JPS5895696A - Vapor-phase growing method with controlled vapor pressure - Google Patents

Vapor-phase growing method with controlled vapor pressure

Info

Publication number
JPS5895696A
JPS5895696A JP19428781A JP19428781A JPS5895696A JP S5895696 A JPS5895696 A JP S5895696A JP 19428781 A JP19428781 A JP 19428781A JP 19428781 A JP19428781 A JP 19428781A JP S5895696 A JPS5895696 A JP S5895696A
Authority
JP
Japan
Prior art keywords
vapor pressure
growth
pressure
vapor
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19428781A
Other languages
Japanese (ja)
Other versions
JPS6229399B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Masakazu Morishita
正和 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP19428781A priority Critical patent/JPS5895696A/en
Publication of JPS5895696A publication Critical patent/JPS5895696A/en
Publication of JPS6229399B2 publication Critical patent/JPS6229399B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a growing layer of a compound semiconductor with little defects and high quality, by keeping the partial pressure of an element of high vapor pressure at an optimal vapor pressure in the vapor-phase growing method of the compound semiconductor. CONSTITUTION:In the case of the epitaxial growth of GaAs, hydrogen gas 1 is passed through a flowmeter 5, bubbled in a liquid, e.g. trimethylgallium, in a vessel 2 and fed to a reaction tube 6. On the other hand, an arsine, etc. from a gas cylinder 3 and a carrier gas 4, e.g. hudrogen gas, are fed through flowmeters 5 to the reaction tube 6 to grow GaAs epitaxially on substrate crystals 9 placed on a carbon boat 8 heated by the induction heating with a coil 7. In the process, the arsine, etc. are fed to the reaction tube 6 so that the partial pressure of As which is an element of high vapor pressure may be the optimal vapor pressure (shown in the table) corresponding to the growth temperature (the temperature of the substrate crystals 9).

Description

【発明の詳細な説明】 本発明は、化合物半導体の化学量論的組成を達成するた
めの蒸気圧制御気相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor pressure controlled vapor phase growth method for achieving stoichiometric composition of compound semiconductors.

従来の気相成長においては、化合物半導体の化学量論的
組成(ストイキオメトリ)を達成するような方法が用い
られておらず1例えば、GaAElなどでは、結晶成長
時の八8の分圧が、GaAsのストイキオメトリを満足
するに必要な最適A8圧に達してい彦い。通常、ストイ
キオメトリを満足するA8圧より低いAsの分圧で成長
されている。他の物質についても同様であり、GaAs
のようなl−V族であれば9通常V族元素の蒸気圧が高
<、V族元素の分圧が問題となる。又、■−■族、■−
■族やそれらの混晶の高蒸気圧の元素分圧が問題となる
In conventional vapor phase growth, a method for achieving stoichiometric composition (stoichiometry) of compound semiconductors is not used. , the optimum A8 pressure required to satisfy the stoichiometry of GaAs has been reached. Usually, As is grown at a partial pressure lower than the A8 pressure that satisfies stoichiometry. The same applies to other substances, such as GaAs
If it is a l-V group such as 9, the vapor pressure of the group V element is usually high, and the partial pressure of the group V element becomes a problem. Also, ■-■ family, ■-
The elemental partial pressure of the high vapor pressure of group (3) and their mixed crystals becomes a problem.

本発明の目的は、化合物半導体の気相成長において、高
蒸気圧元素の分圧を最適蒸気圧にすることによって、低
欠陥、高品質な化合物半導体成長層を得ることである。
An object of the present invention is to obtain a low-defect, high-quality compound semiconductor growth layer by adjusting the partial pressure of a high vapor pressure element to an optimum vapor pressure in the vapor phase growth of a compound semiconductor.

又、他の目的は、カーボン、シリコン、酸素などの不純
物の混入を防ぐことである。
Another purpose is to prevent contamination of impurities such as carbon, silicon, and oxygen.

以下2本発明について詳述する。The following two inventions will be described in detail.

第1図は、GaAsの気相エピタキシャル成長をする成
長装置である。−例として、有機金属気相エピタキシャ
ル成長について説明する。第1図中。
FIG. 1 shows a growth apparatus for vapor phase epitaxial growth of GaAs. - As an example, metal-organic vapor phase epitaxial growth will be described. In Figure 1.

1は通常水素ガス(H2)で、ベッセル2の中の液体・
例えばトリメチルガリウム((CH3)3 Ga)やト
リエチルガリウム((C2H5)3Ga)等をバルブし
て。
1 is usually hydrogen gas (H2), which is the liquid in vessel 2.
For example, trimethyl gallium ((CH3) 3 Ga) or triethyl gallium ((C2H5) 3 Ga) is used as a valve.

そ@S気圧とガス流量により9モル比は決まる。The molar ratio is determined by the atmospheric pressure and gas flow rate.

蒸気圧は温度で決まる。Asの供給は、アルシン(As
 H3)等を水素ガス等で一一會参瞬薄くしたボンベ3
から、直接流量計5を通して2反応管6中に導入する。
Vapor pressure is determined by temperature. The supply of As is arsine (As
Cylinder 3 in which H3) etc. was diluted with hydrogen gas etc.
From there, it is directly introduced into two reaction tubes 6 through a flow meter 5.

4はキャリアガスで、H2等が使われるが!これらの絶
対流量や相対流量を変化させて、製造されるGaAsの
結晶性等を制御する。加熱装置としては、ここでは高周
波加熱の方法をとり、コイル7によって、カーボンボー
ト8を誘導加熱することによって基板結晶9を間接的に
加熱し、基板上にエピタキシャル成長を行なう。GaA
eなど化合物半導体では、微量な化学量論的組成からの
ずれが、非常に問題となる。例えば、GaA3の半導体
の原子密度は−1ぼ5 X 1022個/d程度である
から、 GaとAsの組成が1:1ではなく + lp
pmいずれかに偏っているとすると、  5X1016
個/d程度の原子数に差が出てきて、相当の不純物が入
っている条件と同じになる。単純に、この偏差量がすべ
てキャリアに寄与するとすると、5X10crnの不純
物が入っているのと同じことになる。
4 is a carrier gas, H2 etc. is used! By changing these absolute flow rates and relative flow rates, the crystallinity, etc. of the produced GaAs is controlled. As the heating device, a high frequency heating method is used here, and the substrate crystal 9 is indirectly heated by inductively heating the carbon boat 8 using the coil 7, thereby performing epitaxial growth on the substrate. GaA
In compound semiconductors such as e, a slight deviation from the stoichiometric composition becomes a serious problem. For example, since the atomic density of GaA3 semiconductor is about -1 5 x 1022 atoms/d, the composition of Ga and As is not 1:1 but +lp
If it is biased toward either pm, then 5X1016
There is a difference in the number of atoms on the order of /d, which is the same condition as when a considerable amount of impurity is present. Simply assuming that all of this deviation contributes to carriers, it is equivalent to the presence of 5×10 crn of impurities.

第2図は、■族とV族の単体元素の蒸気圧の温度依存性
である。図中、横軸は絶対温度(’x)+25、アンチ
モン(Sb)26である。璽〜V化合物−半導体では、
圧到的にV族元素の蒸気圧が高く非常に蒸発しやすい状
態になる。高温において、各結晶を真空、水素、窒素、
アルゴン等のガス、中で熱処理を行なうとこの蒸気圧の
差の効果が顕著に表われ9表面から高蒸気圧元素が抜は
出して非常に荒れた状態となる。l−V族半導体ではV
族が高蒸気圧元素である。
FIG. 2 shows the temperature dependence of the vapor pressure of the simple elements of group Ⅰ and group V. In the figure, the horizontal axis represents absolute temperature ('x)+25 and antimony (Sb) 26. In the case of ~V compound-semiconductor,
The vapor pressure of group V elements is extremely high, and they become extremely easy to evaporate. At high temperatures, each crystal is exposed to vacuum, hydrogen, nitrogen,
When heat treatment is performed in a gas such as argon, the effect of this difference in vapor pressure becomes noticeable, and high vapor pressure elements are extracted from the surface, resulting in a very rough state. In l-V group semiconductors, V
The group is a high vapor pressure element.

第3図は、Ir族と■族の単体元素の蒸気圧の温度依存
性である。横軸は絶対温度(’K)l縦軸は蒸気圧(T
orr )である。図中、Ir族は水銀(Hg)31、
カドミウム(Cd)32.亜鉛(Zn ) 33 + 
VT族はイオウ(S )34.セレン(Ss)35.テ
ルル(Te2)36である。■−■族では水銀の蒸気圧
が最も高く1例えばHgTeであれば水銀の蒸気圧に特
に注意を払って成長を行なう必要がある。
FIG. 3 shows the temperature dependence of the vapor pressure of the Ir group and (■) group simple elements. The horizontal axis is absolute temperature ('K) and the vertical axis is vapor pressure (T
orr). In the figure, the Ir group is mercury (Hg)31,
Cadmium (Cd)32. Zinc (Zn) 33 +
The VT group is sulfur (S)34. Selenium (Ss)35. It is tellurium (Te2)36. In the group (1)-(3), mercury has the highest vapor pressure. For example, in the case of HgTe, it is necessary to pay particular attention to the vapor pressure of mercury during growth.

1−V化合物で、GaA3を例にとると、 Asの分圧
が足りない条件の高温で結晶成長すると八8の空孔が市
電る。しかし、適度なA8圧を印加すると化学量論的な
組成であるGaとAsの数が等しい状態となり、さらに
それより高いA8分圧にするとG(−、aよりAsが多
い状態となる。Asが足らなくても、多すぎても化学量
論的組成の平衡状態からはずれて種々の構造欠陥ができ
る。その中で最も単純な点欠陥で、しかも、 Asの空
孔を例とする。第4図は結晶中における欠陥の模型図で
ある。士はGa、−は八〇として、 (1)Asの中性
空格子点41.(2)Asの空格子点に1つの電子を有
するものF 421 (3)’θ空空孔点点2個の電子
をトラップしたものF’431  (4)中性空孔子息
とF中心の複合欠陥44.(5)2つのF中心よりなる
もの452等々Asの空孔における点欠陥を考えただけ
でも非常に種類が多い。Allが多い時も同様に種々考
えられる。又、不純物との相互作用。
Taking GaA3 as an example of a 1-V compound, when the crystal grows at high temperature under conditions where the partial pressure of As is insufficient, 88 vacancies are generated. However, when a moderate A8 pressure is applied, the stoichiometric composition of Ga and As becomes equal, and when the A8 partial pressure is higher than that, a state where As is greater than G(-, a) is reached. If there is not enough or too much, various structural defects will occur due to deviation from the equilibrium state of the stoichiometric composition.The simplest of these is the point defect, and the vacancy in As is taken as an example. Figure 4 is a model diagram of defects in a crystal. 〇 is Ga and - is 80. (1) Neutral vacancy of As 41. (2) As having one electron in the vacancy of As. F 421 (3) 'θ vacancy point F'431 (4) Compound defect of neutral vacancy son and F center 44. (5) Consisting of two F centers 452 etc. As There are many different types of point defects in the vacancies. Similarly, when there is a large amount of All, various types can be considered. Also, interactions with impurities.

複合もあり非常に複雑となる。さらに積層欠陥。There are also combinations and it becomes very complicated. More stacking faults.

転位等もある。これらの種々の欠陥が、最も少なくなる
のが最適のA8圧点である。
There are also dislocations, etc. The optimum A8 pressure point is where these various defects are minimized.

第5図は−GaAsにおける最適ヒ素圧力と温度の関係
である。横軸が絶対温度(0K)の逆数に1000を乗
じた値1000 /Tであり、縦軸はヒ素の圧力P@&
^7 (Torr )である。ヒ素の最適圧力は温度に
依存し、高い温度程、高いヒ素圧力が必要となる。
FIG. 5 shows the relationship between optimum arsenic pressure and temperature in -GaAs. The horizontal axis is the reciprocal of the absolute temperature (0K) multiplied by 1000, 1000/T, and the vertical axis is the arsenic pressure P@&
^7 (Torr). The optimum pressure for arsenic is temperature dependent; the higher the temperature, the higher the arsenic pressure required.

ここでのヒ素圧はAs4の圧力である。ヒ素が気体とな
った時には、はとんどAs4となる。図中のデータは、
これまでのGaAs基板のヒ素圧下における熱処理実験
(・)と、 Ga溶媒にAsを溶かした溶液からの結晶
成長実験(1)の結果から求めたものであるが、気相成
長においても同様な事がおこる。
The arsenic pressure here is the pressure of As4. When arsenic becomes a gas, it becomes As4. The data in the figure is
This was obtained from the results of previous heat treatment experiments on GaAs substrates under arsenic pressure (.) and crystal growth experiments from a solution of As dissolved in a Ga solvent (1), but the same thing can be seen in vapor phase growth. occurs.

気相成長もヒ素の分圧下で熱処理を受けながら。Vapor phase growth while also undergoing heat treatment under partial pressure of arsenic.

基板表面にGaAsが形成されてゆくのである。本質的
には、ヒ素圧下の熱処理やヒ素圧下の液相成長となんら
変わりがなく7 ヒ素の分圧が非常に重要となる。第5
図から求めたヒ素圧力の実験式は。
GaAs is formed on the surface of the substrate. Essentially, it is no different from heat treatment under arsenic pressure or liquid phase growth under arsenic pressure.7 The partial pressure of arsenic is very important. Fifth
The empirical formula for arsenic pressure obtained from the figure is.

1.05 PGaAs中2.6X10’e@p(−−)    (
1)T であり、に:ボルツマン定数、T:成長温度(基板の温
度)である。
1.05 2.6X10'e@p(--) in PGaAs (
1) T, where: Boltzmann constant, T: growth temperature (substrate temperature).

第1表は各成長温度に対する最適ヒ素圧とそのヒ素圧に
対するA s H3の成長温度に対する体積11当抄の
モル量である。
Table 1 shows the optimum arsenic pressure for each growth temperature and the molar amount of A s H3 with respect to the growth temperature for each arsenic pressure.

最適ヒ素圧は(1)式に基づいた計算値である。The optimum arsenic pressure is a calculated value based on equation (1).

AsH3の濃度は の化学式を用いた。As2も存在するが、 Ag3はA
s4に較べて少量なので無視をした。但し2モル量を計
算するときは、ボイル・シャーシの法則。
The concentration of AsH3 was determined using the chemical formula: As2 also exists, but Ag3 is A
It was a small amount compared to s4, so I ignored it. However, when calculating the amount of 2 moles, use the Boyle-Chassis law.

ドルトンの分圧の法則が成り立つとしている。It is assumed that Dalton's law of partial pressure holds true.

As4の分圧が第1表の最適ヒ素圧になればよい。It is sufficient if the partial pressure of As4 becomes the optimum arsenic pressure shown in Table 1.

AsH3だと500℃より少し高い温度でほぼ100%
近く分解する。又A e C13では少し高く600〜
700℃でほぼ100%近く分解する。有機金属気相成
長では現在600〜700℃程度の成長温度、・・ライ
ドガスであるAaCl3等によ−る成長では。
AsH3 is almost 100% at a temperature slightly higher than 500℃
It will be disassembled soon. Also, A e C13 is a little higher at 600 ~
Decomposes almost 100% at 700℃. In organometallic vapor phase epitaxy, the current growth temperature is about 600 to 700°C, and in the case of growth using a ride gas such as AaCl3.

700〜800℃の間の成長温度で成長されているので
、現在の使用中のモル量よりは多いモル量を使用しなけ
ればならない。高い温度になるとキャリアガスに対する
モル比が高くなるので、キャリアガスを含めた全体の圧
力が成長管内で1気圧より高圧となる高圧の領域を使用
してもよい。又。
Since it is grown at a growth temperature between 700 and 800° C., higher molar amounts must be used than those currently in use. Since higher temperatures increase the molar ratio to carrier gas, a high pressure region may be used in which the total pressure including the carrier gas is higher than 1 atmosphere within the growth tube. or.

As4のモル量が足りるなら減圧でやってもかまわない
。但し、あくまでも、最適ヒ素圧の必要なのは、成長用
基板の上であるから、成長装置の構造上、他の部分のヒ
素圧が高くて、 As)13のモル量が第1表に示す近
傍でない場合が生じてくる。実質的に必要なAs4分圧
が基板付近にあればよい。
As long as the molar amount of As4 is sufficient, it may be carried out under reduced pressure. However, since the optimum arsenic pressure is required on the growth substrate, the arsenic pressure in other parts is high due to the structure of the growth apparatus, and the molar amount of As) 13 is not close to that shown in Table 1. Cases will arise. It is only necessary that the substantially necessary As4 partial pressure be near the substrate.

すなわち、実際の装置においては、その装置依存性があ
り、最適なAs’H3,、AaCl 3などの供給量は
変ってくる。以上()aAsについて述べてきたが以上
の事は他の化合物半導体にももちろん適用されることは
いうまでもないが、  II−Vl族においては、璽−
v族より相対的に蒸気圧が両成分共高く。
That is, in actual equipment, there is a dependence on the equipment, and the optimum supply amount of As'H3, AaCl3, etc. changes. Although the above has been described regarding ()aAs, it goes without saying that the above applies to other compound semiconductors as well, but in the II-Vl group,
Both components have higher vapor pressures than group V.

このような場合は、一方の元素の蒸気圧だけでなく、他
方の元素の蒸気圧の制御も非常に重要になってくる。混
晶においては、さらに制御すべき蒸気圧の対象は増えて
くることは明らかである。
In such cases, it becomes very important to control not only the vapor pressure of one element but also the vapor pressure of the other element. It is clear that in mixed crystals, the number of vapor pressures to be controlled increases.

最近特にアルキル化物の熱分解を利用している気相r長
(Metal−Organic Vaper Phas
e 1ptaxy。
Recently, metal-organic vapor phasing, which utilizes thermal decomposition of alkylated substances, has been developed.
e 1ptaxy.

MO−VPI)が、成長温度が低く、成長速度が低くて
、薄膜成長に向いているなどの理由により、ハライド気
相エピタキシャル成長(H−4PK)  に代って一部
用いられている。熱分解形式による成長においては、結
晶表面における表面反応でなく。
MO-VPI) has been used in place of halide vapor phase epitaxial growth (H-4PK) due to its low growth temperature, low growth rate, and suitability for thin film growth. In pyrolytic growth, rather than surface reactions at the crystal surface.

空間中で反応を起こしてから結晶表面に付着して結晶成
長が行なわれる一方、A3Cl3などのI・ライドガス
の水素還元による成長は、空中反応は殆んどせずに結晶
表面における表面反応が主体とな抄、熱分解法における
結晶に比べて結晶の完全性においてすぐれているといわ
れている′。さらに有機金属を使っているため、エピタ
キシャル成長層中への多量の炭素の持ち込みが問題とな
る。通常GaAsに使用されるトリメチルガリウム(’
I’MG)やトリエチルガリウム(TBG)は非常に熱
分解しやすい物質であり、TMGの場合まず(4)式に
示すように (CH3)3G a−+3− CH3−)−G a  
        (4)・CH3フリーラジカルが市電
る。この、CH3は他のTMGと結合して、中間生成物
を形成したり。
Crystal growth occurs by reacting in space and then adhering to the crystal surface, whereas growth by hydrogen reduction of I-ride gases such as A3Cl3 involves mostly surface reactions on the crystal surface with almost no reactions in the air. It is said that the perfection of the crystals is superior to that produced by tona-sho and pyrolysis methods. Furthermore, since an organic metal is used, a large amount of carbon is introduced into the epitaxially grown layer, which poses a problem. Trimethylgallium ('
I'MG) and triethylgallium (TBG) are substances that are very easily thermally decomposed, and in the case of TMG, (CH3)3G a-+3- CH3-)-Ga
(4)・CH3 free radicals travel on the streetcar. This CH3 combines with other TMG to form intermediate products.

通常は水素キャリアを用い、熱分解による・CH3を直
ちに水素と結合させてメタン(CH4)としている。M
O−VPJCにおいては1通常上記の理由からキャリア
ガスとして水素を使い、他の不活性ガス(N2. Ar
、 He等)は使用しない。本発明では。
Usually, a hydrogen carrier is used to immediately combine CH3 resulting from thermal decomposition with hydrogen to form methane (CH4). M
In O-VPJC, 1Usually hydrogen is used as a carrier gas for the above reasons, and other inert gases (N2, Ar
, He, etc.) are not used. In the present invention.

不活性ガスをキャリアガスに使用し、塩化水素(MCI
)、プHA化水素(HBr)等をTMG−?AsH3な
どと共に系内に供給して、且つ、蒸気圧制御をも行なう
Using an inert gas as the carrier gas, hydrogen chloride (MCI)
), hydrogen hydride (HBr), etc. as TMG-? It is supplied into the system together with AsH3, etc., and also controls the vapor pressure.

HCIを注入することにより、・・ライドガスにB r
 2等の注入により、今までと異った中間生成物を作り
9表面反応を多くすることによって結晶の完全性を高め
る。又、HCI、HBr、HF等による注入により、H
CI、HBr、HF等の分解時の水素のラジカル・Hに
より・CH3のラジカルを直ちにCH4にすることによ
ね、カーボンの汚染をも抑えることができる。故に、 
A r 、 Hlil + N2のガスを使用したとき
も、H(:1等の同時注入により、炭素の汚染を抑える
ことができるのである。Ar、 He。
By injecting HCI, Br is added to the ride gas.
The injection of 2nd grade improves the integrity of the crystal by creating different intermediate products and increasing surface reactions. In addition, HCI, HBr, HF, etc. can be injected into the
Carbon contamination can also be suppressed by immediately converting CH3 radicals into CH4 by hydrogen radicals H during the decomposition of CI, HBr, HF, etc. Therefore,
Even when Ar, Hlil + N2 gases are used, carbon contamination can be suppressed by simultaneous injection of H(:1, etc.).Ar, He.

Nz等の不活性ガスを使用することによりAsH3の熱
分解率が促進され結晶成長速度は早くすることができる
。不活性ガスを用いて成長する場合。
By using an inert gas such as Nz, the thermal decomposition rate of AsH3 is promoted and the crystal growth rate can be increased. When growing using inert gas.

同時に注入するHCl等のモル量は、(4)式から分る
よう゛に、TMGなら、’I’MGのモル量の3倍以上
なければならない、但し、実際にはA s H3をも同
時に注入するため、それの分解により生ずる水素のフリ
ラジカル(・H)も存在するので、3倍以上でなくても
よい。MCI等の注入により不活性ガスキャリアのみに
よる成長速゛度よりはおそくなる。又、不活性ガス中に
さらに少量のH2の注入により、水素化物の熱分解速度
を遅くシ、成長速度も変えることができる。デバイスに
応じて成長速度をかなり広範囲に1って変えることがで
きる。
As can be seen from equation (4), the molar amount of HCl, etc. to be injected at the same time must be at least three times the molar amount of 'I'MG in the case of TMG. However, in reality, A s H3 is also injected at the same time. Since hydrogen free radicals (.H) generated by decomposition of hydrogen are also present due to the injection, the amount does not need to be three times or more. By implanting MCI or the like, the growth rate becomes slower than that using only an inert gas carrier. Furthermore, by injecting a smaller amount of H2 into the inert gas, the rate of thermal decomposition of the hydride can be slowed down and the growth rate can also be changed. Depending on the device, the growth rate can vary over a fairly wide range.

発光ダイオードや、単体の電力デバイスなどにおいては
、非常に厚い成長層が必要だが、半導体レーザや集積回
路などでは、1μm厚さ以下の厚さの制御が必要になる
ので各デバイスにおいて、工業的に経済的な成長速度が
必要になる訳であるが。
Light-emitting diodes and single power devices require extremely thick growth layers, but semiconductor lasers and integrated circuits require thickness control of 1 μm or less, making it difficult for each device to grow industrially. This requires economic growth speed.

これらの方法を用いて種々応用が可能である。もちろん
、不活性ガスの量を減じていって、キャリアがH2にな
っていっても、HCIの注入効果はあるので、HCIが
ないよりは良い効果が生ずる。
Various applications are possible using these methods. Of course, even if the amount of inert gas is reduced and the carrier becomes H2, the effect of HCI injection still exists, so the effect is better than without HCI.

水素のある場合はハロゲン化物としてC12,B r2
などであってもよい。
If there is hydrogen, C12, B r2 as a halide
etc.

本発明は上記説明したように、蒸気圧制御を行なった気
相成長を行なうことにより、化合物半導体の化学量論的
組成が達成でき、低欠陥、高品質な化合物半導体結晶が
得られる。又、熱分解気相成長でMCI等の注入により
従来技術よりカーボン等の不純物の混入を防ぎ、さらに
結晶的にも完全性の高い高品質の結晶が得られ、成長速
度椿も広範囲にとることができる。
As explained above, in the present invention, by performing vapor phase growth with vapor pressure control, a stoichiometric composition of a compound semiconductor can be achieved, and a compound semiconductor crystal with low defects and high quality can be obtained. In addition, by injection of MCI etc. in pyrolysis vapor phase growth, contamination of impurities such as carbon is prevented compared to conventional techniques, and high quality crystals with high crystalline perfection can be obtained, and the growth rate can be varied over a wide range. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な気相成長装置のブロック図。 第2図は■族とV族の蒸気圧と温度の関係、第3図は■
族と■族の蒸気圧と温度の関係、第4図はGaAsの欠
陥の楔形図、第5図はGaAsにおけるAs圧力の最適
圧力と温度の関係である。
FIG. 1 is a block diagram of a general vapor phase growth apparatus. Figure 2 shows the relationship between vapor pressure and temperature for Group ■ and Group V, and Figure 3 shows ■
Figure 4 shows the relationship between vapor pressure and temperature for the groups 2 and 3. Figure 4 shows a wedge diagram of defects in GaAs, and Figure 5 shows the relationship between optimum As pressure and temperature in GaAs.

Claims (2)

【特許請求の範囲】[Claims] (1)成長管内にキャリアガスを流通させながら。 該反応管内に収納された化合物半導体基板に。 該キャリアガスと共に化合物半導体の構成元素を含むガ
スを供給し基板を所定成長温度に保ち。 該基板表面に少なくとも一層の成長層を形成させる気相
成長において、該化合物半導体の構成元素のうち少なく
とも1つ以上の高蒸気圧元素の分圧を、該成長温度に応
じて最適蒸気圧近傍に設定したことを特徴とする蒸気圧
制御気相成長方法。
(1) While circulating carrier gas inside the growth tube. to the compound semiconductor substrate housed within the reaction tube. A gas containing constituent elements of the compound semiconductor is supplied together with the carrier gas to maintain the substrate at a predetermined growth temperature. In vapor phase growth for forming at least one growth layer on the surface of the substrate, the partial pressure of at least one high vapor pressure element among the constituent elements of the compound semiconductor is adjusted to near the optimum vapor pressure depending on the growth temperature. A vapor pressure controlled vapor phase growth method characterized by:
(2)有機金属を用いた蒸気圧制御気相成長において、
キャリアガスと化合物半導体の構成元素を含むガスに塩
化水素(Hcffi)、ブロム化水素(HBr)などを
含むハロゲン化物のうち少なくとも一つを混入したこと
を特徴とする蒸気圧制御気相成長方法。
(2) In vapor pressure controlled vapor phase growth using organic metals,
A vapor pressure controlled vapor phase growth method characterized in that at least one of halides including hydrogen chloride (Hcffi), hydrogen bromide (HBr), etc. is mixed into a carrier gas and a gas containing constituent elements of a compound semiconductor.
JP19428781A 1981-12-01 1981-12-01 Vapor-phase growing method with controlled vapor pressure Granted JPS5895696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19428781A JPS5895696A (en) 1981-12-01 1981-12-01 Vapor-phase growing method with controlled vapor pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19428781A JPS5895696A (en) 1981-12-01 1981-12-01 Vapor-phase growing method with controlled vapor pressure

Publications (2)

Publication Number Publication Date
JPS5895696A true JPS5895696A (en) 1983-06-07
JPS6229399B2 JPS6229399B2 (en) 1987-06-25

Family

ID=16322086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19428781A Granted JPS5895696A (en) 1981-12-01 1981-12-01 Vapor-phase growing method with controlled vapor pressure

Country Status (1)

Country Link
JP (1) JPS5895696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291494A (en) * 1985-10-16 1987-04-25 Res Dev Corp Of Japan Method and device for growing compound semiconductor single crystal
US5402748A (en) * 1992-04-09 1995-04-04 Fujitsu Limited Method of growing a compound semiconductor film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103090U (en) * 1989-01-31 1990-08-16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291494A (en) * 1985-10-16 1987-04-25 Res Dev Corp Of Japan Method and device for growing compound semiconductor single crystal
JPH0319198B2 (en) * 1985-10-16 1991-03-14 Shingijutsu Jigyodan
US5402748A (en) * 1992-04-09 1995-04-04 Fujitsu Limited Method of growing a compound semiconductor film

Also Published As

Publication number Publication date
JPS6229399B2 (en) 1987-06-25

Similar Documents

Publication Publication Date Title
US4808551A (en) Method for halide VPE of III-V compound semiconductors
US4368098A (en) Epitaxial composite and method of making
US4404265A (en) Epitaxial composite and method of making
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JPH0649633B2 (en) Doping method in epitaxial growth of compound crystals
JPH0431396A (en) Growth of semiconductor crystal
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2687371B2 (en) Vapor growth of compound semiconductors
JP3242571B2 (en) Vapor growth method
JPH04175299A (en) Compound semiconductor crystal growth and compound semiconductor device
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPS61260622A (en) Growth for gaas single crystal thin film
JP3101753B2 (en) Vapor growth method
JPH04132214A (en) Manufacture of compound semiconductor thin film
JP2722489B2 (en) Semiconductor crystal growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JP2744782B2 (en) MOCVD method
JPH03232221A (en) Vapor growth method for compound semiconductor
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JPH06124900A (en) Epitaxial growth method for compound crystal and method for doping
JPS59172718A (en) Iii-v group compound semiconductor growth and equipment for the same
JPH04207021A (en) Growth method of compound semiconductor crystal
JPS63319290A (en) Crystal growth method