JP2006351993A - Compound semiconductor wafer - Google Patents

Compound semiconductor wafer Download PDF

Info

Publication number
JP2006351993A
JP2006351993A JP2005178926A JP2005178926A JP2006351993A JP 2006351993 A JP2006351993 A JP 2006351993A JP 2005178926 A JP2005178926 A JP 2005178926A JP 2005178926 A JP2005178926 A JP 2005178926A JP 2006351993 A JP2006351993 A JP 2006351993A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor wafer
layer
teg
tmg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005178926A
Other languages
Japanese (ja)
Inventor
Jiro Wada
次郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005178926A priority Critical patent/JP2006351993A/en
Publication of JP2006351993A publication Critical patent/JP2006351993A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound semiconductor wafer where the p-type carrier density of an Al<SB>x</SB>Ga<SB>1-x</SB>As(0≤x<1) layer is created uniformly within a surface with good controllability. <P>SOLUTION: Material gas supplied into a reactor is decomposed thermally near a heated GaAs substrate 1, and an AlGaAs layer 2 grows on the substrate 1. As the material gas, TMA is used for an Al material, the mixed gas of TEG and TMG is used for a Ga material, and arsine is used for an arsenic material. By mixing and supplying TMG and TEG, the exchange reaction of a methyl group of TMA of the Al material and an ethyl group of TEG of the Ga material occurs. By the exchange reaction, the rate of the methyl group to be combined with Al is reduced, so that a probability is reduced in the take-in of the carbon of the methyl group combined with Al, so that the p-type carrier density of an AlGaAs layer is reduced. Consequently, the p-type carrier density can be controlled by adjusting the ratio of TMG and TEG of the Ga material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、GaAs基板上にAlGa1−xAs(0≦x<1)層を有する化合物半導体ウェハに係り、特にAlGa1−xAs層中のキャリア濃度を制御して成長させてなる化合物半導体ウェハに関する。 The present invention relates to a compound semiconductor wafer having an Al x Ga 1-x As ( 0 ≦ x <1) layer on a GaAs substrate, is grown in particular controlling the carrier concentration of the Al x Ga 1-x As layer It relates to a compound semiconductor wafer.

GaAs、InGaP、AlGaAs、AlGaInPなどの化合物半導体エピタキシャル結晶の積層構造は、FET(電界効果トランジスタ)、HEMT(高電子移動度トランジスタ)、HBT(ヘテロ接合バイポーラトランジスタ)等の電子デバイスやLED、レーザーといった発光デバイスとして広く使用されている。これらの化合物半導体の電子・発光デバイスは、一般的にまずGaAsなどの基板に有機金属気相成長法(MOVPE法)などの結晶成長法を用いて所望の組成、厚さの化合物半導体結晶を順次エピタキシャル成長させる。   The laminated structure of compound semiconductor epitaxial crystals such as GaAs, InGaP, AlGaAs, and AlGaInP includes electronic devices such as FETs (field effect transistors), HEMTs (high electron mobility transistors), HBTs (heterojunction bipolar transistors), LEDs, lasers, etc. Widely used as a light emitting device. In general, these compound semiconductor electron / light-emitting devices are generally obtained by sequentially depositing a compound semiconductor crystal having a desired composition and thickness on a substrate such as GaAs by using a crystal growth method such as a metal organic chemical vapor deposition method (MOVPE method). Epitaxially grow.

MOVPE法では、III族有機金属原料ガスとV族原料ガスを、高純度水素キャリアガスとの混合ガスとして反応炉内に導入し、反応炉内で加熱された基板付近で原料が熱分解され、基板上に化合物半導体結晶がエピタキシャル成長する。従来、MOVPE法により、p型のAlGaAs層などを成長させる場合、故意にp型ドーパントをドープする方法と、アルシンの流量を調整する方法とが用いられている。   In the MOVPE method, a group III organometallic source gas and a group V source gas are introduced into a reaction furnace as a mixed gas of high-purity hydrogen carrier gas, and the source material is pyrolyzed near the substrate heated in the reaction furnace. A compound semiconductor crystal grows epitaxially on the substrate. Conventionally, when a p-type AlGaAs layer or the like is grown by the MOVPE method, a method of intentionally doping a p-type dopant and a method of adjusting the flow rate of arsine are used.

なお、Ga原料にトリメチルガリウム(TMG)、Al原料にトリメチルアルミニウム(TMA)、As原料にアルシンを用いて、MOVPE法によりAlGaAsを成長させたときに、Al原子と炭素原子との結合力が強いことに起因して、AlGaAsのエピタキシャル成長過程において、TMAが完全に分解されず、炭素原子を含むメチル基がAl原子に結合した状態で結晶中に取り込まれ、炭素ドーピングによりAlGaAsがp型伝導の結晶となることが知られている(例えば、特許文献1参照)。
特開平4−326724号公報。
When AlGaAs is grown by the MOVPE method using trimethylgallium (TMG) as a Ga raw material, trimethylaluminum (TMA) as an Al raw material, and arsine as an As raw material, the bonding strength between Al atoms and carbon atoms is strong. As a result, in the epitaxial growth process of AlGaAs, TMA is not completely decomposed, and a methyl group containing carbon atoms is taken into the crystal in a state of being bonded to Al atoms. (For example, refer to Patent Document 1).
JP-A-4-326724.

しかしながら、上記従来のp型ドーパントをドープする方法では、ドーピング原料としてブロム系化合物やクロム系化合物が使用されるが、副反応などにより、エッチング効果やメモリー効果が大きくなるなどの問題があり、ドーピングが難しい。また、1×1018(cm-3)以下のキャリア濃度の制御が困難であった。 However, the conventional p-type dopant doping method uses a bromo-based compound or a chromium-based compound as a doping raw material, but there are problems such as increased etching effect and memory effect due to side reactions and the like. Is difficult. In addition, it is difficult to control the carrier concentration of 1 × 10 18 (cm −3 ) or less.

また、アルシン流量を調整する方法の場合、キャリア濃度の細かな調整が難しく、またウェハ面内でのキャリア濃度のバラツキが大きい為、安定的に確実にキャリア濃度を制御して成長させることが難しい。また、AlGaAs層は、アルシン流量が少ない条件で成長させると、酸素などの不必要な不純物が混入してしまい、キャリアキラーなどの問題を引き起こしてしまう。   In addition, in the method of adjusting the arsine flow rate, it is difficult to finely adjust the carrier concentration, and since there is a large variation in the carrier concentration within the wafer surface, it is difficult to stably and reliably control the growth of the carrier concentration. . Further, when the AlGaAs layer is grown under a condition where the arsine flow rate is low, unnecessary impurities such as oxygen are mixed in, causing problems such as carrier killer.

本発明は、上記課題を解決し、AlGa1−xAs(0≦x<1)層のp型キャリア濃度が制御性よく且つ面内均一に作製された化合物半導体ウェハを提供することにある。 The present invention solves the above-described problems and provides a compound semiconductor wafer in which the p-type carrier concentration of the Al x Ga 1-x As (0 ≦ x <1) layer is controlled and uniform in the surface. is there.

第1の発明は、半絶縁性GaAs基板上にIII族原料、V原料を供給し、有機金属気相成長法を用いてAlGa1−xAs(0≦x<1)層を有するエピタキシャル層を成長させた化合物半導体ウェハにおいて、上記III族原料に、金属原子は同じで結合する有機基を異にする複数のIII族原料を用い、それらの供給比率を調整することにより上記AlGa1−xAs層のキャリア濃度を制御して成長させたことを特徴とする化合物半導体ウェハである。 In the first invention, a group III material and a V material are supplied on a semi-insulating GaAs substrate, and an epitaxial layer having an Al x Ga 1-x As (0 ≦ x <1) layer using a metal organic chemical vapor deposition method. In the compound semiconductor wafer in which a layer is grown, a plurality of Group III materials having the same metal atoms and different organic groups bonded to each other are used as the Group III materials, and the supply ratio thereof is adjusted to adjust the Al x Ga. The compound semiconductor wafer is characterized by being grown while controlling the carrier concentration of the 1-x As layer.

金属原子は同じで結合する炭化水素基(アルキル基等)などの有機基を異にする複数のIII族原料を供給すると、異なる有機基の交換反応が起こり、AlやGaに結合する各有機基の割合が変わり、AlGa1−xAs層に取り込まれる炭素を含む有機基の数量が変化する。従って、金属原子は同じで結合する有機基を異にする複数のIII族原料の供給比率を調整することによって、AlGa1−xAs層のp型キャリア濃度を制御できる。 When a plurality of Group III raw materials having different organic groups such as hydrocarbon groups (alkyl groups, etc.) bonded with the same metal atom are supplied, an exchange reaction of different organic groups occurs, and each organic group bonded to Al or Ga And the quantity of organic groups containing carbon incorporated into the Al x Ga 1-x As layer changes. Therefore, the p-type carrier concentration of the Al x Ga 1-x As layer can be controlled by adjusting the supply ratio of the plurality of group III raw materials having the same metal atoms and different organic groups bonded thereto.

本発明の化合物半導体ウェハ(エピタキシャルウェハ)は、FET(電界効果トランジスタ)、HEMT(高電子移動度トランジスタ)、HBT(ヘテロ接合バイポーラトランジスタ)等の電子デバイスや半導体レーザなどの発光デバイスに利用される。AlGaAs層は、良好なデバイス特性を実現できるバッファ層やショットキー層などに使用される。   The compound semiconductor wafer (epitaxial wafer) of the present invention is used for electronic devices such as FETs (field effect transistors), HEMTs (high electron mobility transistors), HBTs (heterojunction bipolar transistors), and light emitting devices such as semiconductor lasers. . The AlGaAs layer is used for a buffer layer or a Schottky layer that can realize good device characteristics.

第2の発明は、第1の発明において、上記金属原子は同じで結合する有機基を異にする複数のIII族原料が、ガリウム原料としては、トリエチルガリウム(TEG)とトリメチルガリウム(TMG)であり、アルミニウム原料としては、トリメチルアルミニウム(TMA)とトリエチルアルミニウム(TEA)であることを特徴とする化合物半導体ウェハである。   According to a second invention, in the first invention, the plurality of Group III materials having the same metal atoms and different organic groups bonded thereto are triethylgallium (TEG) and trimethylgallium (TMG) as gallium materials. A compound semiconductor wafer is characterized in that trimethylaluminum (TMA) and triethylaluminum (TEA) are used as aluminum raw materials.

第3の発明は、第1または第2の発明において、上記キャリア濃度が、1×1018cm−3以下であることを特徴とする化合物半導体ウェハである。 A third invention is a compound semiconductor wafer according to the first or second invention, wherein the carrier concentration is 1 × 10 18 cm −3 or less.

砒素原料にはアルシンが用いられることが多いが、キャリア濃度を1×1018cm−3以上に制御する場合、アルシンの供給量を極端に下げる必要があり、そうすると、エピタキシャル層の表面状態の悪化や炭素以外の不純物の混入が多くなることから、キャリア濃度を1×1018cm−3以下とするのが好ましい。 Arsine is often used as an arsenic raw material. However, when the carrier concentration is controlled to 1 × 10 18 cm −3 or more, it is necessary to extremely reduce the supply amount of arsine, which causes deterioration of the surface state of the epitaxial layer. Since the amount of impurities other than carbon and carbon increases, the carrier concentration is preferably 1 × 10 18 cm −3 or less.

第4の発明は、第1乃至第3の発明において、砒素原料にアルシン(AsH3)を用いたことを特徴とする化合物半導体ウェハである。 A fourth invention is a compound semiconductor wafer characterized in that arsine (AsH 3 ) is used as an arsenic material in the first to third inventions.

第5の発明は、第1乃至第3の発明において、砒素原料に、アルシン(AsH3)とトリメチルアルシン(As(CH3)3)を混合したものを用いたことを特徴とする化合物半導体ウェハである。 According to a fifth aspect of the invention, there is provided the compound semiconductor wafer according to any one of the first to third aspects, wherein the arsenic raw material is a mixture of arsine (AsH 3 ) and trimethylarsine (As (CH 3 ) 3 ). It is.

本発明によれば、所望のp型キャリア濃度に良好に制御され、かつp型キャリア濃度の面内分布が均一なAlGa1−xAs(0≦x<1)層を有する化合物半導体ウェハが得られる。 According to the present invention, a compound semiconductor wafer having an Al x Ga 1-x As (0 ≦ x <1) layer that is well controlled to a desired p-type carrier concentration and has a uniform in-plane distribution of the p-type carrier concentration. Is obtained.

以下に、本発明に係る化合物半導体ウェハの一実施形態を図面を用いて説明する。
図1は、作製した一実施形態の化合物半導体ウェハの構造を示す断面図であり、半絶縁性GaAs基板1上にMOVPE法によりAlGaAs層2を成長させたものである。このウェハは、AlGaAs層2のキャリア濃度などを測定することを目的に作製したもので、実際のデバイスに用いられる化合物半導体ウェハでは、AlGaAs層をバッファ層やショットキー層などに用いており、AlGaAs層2の上、或いはAlGaAs層2とGaAs基板1との間には、通常、更に別の半導体層が形成される。なお、AlGaAs層が最上層の場合もある。
Hereinafter, an embodiment of a compound semiconductor wafer according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the structure of a compound semiconductor wafer according to an embodiment, in which an AlGaAs layer 2 is grown on a semi-insulating GaAs substrate 1 by the MOVPE method. This wafer is manufactured for the purpose of measuring the carrier concentration of the AlGaAs layer 2 and the compound semiconductor wafer used in an actual device uses the AlGaAs layer as a buffer layer, a Schottky layer, etc. Usually, another semiconductor layer is formed on the layer 2 or between the AlGaAs layer 2 and the GaAs substrate 1. In some cases, the AlGaAs layer is the uppermost layer.

上記ウェハのMOVPE法による製造方法を簡単に述べる。エピタキシャル層を成長させるGaAs基板1を、図示省略のサセプタにセットし、GaAs基板1を反応炉内で加熱しつつ、反応炉内に原料ガス、希釈用ガスを供給する。供給された原料ガスは熱により分解し、基板1上にエピタキシャル層(AlGaAs層2)が形成される。原料ガスには、Al原料としてTMAを、Ga原料としてTEGとTMGの混合ガスを、砒素原料としてアルシンを、希釈用ガスとして、水素を供給した。   A method for manufacturing the wafer by the MOVPE method will be briefly described. A GaAs substrate 1 on which an epitaxial layer is grown is set on a susceptor (not shown), and a source gas and a dilution gas are supplied into the reaction furnace while the GaAs substrate 1 is heated in the reaction furnace. The supplied source gas is decomposed by heat, and an epitaxial layer (AlGaAs layer 2) is formed on the substrate 1. As source gases, TMA was supplied as an Al source, a mixed gas of TEG and TMG as a Ga source, arsine as an arsenic source, and hydrogen as a dilution gas.

Ga原料としてTMGとTEGを混合して供給することにより、TMGのメチル基とTEGのエチル基が交換反応を起こす。また、この交換反応は、Al原料であるTMAのメチル基と、Ga原料であるTEGのエチル基との間でも起こる。従って、TMGとTEGの二種類のGa原料を供給することにより、TMAの一部のメチル基が交換反応を起こし、Al原子に、メチル基とエチル基が結合した形となる。この交換反応により、Alに結合するメチル基(Alとの結合力が大きく成長結晶中に取り込まれやすい)の割合が減少し、Alが成長に寄与する際、Alに結合しているメチル基のカーボンが取り込まれる確率が低減し、AlGaAs層のp型キャリア濃度が減少する。   By mixing and supplying TMG and TEG as Ga raw materials, the methyl group of TMG and the ethyl group of TEG cause an exchange reaction. This exchange reaction also occurs between the methyl group of TMA, which is an Al raw material, and the ethyl group of TEG, which is a Ga raw material. Therefore, by supplying two types of Ga raw materials, TMG and TEG, some methyl groups of TMA cause an exchange reaction, and the methyl group and ethyl group are bonded to Al atoms. As a result of this exchange reaction, the proportion of methyl groups bonded to Al (the bonding force with Al is large and easily incorporated into the growth crystal) decreases, and when Al contributes to growth, the methyl groups bonded to Al The probability of carbon incorporation is reduced, and the p-type carrier concentration of the AlGaAs layer is reduced.

このことは、Ga原料のTMGとTEGの分配・比率を調整することで、p型キャリア濃度を制御できることを意味する。また同様にして、Al原料にTEAを、Ga原料にTEG及びTMGを用いた場合にも、TEAのエチル基とTMGのメチル基との間で交換反応が起こり、Ga原料のTMGとTEGの分配・比率を調整することで、p型キャリア濃度を制御できる。更にまた、Al原料にTMA及びTEAを、Ga原料にTEG又はTMGを用いた場合、Al原料にTMA及びTEAを、Ga原料にTEG及びTMGを用いた場合にも、勿論、同一の効果が得られる。   This means that the p-type carrier concentration can be controlled by adjusting the distribution / ratio of TMG and TEG of the Ga raw material. Similarly, when TEA is used as the Al raw material and TEG and TMG are used as the Ga raw material, an exchange reaction occurs between the ethyl group of TEA and the methyl group of TMG, thereby distributing the TMG and TEG of the Ga raw material. -The p-type carrier concentration can be controlled by adjusting the ratio. Furthermore, when TMA and TEA are used as the Al raw material, TEG or TMG is used as the Ga raw material, and when TMA and TEA are used as the Al raw material and TEG and TMG are used as the Ga raw material, the same effect can be obtained. It is done.

また、上記のように、一般的に使用している原料(TMG,TEG,TMA,TEA,アルシン)を利用し、p型キャリア濃度を制御してAlGaAs層が成長できることは、信頼性があり容易に実施できるなど、極めて有用である。   In addition, as described above, it is reliable and easy that the AlGaAs layer can be grown by using commonly used raw materials (TMG, TEG, TMA, TEA, arsine) and controlling the p-type carrier concentration. It can be implemented in a very useful manner.

上述した、Ga原料のTMGとTEGの比率を調整することで、AlGaAs層のp型キャリア濃度を制御できることを確認するために、TEGとTMGの比率を変えて、V族/III族比が50と100の条件で、GaAs基板にAl組成比50%のAlGaAs層を成長させた。作製されたウェハに対し、C―V測定を用いてキャリア濃度を測定した結果を図2に示す。図2に示すように、TMGとTEGの比率を変えることで、大体1×1016〜1×1018(cm-3)の範囲で、キャリア濃度を所望の値に良好に制御できることがわかる。また、TEGを供給することで、酸素などの不純物の取り込みも低減できることがわかった。 In order to confirm that the p-type carrier concentration of the AlGaAs layer can be controlled by adjusting the ratio of TMG and TEG of the Ga raw material described above, the ratio of TEG and TMG is changed, and the group V / III ratio is 50 Then, an AlGaAs layer having an Al composition ratio of 50% was grown on the GaAs substrate under the conditions of 100 and 100. FIG. 2 shows the result of measuring the carrier concentration of the fabricated wafer using CV measurement. As shown in FIG. 2, it can be seen that by changing the ratio of TMG and TEG, the carrier concentration can be satisfactorily controlled to a desired value in a range of about 1 × 10 16 to 1 × 10 18 (cm −3 ). It has also been found that the incorporation of impurities such as oxygen can be reduced by supplying TEG.

更に、上記のTMG及びTEGの混合供給により成長させたAlGaAs層に対する、キャリア濃度の面内分布の均一性を確認するために、6インチのGaAs基板にAl組成比30%のAlGaAs層を成長させた。また、比較のために、不純物をドーピングせず、アルシン流量を調整して、Al組成比30%のAlGaAs層を成長させたウェハも作製した。これらのウェハに対し、C―V測定を用いて、オリエンテーションフラットに垂直な方向に5mmピッチでキャリア濃度を測定した。その結果を、図3に示す。図示のように、この実施形態のTMG及びTEGの混合供給により成長させたAlGaAs層は、キャリア濃度の面内分布が均一となっている。   Furthermore, in order to confirm the uniformity of the in-plane distribution of the carrier concentration for the AlGaAs layer grown by the mixed supply of TMG and TEG, an AlGaAs layer having an Al composition ratio of 30% is grown on a 6-inch GaAs substrate. It was. For comparison, a wafer on which an AlGaAs layer having an Al composition ratio of 30% was grown by adjusting the arsine flow rate without doping impurities was also produced. For these wafers, the carrier concentration was measured at a pitch of 5 mm in the direction perpendicular to the orientation flat using CV measurement. The result is shown in FIG. As shown in the figure, the in-plane distribution of carrier concentration is uniform in the AlGaAs layer grown by the mixed supply of TMG and TEG of this embodiment.

なお、上記実施形態においては、AlGaAs層の成長に本発明を適用したが、GaAs層(Al組成比x=0)を成長させる場合に適用してもよい。この場合、例えば、Ga原料にTMG及びTEGを、砒素原料にアルシン及びトリメチルアルシンを用い、それらの比率を調整することにより、GaAs層のp型キャリア濃度を制御するようにしてもよい。砒素原料として、アルシンに所定比率でトリメチルアルシンを加えたものを用いると、トリメチルアルシンの分解温度範囲もメチル基とエチル基の交換反応が可能な温度範囲になり、p型キャリア濃度の制御範囲が広がることになる。   In the above embodiment, the present invention is applied to the growth of the AlGaAs layer. However, the present invention may be applied to the case where the GaAs layer (Al composition ratio x = 0) is grown. In this case, for example, TMG and TEG are used as the Ga raw material, and arsine and trimethylarsine are used as the arsenic raw material, and the ratio of these may be adjusted to control the p-type carrier concentration of the GaAs layer. If an arsenic raw material with trimethylarsine added to a predetermined ratio is used, the decomposition temperature range of trimethylarsine also becomes the temperature range in which methyl group and ethyl group can be exchanged, and the control range of p-type carrier concentration is limited. Will spread.

本発明の一実施形態における化合物半導体ウェハの構造を示す断面図である。It is sectional drawing which shows the structure of the compound semiconductor wafer in one Embodiment of this invention. 本発明の一実施形態における、TEGとTMGの供給比率と、AlGaAs層のキャリア濃度との関係を示す図である。It is a figure which shows the relationship between the supply ratio of TEG and TMG, and the carrier concentration of an AlGaAs layer in one Embodiment of this invention. 本発明の一実施形態におけるAlGaAs層のキャリア濃度の面内分布と、従来の化合物半導体ウェハにおけるAlGaAs層のキャリア濃度の面内分布とを比較して示す図であるIt is a figure which compares and compares the in-plane distribution of the carrier concentration of the AlGaAs layer in one Embodiment of this invention, and the in-plane distribution of the carrier concentration of the AlGaAs layer in the conventional compound semiconductor wafer.

符号の説明Explanation of symbols

1 GaAs基板
2 AlGaAs層
1 GaAs substrate 2 AlGaAs layer

Claims (5)

半絶縁性GaAs基板上にIII族原料、V原料を供給し、有機金属気相成長法を用いてAlGa1−xAs(0≦x<1)層を有するエピタキシャル層を成長させた化合物半導体ウェハにおいて、
上記III族原料に、金属原子は同じで結合する有機基を異にする複数のIII族原料を用い、それらの供給比率を調整することにより上記AlGa1−xAs層のキャリア濃度を制御して成長させたことを特徴とする化合物半導体ウェハ。
III group material on a semi-insulating GaAs substrate, supplying a V raw material, a compound of the epitaxial layer is grown having a Al x Ga 1-x As ( 0 ≦ x <1) layer using a metal organic chemical vapor deposition In semiconductor wafers
A plurality of Group III materials having the same metal atoms and different organic groups bonded to each other are used as the Group III materials, and the carrier concentration of the Al x Ga 1-x As layer is controlled by adjusting their supply ratio. Compound semiconductor wafer characterized by being grown as a result.
請求項1に記載の化合物半導体ウェハにおいて、上記金属原子は同じで結合する有機基を異にする複数のIII族原料が、ガリウム原料としては、トリエチルガリウムとトリメチルガリウムであり、アルミニウム原料としては、トリメチルアルミニウムとトリエチルアルミニウムであることを特徴とする化合物半導体ウェハ。   In the compound semiconductor wafer according to claim 1, the plurality of group III raw materials having the same metal atoms and different organic groups bonded thereto are triethyl gallium and trimethyl gallium as the gallium raw materials, and as the aluminum raw materials, A compound semiconductor wafer comprising trimethylaluminum and triethylaluminum. 請求項1または2に記載の化合物半導体ウェハにおいて、上記キャリア濃度が、1×1018cm−3以下であることを特徴とする化合物半導体ウェハ。 3. The compound semiconductor wafer according to claim 1, wherein the carrier concentration is 1 × 10 18 cm −3 or less. 請求項1乃至3のいずれかに記載の化合物半導体ウェハにおいて、砒素原料にアルシンを用いたことを特徴とする化合物半導体ウェハ。   4. The compound semiconductor wafer according to claim 1, wherein arsine is used as an arsenic material. 請求項1乃至3のいずれかに記載の化合物半導体ウェハにおいて、砒素原料に、アルシンとトリメチルアルシンを混合したものを用いたことを特徴とする化合物半導体ウェハ。   4. The compound semiconductor wafer according to claim 1, wherein a mixture of arsine and trimethylarsine is used as an arsenic raw material.
JP2005178926A 2005-06-20 2005-06-20 Compound semiconductor wafer Pending JP2006351993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178926A JP2006351993A (en) 2005-06-20 2005-06-20 Compound semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178926A JP2006351993A (en) 2005-06-20 2005-06-20 Compound semiconductor wafer

Publications (1)

Publication Number Publication Date
JP2006351993A true JP2006351993A (en) 2006-12-28

Family

ID=37647491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178926A Pending JP2006351993A (en) 2005-06-20 2005-06-20 Compound semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2006351993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108931A (en) * 2009-11-19 2011-06-02 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device, and method of manufacturing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108931A (en) * 2009-11-19 2011-06-02 Sumitomo Chemical Co Ltd Semiconductor substrate, electronic device, and method of manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
KR20090026144A (en) Compound semiconductor epitaxial substrate and method for producing the same
JPH07201737A (en) Method of growing iii-v group compound semiconductor crystal
EP2565908A1 (en) Vapor deposition device, vapor deposition method, and semiconductor element manufacturing method
CN100524621C (en) Crystalline gallium nitride base compound growth method and semiconductor component containing gallium nitride base compound
US20100006874A1 (en) Process for production of gallium nitride-based compound semiconductor light emitting device
Scholz MOVPE of Group‐III Heterostructures for Optoelectronic Applications
WO2004019390A2 (en) Mbe growth of an algan layer or algan multilayer structure
JP2004524690A (en) Hybrid growth system and method
WO2014038634A1 (en) Epitaxial wafer and method for producing same
JPH08316151A (en) Manufacture of semiconductor
KR100710007B1 (en) P-type semi-conductor and manufacturing method of the same using hvpe
JP2006351993A (en) Compound semiconductor wafer
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
KR100990350B1 (en) Method for manufacturing compound semiconductor wafer and compound semiconductor device
JP2885435B2 (en) Method for manufacturing compound semiconductor thin film
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
JP2005191477A (en) Epitaxial wafer for high electron mobility transistor
US10665752B2 (en) Air void structures for semiconductor fabrication
Wachtendorf et al. Criteria for the growth of III-nitrides for blue-green emitting devices
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
WO2019176470A1 (en) Semiconductor device and method for manufacturing same
JPH07201761A (en) Growth of compound semiconductor
JP4768773B2 (en) Thin film forming apparatus and thin film forming method
JP5071703B2 (en) Semiconductor manufacturing equipment
JP2006128536A (en) Semiconductor epitaxial wafer and semiconductor device cut therefrom