JPH03232221A - Vapor growth method for compound semiconductor - Google Patents

Vapor growth method for compound semiconductor

Info

Publication number
JPH03232221A
JPH03232221A JP2881590A JP2881590A JPH03232221A JP H03232221 A JPH03232221 A JP H03232221A JP 2881590 A JP2881590 A JP 2881590A JP 2881590 A JP2881590 A JP 2881590A JP H03232221 A JPH03232221 A JP H03232221A
Authority
JP
Japan
Prior art keywords
growth
epitaxial growth
temperature
organic compound
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2881590A
Other languages
Japanese (ja)
Inventor
Yoshiki Sakuma
芳樹 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2881590A priority Critical patent/JPH03232221A/en
Publication of JPH03232221A publication Critical patent/JPH03232221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce growth temperature, to conduct an epitaxial growth operation on the selected region only, and to make it possible to arbitrarily adjust the quantity of carbon doping on an epitaxial growth layer by a method wherein the vapor of a metal organic compound, containing both methyl group and ethyl group, is fed to a reaction chamber, and a vapor epitaxial growth operation is conducted at the prescribed substrate temperature. CONSTITUTION:Dimethylethylgallium or ethyldimethylgallium is used as a metal organic compound containing both methyl group and ethyl group, and the vapor of the above-mentioned metal organic compound is fed to a reaction chamber, and a vapor epitaxial growth operation is conducted. The substrate temperature at that time is set lower than the temperature of the epitaxial growth using the material of metal organic compound containing methyl group only. When C is doped as P-type impurities, dimethylgallium is used when it is doped in a large quantity, and methyldiethylgallium is used when it is doped in a small quantity. Also, when a fine adjustment is conducted, dimethylethylgallium and methyldiethylgallium are used by properly mixing them.

Description

【発明の詳細な説明】 〔概 要] 本発明はGaAsの如き化合物半導体の気相エピタキシ
ャル成長に関し、 MOVPEに於ける、より低温の成長法、マスク皮膜上
には堆積しない選択成長法、及び炭素ドープ量の制御可
能な成長法の実現を目的とし、本発明に於けるMOVP
E処理では、 メチル基およびエチル基の両方を有する金属の有機化合
物の蒸気を反応室に供給し、 基板温度を、メチル基のみを有する前記金属の有機化合
物を原料とするエピタキシャル成長温度より低い温度に
保持しながら、化合物半導体の気相エピタキシャル成長
が行われる。
[Detailed Description of the Invention] [Summary] The present invention relates to vapor phase epitaxial growth of compound semiconductors such as GaAs, and includes a lower temperature growth method in MOVPE, a selective growth method that does not deposit on a mask film, and a carbon doping method. MOVP in the present invention aims to realize a growth method that can control the amount.
In the E treatment, vapor of a metal organic compound having both methyl groups and ethyl groups is supplied to the reaction chamber, and the substrate temperature is lowered to a temperature lower than the epitaxial growth temperature using the metal organic compound having only methyl groups as a raw material. While holding, vapor phase epitaxial growth of a compound semiconductor is performed.

〔産業上の利用分野] 本発明は化合物半導体の気相エピタキシャル成長に関わ
り、特にMOVPEに用いられる金属有機化合物材料の
組成に関わる。
[Industrial Application Field] The present invention relates to the vapor phase epitaxial growth of compound semiconductors, and particularly to the composition of metal-organic compound materials used in MOVPE.

■−■化合物、例えばGaAsの気相エビタキシャル成
長をMOVPE法で行う場合、Gaの原料としてTMG
()リメチル・ガリウム)やTEG(トリエチル・ガリ
ウム)のような有機化合物を用い、Asの原料としてア
ルシン(A s H3)を用いるのが通常である。
■-■ When performing vapor phase epitaxial growth of a compound such as GaAs by the MOVPE method, TMG is used as a raw material for Ga.
It is usual to use organic compounds such as (trimethyl gallium) and TEG (triethyl gallium), and to use arsine (A s H3) as the raw material for As.

〔従来の技術〕[Conventional technology]

TMGやTEGは常温、常圧の下では液体であり、キャ
リヤ・ガスである水素(H2)をバブリングさせてこれ
等の蒸気を反応室に送る。他方、常圧下で気体であるア
ルシンは水素で希釈して反応室に送られる。必要により
ドープする不純物ガスやキャリヤ・ガスを加え、原料ガ
スの組成が調整される。
TMG and TEG are liquids at normal temperature and pressure, and their vapors are sent to the reaction chamber by bubbling hydrogen (H2) as a carrier gas. On the other hand, arsine, which is a gas under normal pressure, is diluted with hydrogen and sent to the reaction chamber. The composition of the source gas is adjusted by adding doping impurity gas and carrier gas as necessary.

原料ガスが加熱された基板面に到達すると、原料は熱分
解し、基板上に化合物となって堆積する。
When the raw material gas reaches the heated substrate surface, the raw material is thermally decomposed and deposited as a compound on the substrate.

基板温度、原料ガスの供給速度、反応室内の圧力を適当
に選択することにより、堆積層はエピタキシャル単結晶
として成長する。基板表面がSiO□膜等で部分的にマ
スクされていれば、基板面上のみに選択的に成長する。
The deposited layer is grown as an epitaxial single crystal by appropriately selecting the substrate temperature, the supply rate of the source gas, and the pressure within the reaction chamber. If the substrate surface is partially masked with a SiO□ film or the like, growth will occur selectively only on the substrate surface.

このようなMOVPE法で、原料としてTMGを用いた
場合には選択成長が可能であり、成長層中の炭素含有量
も高くすることが出来るが、TMGの熱分解温度が比較
的高いことから、成長温度を低くすることが困難である
In such a MOVPE method, selective growth is possible when TMG is used as a raw material, and the carbon content in the growth layer can be increased, but since the thermal decomposition temperature of TMG is relatively high, It is difficult to lower the growth temperature.

これに対しTEGを用いた場合には、成長温度をより低
(することが可能であるが、選択成長を行うとマスク皮
膜上にも反応生成物が堆積したり、マスク領域と成長領
域の境界にリング・グロウス(ridge growt
h)と呼ばれる異常成長が起こる等の不都合が生ずる。
On the other hand, when TEG is used, it is possible to lower the growth temperature, but if selective growth is performed, reaction products may also be deposited on the mask film, or the boundary between the mask region and the growth region may be ridge grow
h) Problems such as abnormal growth occur.

また、成長層中に意図的に炭素を含有せしめることも困
難である。
Furthermore, it is difficult to intentionally incorporate carbon into the growth layer.

化合物半導体のエピタキシャル成長法として実用に供さ
れている他の方法には、構成元素のハロゲン化物(主に
塩化物)を原料ガスとするクロライドVPEや分子線エ
ピタキンー(MBE)があるが、前者は象、峻な不純物
分布が得難く、大口径基板では成長層が不均一になる等
の欠点があり、後者では選択成長が不可能である。
Other methods used in practice for epitaxial growth of compound semiconductors include chloride VPE and molecular beam epitaxy (MBE), which use constituent elemental halides (mainly chlorides) as raw material gas, but the former is a , it is difficult to obtain a sharp impurity distribution, and the growth layer becomes non-uniform on large-diameter substrates, and selective growth is not possible in the latter case.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

TMGを用いる場合、エピタキシャル成長が進行する最
低温度は約400″Cであり、TEGの場合は約300
°Cである。成長温度が高くなると、それだけ熱的な歪
みやそれに因る欠陥が生じ易くなり、エピタキシャル成
長を利用して形成される素子の特性に悪影響が及ぶこと
になる。TMGに於ける400’Cという温度は、エピ
タキシャル成長可能な最低温度であり、現実にはこれよ
り高い温度で実施されるので、高速動作型の素子形成に
はより低い温度でエピタキシャル成長が行われることが
望ましい。
When using TMG, the lowest temperature at which epitaxial growth will proceed is about 400"C, while for TEG it is about 300"C.
It is °C. As the growth temperature increases, thermal distortion and defects due to it are more likely to occur, which adversely affects the characteristics of devices formed using epitaxial growth. The temperature of 400'C in TMG is the lowest temperature at which epitaxial growth is possible, and in reality it is performed at a higher temperature, so epitaxial growth may be performed at a lower temperature to form high-speed operation devices. desirable.

また、基板上に形成されたS i Oz膜等のマスク・
パターンがエンチングやイオン注入のマスクとして多重
利用できれば、素子形状の微細化に伴って要求されるリ
ソグラフィ処理のマスク合わせ精度向上の点で有利であ
り、選択成長が可能であることも同様の趣旨で望ましい
。更に、素子形成工程で選択成長が必須である場合もあ
り得る。
In addition, a mask such as a SiOz film formed on a substrate
If a pattern can be used multiple times as a mask for etching or ion implantation, it will be advantageous in terms of improving the accuracy of mask alignment in lithography processing, which is required as device shapes become smaller.Similarly, selective growth will also be possible. desirable. Furthermore, there may be cases where selective growth is essential in the element formation process.

エピタキシャル成長層に形成される素子の特性を考える
場合、エピタキシャル層が含有する炭素(C)量につい
ての配慮も必要である。従来、Cは結晶性を阻害する不
純物と見做され、含有量の低いことが有利と評価されて
きたが、最近CをP型の導電性を付与する不純物として
積掻的に利用することが提案されている。
When considering the characteristics of an element formed in an epitaxially grown layer, consideration must also be given to the amount of carbon (C) contained in the epitaxial layer. Traditionally, C has been regarded as an impurity that inhibits crystallinity, and a low content has been considered advantageous, but recently, carbon has been actively utilized as an impurity that imparts P-type conductivity. Proposed.

このような立場からすれば、エピタキシャル成長層中の
C含有量は、単純に減少させ或いは増加させることが可
能なだけではなく、所望の値に制御し得るのが望ましい
ことになる。
From this standpoint, it is desirable that the C content in the epitaxial growth layer can not only be simply decreased or increased, but also controlled to a desired value.

本発明の目的は、MOVPEに於けるより低温での成長
法、マスク皮膜上には堆積しない選択成長法、及び炭素
ドープ量の制御可能な成長法を提供することであり、そ
れによって化合物半導体を用いる能動素子の特性を向上
せしめることである。
An object of the present invention is to provide a growth method in MOVPE at a lower temperature, a selective growth method that does not deposit on a mask film, and a growth method in which the amount of carbon doping can be controlled. The objective is to improve the characteristics of the active elements used.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の気相成長法では メチル基およびエチル基の両方を有する金属の有機化合
物の蒸気を反応室に供給して気相エピタキシャル成長が
行われる。
In order to achieve the above object, in the vapor phase growth method of the present invention, vapor phase epitaxial growth is performed by supplying vapor of a metal organic compound having both a methyl group and an ethyl group to a reaction chamber.

その際の基板温度は、メチル基のみを有する前記金属の
有機化合物を原料とするエピタキシャル成長温度より低
く設定される。また、メチル基およびエチル基の両方を
有する金属の有機化合物は、実施例に於いてはジメチル
エチル・ガリウム或いはエチルジメチル・ガリウムであ
る。
The substrate temperature at this time is set lower than the epitaxial growth temperature using the organic compound of the metal having only methyl groups as a raw material. Further, the metal organic compound having both a methyl group and an ethyl group is dimethylethyl gallium or ethyldimethyl gallium in the examples.

〔作 用〕[For production]

TMGの化学式はG a (CH)lであり、TEGの
それはGa(CzHs)tである。いづれもメチル基或
いはエチル基のみを有しており、MOVPEの原料とし
て用いた場合の挙動の差はメチル化物、エチル化物の化
学特性の差によって生ずるものである。ジメチルエチル
ガリウム(Ga(CH)zCzHs)やメチルジエチル
ガリウム(GaCH。
The chemical formula of TMG is Ga(CH)l and that of TEG is Ga(CzHs)t. All of them have only a methyl group or an ethyl group, and the difference in behavior when used as a raw material for MOVPE is caused by the difference in chemical properties of the methylated product and the ethylated product. Dimethylethylgallium (Ga(CH)zCzHs) and methyldiethylgallium (GaCH.

(CzHs)z)のようにメチル基及びエチル基の両方
を有する化合物はT、MGとTEGの中間の化学特性を
示し、従ってこれ等を原料とするMOVPEでは、成長
温度、選択成長の適正、Cドープ量のいづれもが、TM
GによるMOVPEとTEGによるMOVPEとの中間
になると考えられる。
Compounds having both methyl and ethyl groups, such as (CzHs)z), exhibit chemical properties intermediate between T, MG and TEG, and therefore, in MOVPE using these as raw materials, growth temperature, appropriateness of selective growth, All of the C doping amounts are TM
It is thought that it will be intermediate between MOVPE by G and MOVPE by TEG.

本発明者が実際にジメチルエチルガリウムおよびメチル
ジエチルガリウムを用いてMOVPEによるGaAsの
成長を実施した結果、この予測の正しいことが明らかと
なった。これ等の物質は本発明出願時点では商業ベース
による供給は行われておらず、特別に調製し、核磁気共
鳴法によって化学構造をv#認したものである。
As a result of the present inventor actually growing GaAs by MOVPE using dimethylethylgallium and methyldiethylgallium, it became clear that this prediction was correct. These substances are not commercially available at the time of filing of the present invention, but are specially prepared and have their chemical structures identified by nuclear magnetic resonance.

上記2種の有機ガリウム化合物とTMG、TEGを原料
として用いた場合の、夫々の成長開始温度(エピタキシ
ャル成長が持続的に進行する最低温度)は第1表に記さ
れている通りであり、表中第  1  表 DMEC;はジメチルエチルガリウム、MDEGは メチルジエチルガリウムである。ここに示されるように
、中間組成化合物では成長開始温度がTMGのそれに比
べて大幅に低下しており、特にメチルジエチルガリウム
を用いた場合はTEGと路間し温度でエピタキシャル成
長が可能である。
When the above two types of organic gallium compounds, TMG, and TEG are used as raw materials, the respective growth initiation temperatures (lowest temperature at which epitaxial growth proceeds continuously) are as shown in Table 1. Table 1 DMEC; is dimethyl ethyl gallium, MDEG is methyl diethyl gallium. As shown here, the growth initiation temperature of the intermediate composition compound is significantly lower than that of TMG, and especially when methyldiethylgallium is used, epitaxial growth is possible at a temperature between that of TEG.

また、第1図は選択成長に於ける表面形状の相違を示す
模式図であって、1はCraAs基板、2はその表面を
部分的に被覆する5iozll!、3は夫々の原料によ
るGaAsのエピタキシャル成長層である。ジメチルエ
チルガリウムおよびメチルジエチルガリウムによる選択
成長の形状が同図(a)に示されており、TMGによる
場合と同様、結晶成長は基板面のみに見られ、SiO□
膜上には堆積しない。更に境界部分に異常成長が生ずる
こともない。これに対しTEGによる選択成長では、同
図(b)に見られるように、SiO□膜2の上に小さい
島状の堆積4が多数発生し、境界部分には異常成長5も
生じている。
Moreover, FIG. 1 is a schematic diagram showing the difference in surface shape during selective growth, in which 1 is a CraAs substrate and 2 is a 5iozll! that partially covers the surface. , 3 are GaAs epitaxially grown layers made of the respective raw materials. The shape of selective growth with dimethylethylgallium and methyldiethylgallium is shown in the same figure (a), and as with the case with TMG, crystal growth is observed only on the substrate surface, and SiO□
It does not deposit on the membrane. Furthermore, no abnormal growth occurs at the boundary. On the other hand, in the selective growth by TEG, as shown in FIG. 2(b), many small island-like deposits 4 occur on the SiO□ film 2, and abnormal growth 5 also occurs at the boundary portion.

Cドープ量については、TMGを用いるMOVPEでC
が多量にドープされるのはメチル基に起因すると見るの
が通説になっており、上記実験結果でも、原料とする有
機金属化合物に含まれるメチル基の数に対応してC量が
増減することが認められた。
Regarding the C doping amount, C doping amount is determined by MOVPE using TMG.
It is generally accepted that a large amount of C is doped because of the methyl groups, and the above experimental results also show that the amount of C increases or decreases depending on the number of methyl groups contained in the organometallic compound used as the raw material. was recognized.

p型不純物としてCをドープする場合、多量にドープす
る時にはジメチルエチルガリウムを用い、少量の時には
メチルジエチルガリウムを用いれば良い、また、細かく
調整したい場合にはジメチルエチルガリウムとメチルジ
エチルガリウムを適宜混合して用いれば良く、必要な場
合はTMGやTEGと混合しても良い。
When doping C as a p-type impurity, use dimethylethylgallium when doping in a large amount, and methyldiethylgallium when doping in a small amount.Also, if you want to make fine adjustments, mix dimethylethylgallium and methyldiethylgallium as appropriate. If necessary, it may be mixed with TMG or TEG.

〔実施例〕〔Example〕

上記実験は次のような条件で実施された。即ち、原料の
有機ガリうム化合物は全て3°Cの恒温槽内に保持し、
50 sccmのH2でバブリングする。ASの原料で
あるアルシンはH2により10%に希釈されたものが用
いられ、200sec+wの速度で供給される。更に、
全H2量が2000sec+wになるようH2が加えら
れる。
The above experiment was conducted under the following conditions. That is, all the organic gallium compounds used as raw materials were kept in a constant temperature bath at 3°C.
Bubble with 50 sccm H2. Arsine, which is a raw material for AS, is diluted to 10% with H2 and is supplied at a rate of 200 sec+w. Furthermore,
H2 is added so that the total amount of H2 becomes 2000 sec+w.

反応室内の圧力は20Torrであり、選択成長の実験
では基板温度は500°C1成長開始温度の実験では2
50〜450 ’Cの種々の基板温度で試行された。
The pressure inside the reaction chamber was 20 Torr, the substrate temperature was 500°C in the selective growth experiment, and 2°C in the growth start temperature experiment.
Various substrate temperatures from 50 to 450'C were tried.

(発明の効果〕 以上説明したように、本発明のエピタキシャル成長法に
よれば、MOVPEによる化合物半導体の結晶成長に於
いて、成長温度を低下させること、選択された領域のみ
にエピタキシャル成長を行うこと及びエピタキシャル成
長層の炭素ドープ量を任意に調整することが可能となる
(Effects of the Invention) As explained above, according to the epitaxial growth method of the present invention, in crystal growth of a compound semiconductor by MOVPE, it is possible to lower the growth temperature, perform epitaxial growth only in a selected region, and perform epitaxial growth. It becomes possible to arbitrarily adjust the amount of carbon doped in the layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は選択成長に於ける本発明の効果を示す図であっ
て、 図に於いて 1はGaAs基板、 2はS i Oを膜、 3はエピタキシャル成長層、 4は島状堆積、 5は異常成長 である。
FIG. 1 is a diagram showing the effect of the present invention on selective growth, in which 1 is a GaAs substrate, 2 is a SiO film, 3 is an epitaxial growth layer, 4 is an island-like deposition layer, and 5 is a This is abnormal growth.

Claims (3)

【特許請求の範囲】[Claims] (1)メチル基およびエチル基の両方を有する金属の有
機化合物の蒸気を反応室に供給して気相エピタキシャル
成長を行うことを特徴とする化合物半導体の気相成長方
法。
(1) A method for vapor phase growth of a compound semiconductor, characterized in that vapor phase epitaxial growth is performed by supplying vapor of an organic compound of a metal having both a methyl group and an ethyl group to a reaction chamber.
(2)請求項(1)の気相成長方法に於いて、基板温度
を、メチル基のみを有する前記金属の有機化合物を原料
とするエピタキシャル成長温度より低い温度に保持しつ
つ、気相エピタキシャル成長を行うことを特徴とする化
合物半導体の気相成長方法。
(2) In the vapor phase growth method according to claim (1), vapor phase epitaxial growth is performed while maintaining the substrate temperature at a temperature lower than the epitaxial growth temperature using an organic compound of the metal having only methyl groups as a raw material. A method for vapor phase growth of compound semiconductors, characterized by the following.
(3)請求項(1)或いは請求項(2)の気相成長方法
に於いて、 前記金属の有機化合物はジメチルエチル・ガリウム或い
はエチルジメチル・ガリウムであることを特徴とする化
合物半導体の気相成長方法。
(3) The vapor phase growth method of claim (1) or claim (2), wherein the organic compound of the metal is dimethylethyl gallium or ethyldimethyl gallium. How to grow.
JP2881590A 1990-02-08 1990-02-08 Vapor growth method for compound semiconductor Pending JPH03232221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2881590A JPH03232221A (en) 1990-02-08 1990-02-08 Vapor growth method for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2881590A JPH03232221A (en) 1990-02-08 1990-02-08 Vapor growth method for compound semiconductor

Publications (1)

Publication Number Publication Date
JPH03232221A true JPH03232221A (en) 1991-10-16

Family

ID=12258906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2881590A Pending JPH03232221A (en) 1990-02-08 1990-02-08 Vapor growth method for compound semiconductor

Country Status (1)

Country Link
JP (1) JPH03232221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100226763B1 (en) * 1996-07-31 1999-10-15 김영환 Thin film forming method using chemical vapor deposition system
KR100244283B1 (en) * 1996-08-27 2000-11-01 김영환 Thin film forming method by chemical vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100226763B1 (en) * 1996-07-31 1999-10-15 김영환 Thin film forming method using chemical vapor deposition system
KR100244283B1 (en) * 1996-08-27 2000-11-01 김영환 Thin film forming method by chemical vapor deposition

Similar Documents

Publication Publication Date Title
JP3395318B2 (en) Method for growing group 3-5 compound semiconductor crystal
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH03232221A (en) Vapor growth method for compound semiconductor
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JPH04132214A (en) Manufacture of compound semiconductor thin film
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPH04162418A (en) Chemical vapor growth method
JPH11126754A (en) Gaseous-phase growing method of organic metal
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JP2006351993A (en) Compound semiconductor wafer
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH02122521A (en) Manufacture of compound semiconductor crystal layer
JP3381587B2 (en) Method for manufacturing compound semiconductor wafer
JPH04124098A (en) Process for vapor-phase growth of compound semiconductor mixed crystal
JPH11312648A (en) Epitaxial growth method of compound semiconductor
JPH0573322B2 (en)
JP2004241676A (en) Method of manufacturing compound semiconductor, semiconductor material, and semiconductor device
JPH01109715A (en) Vapor phase epitaxy method
JPS61229321A (en) Vapor growth method
JPH0645264A (en) Vapor growing method
JPH04151821A (en) Vapor growth method for compound semiconductor