sapphire substrate according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 反応管 12 ガス導入口 13 カーボンサセプタ 14 試料基板 15 高周波コイル 16 熱伝対 17 ガス排気口 18 真空ポンプ 19 電磁コイル 20 振動子 21 基板ホルダー 31 サファイア基板 32 転位 33 GaNエピタキシャル層(一段階目) 34 GaNエピタキシャル層(二段階目) 35 アモルファスGaN 36 結晶欠陥の集中したGaNエピタキシャル層 37 基板とエピタキシャル成長層との界面 38 SiO211 Reaction Tube 12 Gas Inlet Port 13 Carbon Susceptor 14 Sample Substrate 15 High Frequency Coil 16 Thermocouple 17 Gas Exhaust Port 18 Vacuum Pump 19 Electromagnetic Coil 20 Transducer 21 Substrate Holder 31 Sapphire Substrate 32 Dislocation 33 GaN Epitaxial Layer (First Step) 34 GaN epitaxial layer (second stage) 35 Amorphous GaN 36 GaN epitaxial layer in which crystal defects are concentrated 37 Interface between substrate and epitaxial growth layer 38 SiO 2 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板と前記基板上に成長するエピタキシャ
ル層とが格子不整合である系のエピタキシャル成長にお
いて、 前記基板とエピタキシャル成長層の格子不整合により発
生する転位を特定の場所に集中させることを特徴とする
エピタキシャル成長方法。
1. In epitaxial growth of a system in which a substrate and an epitaxial layer grown on the substrate have a lattice mismatch, dislocations generated by the lattice mismatch between the substrate and the epitaxial growth layer are concentrated at a specific place. Epitaxial growth method.
【請求項2】基板表面上の所定の位置に、前記基板上に
成長するエピタキシャル成長層と同じ組成のアモルファ
ス層をあらかじめ成長していることを特徴とする請求項
1に記載のエピタキシャル成長方法。
2. The epitaxial growth method according to claim 1, wherein an amorphous layer having the same composition as the epitaxial growth layer grown on the substrate is previously grown at a predetermined position on the surface of the substrate.
【請求項3】サファイア基板上にGaN層をエピタキシ
ャル成長する方法であって、 前記基板表面上の所定の位置に、前記基板とエピタキシ
ャル層の間に、GaNのアモルファス層を成長している
ことを特徴とするエピタキシャル成長方法。
3. A method of epitaxially growing a GaN layer on a sapphire substrate, wherein an amorphous layer of GaN is grown at a predetermined position on the surface of the substrate between the substrate and the epitaxial layer. Epitaxial growth method.
【請求項4】アモルファス層の代わりに、SiO2また
はSiNx膜を、前記基板表面上の所定の位置に成長し
ていることを特徴とする請求項3に記載のエピタキシャ
ル成長方法。
4. The epitaxial growth method according to claim 3, wherein a SiO 2 or SiN x film is grown at a predetermined position on the surface of the substrate instead of the amorphous layer.
【請求項5】基板表面上の所定の部分が、ストライプ形
状で基板の特定方位に沿っていることを特徴とする請求
項2〜4のいずれかに記載のエピタキシャル成長方法。
5. The epitaxial growth method according to claim 2, wherein the predetermined portion on the surface of the substrate has a stripe shape and extends along a specific orientation of the substrate.
【請求項6】基板上にエピタキシャル層を成長中に、前
記基板に歪みを加えることを特徴とする請求項1または
3に記載のエピタキシャル成長方法。
6. The epitaxial growth method according to claim 1, wherein strain is applied to the substrate during the growth of the epitaxial layer on the substrate.
JP19830594A 1994-08-23 1994-08-23 Epitaxial growth method Pending JPH0864791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19830594A JPH0864791A (en) 1994-08-23 1994-08-23 Epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19830594A JPH0864791A (en) 1994-08-23 1994-08-23 Epitaxial growth method

Publications (1)

Publication Number Publication Date
JPH0864791A true JPH0864791A (en) 1996-03-08

Family

ID=16388928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19830594A Pending JPH0864791A (en) 1994-08-23 1994-08-23 Epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH0864791A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047170A1 (en) * 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
US6015979A (en) * 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
US6051849A (en) * 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
EP1005068A2 (en) * 1998-11-26 2000-05-31 Sony Corporation GaN film having a reduced threading dislocations density and fabrication method thereof
WO2000048254A1 (en) * 1999-02-09 2000-08-17 Nichia Corporation Nitride semiconductor device and its manufacturino method
JP2000277863A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Semiconductor light emitting element and manufacturing method therefor
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6252261B1 (en) 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6316785B1 (en) 1998-10-15 2001-11-13 Kabushiki Kaisha Toshiba Nitride-compound semiconductor device
US6348096B1 (en) * 1997-03-13 2002-02-19 Nec Corporation Method for manufacturing group III-V compound semiconductors
US6380108B1 (en) 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6489221B2 (en) 1999-11-17 2002-12-03 North Carolina State University High temperature pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
WO2002058163A3 (en) * 2001-01-18 2002-12-12 Aixtron Ag Method for producing semiconductor components
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
US6614060B1 (en) * 1999-05-28 2003-09-02 Arima Optoelectronics Corporation Light emitting diodes with asymmetric resonance tunnelling
US6617668B1 (en) 1999-05-21 2003-09-09 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6645295B1 (en) 1999-05-10 2003-11-11 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
WO2003094214A1 (en) * 2002-04-30 2003-11-13 Sumitomo Electric Industries, Ltd. Substrate for growing gallium nitride, method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
JP2004336080A (en) * 2004-08-18 2004-11-25 Nichia Chem Ind Ltd Nitride semiconductor device
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
JP2005020034A (en) * 1998-12-21 2005-01-20 Nichia Chem Ind Ltd Method of growing nitride semiconductor and nitride semiconductor device
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
KR100496900B1 (en) * 2001-09-19 2005-06-23 스미토모덴키고교가부시키가이샤 SINGLE-CRYSTAL GaN SUBSTRATE AND ITS GROWING METHOD AND ITS MANUFACTURING METHOD
KR100523619B1 (en) * 2001-10-09 2005-10-24 스미토모덴키고교가부시키가이샤 SINGLE CRYSTAL GaN SUBSTRATE, METHOD OF GROWING SINGLE CRYSTAL GaN AND METHOD OF PRODUCING SINGLE CRYSTAL GaN SUBSTRATE
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US7128846B2 (en) 2002-02-28 2006-10-31 Toyoda Gosei Co., Ltd. Process for producing group III nitride compound semiconductor
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
CN100362672C (en) * 2001-09-19 2008-01-16 住友电气工业株式会社 Single crystal gan substrate, method of growing same and method of producing same
KR100833897B1 (en) * 2007-05-21 2008-06-02 한양대학교 산학협력단 Method for epitaxial growth
US7396697B2 (en) 2003-04-28 2008-07-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
JP2008263228A (en) * 2008-07-08 2008-10-30 Sharp Corp Semiconductor light emitting element, and method of manufacturing the same
CN100438109C (en) * 2005-05-16 2008-11-26 索尼株式会社 Light-emitting diode, integrated light-emitting diode and method for their production, method for growing, light source cell unit, backlight device, display and electronic device
CN100440556C (en) * 2001-10-12 2008-12-03 住友电气工业株式会社 Semiconductor light emitting device and device
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2011084469A (en) * 1997-10-30 2011-04-28 Sumitomo Electric Ind Ltd METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
KR101039970B1 (en) * 2010-02-11 2011-06-09 엘지이노텍 주식회사 Method for forming a semiconductor layer and fabricating light emitting device
JP2012039138A (en) * 2011-10-06 2012-02-23 Sharp Corp Semiconductor light-emitting element manufacturing method
WO2021018380A1 (en) * 2019-07-29 2021-02-04 Microsoft Technology Licensing Llc Fabrication method for semiconductor nanowires coupled to a superconductor

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177586A (en) * 1997-03-13 2008-07-31 Nec Corp GaN SYSTEM SEMICONDUCTOR AND ITS MANUFACTURING METHOD
US6555845B2 (en) 1997-03-13 2003-04-29 Nec Corporation Method for manufacturing group III-V compound semiconductors
JP4743214B2 (en) * 1997-03-13 2011-08-10 日本電気株式会社 Semiconductor device and manufacturing method thereof
US6348096B1 (en) * 1997-03-13 2002-02-19 Nec Corporation Method for manufacturing group III-V compound semiconductors
US7154128B2 (en) 1997-04-11 2006-12-26 Nichia Chemical Industries, Limited Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US6756611B2 (en) 1997-04-11 2004-06-29 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US7083679B2 (en) 1997-04-11 2006-08-01 Nichia Corporation Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US6153010A (en) * 1997-04-11 2000-11-28 Nichia Chemical Industries Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
WO1998047170A1 (en) * 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
USRE42770E1 (en) 1997-04-11 2011-10-04 Nichia Corporation Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer
US7442254B2 (en) 1997-04-11 2008-10-28 Nichia Corporation Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer
US6940103B2 (en) 1997-04-11 2005-09-06 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device
US6015979A (en) * 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
JP2011084469A (en) * 1997-10-30 2011-04-28 Sumitomo Electric Ind Ltd METHOD AND INGOT FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE
US6051849A (en) * 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
US6570192B1 (en) 1998-02-27 2003-05-27 North Carolina State University Gallium nitride semiconductor structures including lateral gallium nitride layers
US6602763B2 (en) 1998-02-27 2003-08-05 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth
US6608327B1 (en) 1998-02-27 2003-08-19 North Carolina State University Gallium nitride semiconductor structure including laterally offset patterned layers
US6897483B2 (en) 1998-06-10 2005-05-24 North Carolina State University Second gallium nitride layers that extend into trenches in first gallium nitride layers
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US7195993B2 (en) 1998-06-10 2007-03-27 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth into trenches
US6252261B1 (en) 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
US6316785B1 (en) 1998-10-15 2001-11-13 Kabushiki Kaisha Toshiba Nitride-compound semiconductor device
US6602764B2 (en) 1998-11-24 2003-08-05 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers
US6462355B1 (en) 1998-11-24 2002-10-08 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silicon carbide substrates
US6376339B2 (en) 1998-11-24 2002-04-23 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on silicon carbide substrates by lateral growth from sidewalls of masked posts, and gallium nitride semiconductor structures fabricated thereby
US7378684B2 (en) 1998-11-24 2008-05-27 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silicon carbide substrates
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
EP1005068A3 (en) * 1998-11-26 2000-11-15 Sony Corporation GaN film having a reduced threading dislocations density and fabrication method thereof
EP1005068A2 (en) * 1998-11-26 2000-05-31 Sony Corporation GaN film having a reduced threading dislocations density and fabrication method thereof
US6576533B2 (en) 1998-11-26 2003-06-10 Sony Corporation Method of forming semiconductor thin film of group III nitride compound semiconductor.
JP2005020034A (en) * 1998-12-21 2005-01-20 Nichia Chem Ind Ltd Method of growing nitride semiconductor and nitride semiconductor device
WO2000048254A1 (en) * 1999-02-09 2000-08-17 Nichia Corporation Nitride semiconductor device and its manufacturino method
JP2000277863A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Semiconductor light emitting element and manufacturing method therefor
US6645295B1 (en) 1999-05-10 2003-11-11 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6617668B1 (en) 1999-05-21 2003-09-09 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6614060B1 (en) * 1999-05-28 2003-09-02 Arima Optoelectronics Corporation Light emitting diodes with asymmetric resonance tunnelling
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6835966B2 (en) 1999-07-27 2004-12-28 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7176497B2 (en) 1999-07-27 2007-02-13 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor
US6893945B2 (en) 1999-07-27 2005-05-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride group compound semiconductor
US6930329B2 (en) 1999-07-27 2005-08-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6521514B1 (en) 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6489221B2 (en) 1999-11-17 2002-12-03 North Carolina State University High temperature pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
US6586778B2 (en) 1999-12-21 2003-07-01 North Carolina State University Gallium nitride semiconductor structures fabricated by pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts
US6380108B1 (en) 1999-12-21 2002-04-30 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7560725B2 (en) 1999-12-24 2009-07-14 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6864160B2 (en) 2000-02-09 2005-03-08 North Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6621148B2 (en) 2000-02-09 2003-09-16 North Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby
US7095062B2 (en) 2000-02-09 2006-08-22 North Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby
US6261929B1 (en) 2000-02-24 2001-07-17 North Carolina State University Methods of forming a plurality of semiconductor layers using spaced trench arrays
US6486042B2 (en) 2000-02-24 2002-11-26 North Carolina State University Methods of forming compound semiconductor layers using spaced trench arrays and semiconductor substrates formed thereby
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US7462867B2 (en) 2000-03-14 2008-12-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US7491984B2 (en) 2000-03-31 2009-02-17 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
WO2002058163A3 (en) * 2001-01-18 2002-12-12 Aixtron Ag Method for producing semiconductor components
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
CN100362672C (en) * 2001-09-19 2008-01-16 住友电气工业株式会社 Single crystal gan substrate, method of growing same and method of producing same
KR100496900B1 (en) * 2001-09-19 2005-06-23 스미토모덴키고교가부시키가이샤 SINGLE-CRYSTAL GaN SUBSTRATE AND ITS GROWING METHOD AND ITS MANUFACTURING METHOD
KR100523619B1 (en) * 2001-10-09 2005-10-24 스미토모덴키고교가부시키가이샤 SINGLE CRYSTAL GaN SUBSTRATE, METHOD OF GROWING SINGLE CRYSTAL GaN AND METHOD OF PRODUCING SINGLE CRYSTAL GaN SUBSTRATE
CN100440556C (en) * 2001-10-12 2008-12-03 住友电气工业株式会社 Semiconductor light emitting device and device
CN100440557C (en) * 2001-10-12 2008-12-03 住友电气工业株式会社 Semiconductor light emitting device and device
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US7128846B2 (en) 2002-02-28 2006-10-31 Toyoda Gosei Co., Ltd. Process for producing group III nitride compound semiconductor
WO2003094214A1 (en) * 2002-04-30 2003-11-13 Sumitomo Electric Industries, Ltd. Substrate for growing gallium nitride, method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
US7351347B2 (en) 2002-04-30 2008-04-01 Sumitomo Electric Industries, Ltd. Gallium-nitride deposition substrate, method of manufacturing gallium-nitride deposition substrate, and method of manufacturing gallium nitride substrate
CN100352004C (en) * 2002-04-30 2007-11-28 住友电气工业株式会社 Substrate for growing gallium nitride, itsproducing method and method for preparing gallium nitride substrate
KR100915268B1 (en) * 2002-04-30 2009-09-03 스미토모덴키고교가부시키가이샤 Substrate for growing gallium nitride, method for preparing substrate for growing gallium nitride and method for preparing gallium nitride substrate
US7396697B2 (en) 2003-04-28 2008-07-08 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
US7622749B2 (en) 2003-04-28 2009-11-24 Panasonic Corporation Semiconductor light-emitting element and method for fabricating the same
JP2004336080A (en) * 2004-08-18 2004-11-25 Nichia Chem Ind Ltd Nitride semiconductor device
CN100438109C (en) * 2005-05-16 2008-11-26 索尼株式会社 Light-emitting diode, integrated light-emitting diode and method for their production, method for growing, light source cell unit, backlight device, display and electronic device
KR100833897B1 (en) * 2007-05-21 2008-06-02 한양대학교 산학협력단 Method for epitaxial growth
JP2008263228A (en) * 2008-07-08 2008-10-30 Sharp Corp Semiconductor light emitting element, and method of manufacturing the same
KR101039970B1 (en) * 2010-02-11 2011-06-09 엘지이노텍 주식회사 Method for forming a semiconductor layer and fabricating light emitting device
US8298918B2 (en) 2010-02-11 2012-10-30 Lg Innotek Co., Ltd. Method for forming semiconductor layer and method for manufacturing light emitting device
EP2360743A3 (en) * 2010-02-11 2015-11-18 LG Innotek Co., Ltd. Method for forming semiconductor layer and method for manufacturing light emitting device
JP2012039138A (en) * 2011-10-06 2012-02-23 Sharp Corp Semiconductor light-emitting element manufacturing method
WO2021018380A1 (en) * 2019-07-29 2021-02-04 Microsoft Technology Licensing Llc Fabrication method for semiconductor nanowires coupled to a superconductor
KR20220037441A (en) * 2019-07-29 2022-03-24 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 Fabrication Method for Semiconductor Nanowires Coupled to Superconductors
JP2022545618A (en) * 2019-07-29 2022-10-28 マイクロソフト テクノロジー ライセンシング,エルエルシー Method for producing semiconductor nanowires bound to superconductors
US11588093B2 (en) 2019-07-29 2023-02-21 Microsoft Technology Licensing, Llc Fabrication method for semiconductor nanowires coupled to a superconductor

Similar Documents

Publication Publication Date Title
JPH0864791A (en) Epitaxial growth method
JP5276852B2 (en) Method for manufacturing group III nitride semiconductor epitaxial substrate
JP4932121B2 (en) Method for manufacturing group III-V nitride semiconductor substrate
JP4486506B2 (en) Growth of nonpolar gallium nitride with low dislocation density by hydride vapor deposition method
KR101142745B1 (en) Substrate of gallium nitride single crystal and process for producing the same
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP5244487B2 (en) Gallium nitride growth substrate and method for manufacturing gallium nitride substrate
JP2006523033A (en) Method for growing single crystal GaN on silicon
JP2010521810A (en) Semiconductor heterostructure and its manufacture
JPH10265297A (en) Production of gallium nitride bulk single crystal
KR100331447B1 (en) Method for fabricating a thick GaN film
JP3673541B2 (en) Method for producing group 3-5 compound semiconductor crystal
KR100450781B1 (en) Method for manufacturing GaN single crystal
JP2004269313A (en) Method for manufacturing gallium nitride crystal substrate
JPH1179897A (en) Crystal growth for gallium nitride thick film
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP4665286B2 (en) Semiconductor substrate and manufacturing method thereof
JP2001148348A (en) Gab SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
JP3654307B2 (en) Manufacturing method of semiconductor device
JP4238372B2 (en) Semiconductor substrate manufacturing method and device structure manufacturing method
JP2004307253A (en) Method for manufacturing semiconductor substrate
JP2003224072A (en) Semiconductor structure and manufacturing method therefor
JP2001288000A (en) Method for producing semiconductor thin film crystal
JP2003171200A (en) Crystal growth method for compound semiconductor and compound semiconductor device