JPH0613323A - Vapor phase epitaxy method for compound semiconductor mixed crystal - Google Patents
Vapor phase epitaxy method for compound semiconductor mixed crystalInfo
- Publication number
- JPH0613323A JPH0613323A JP16770792A JP16770792A JPH0613323A JP H0613323 A JPH0613323 A JP H0613323A JP 16770792 A JP16770792 A JP 16770792A JP 16770792 A JP16770792 A JP 16770792A JP H0613323 A JPH0613323 A JP H0613323A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- composition
- growth
- layer
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、化合物半導体の気相エ
ピタキシャル成長方法に関し、特に多層ヘテロ接合構造
を形成する場合に利用して有効な技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase epitaxial growth method for compound semiconductors, and more particularly to a technique effective when used for forming a multilayer heterojunction structure.
【0002】[0002]
【従来の技術】半導体レーザー、発光ダイオード、フォ
トダイオード等の光デバイスでは、例えばInGaAs
P/InPのようなヘテロ接合構造が使用されている。
この種のヘテロ接合構造の形成には、気相成長方法が利
用されている。従来、InGaAsP,InP等のIII
−V族化合物半導体を基板上に気相エピタキシャル成長
させるには、例えば図1に示すような気相成長装置を用
いてハイドライドVPE法により行なっている。2. Description of the Related Art In optical devices such as semiconductor lasers, light emitting diodes, and photodiodes, for example, InGaAs is used.
Heterojunction structures such as P / InP have been used.
A vapor phase growth method is used to form this type of heterojunction structure. Conventionally, InGaAsP, InP, etc. III
The vapor phase epitaxial growth of the group-V compound semiconductor on the substrate is performed by the hydride VPE method using a vapor phase growth apparatus as shown in FIG. 1, for example.
【0003】すなわち、この気相成長装置は、円筒状を
なす石英製の反応管1と、その周囲に配設された電気炉
10とからなり、電気炉10は反応管1の軸方向温度分
布を制御できるように構成されている。そして、反応管
1内には、上流側(図では左側)に材料源であるインジ
ウムやガリウムを収納した原料ボート5,6を配置し、
下流側に気相成長をさせるGaAs基板7を保持するサ
セプタ8を配置する。一方、反応管1の上流端には、原
料ボート5にガスを供給するための第1のガス導入管2
と、原料ボート6にガスを供給するための第2のガス導
入管3と、原料ボートを迂回してガスを基板7の上流に
供給するための第3のガス導入管4とが接続されてい
る。なお、9はガス排気管である。That is, this vapor phase growth apparatus comprises a cylindrical reaction tube 1 made of quartz and an electric furnace 10 arranged around it, and the electric furnace 10 has an axial temperature distribution of the reaction tube 1. It is configured to be able to control. Then, in the reaction tube 1, raw material boats 5 and 6 containing indium and gallium as material sources are arranged on the upstream side (left side in the figure),
A susceptor 8 holding a GaAs substrate 7 for vapor phase growth is arranged on the downstream side. On the other hand, at the upstream end of the reaction tube 1, a first gas introduction tube 2 for supplying gas to the raw material boat 5 is provided.
And a second gas introducing pipe 3 for supplying gas to the raw material boat 6 and a third gas introducing pipe 4 for bypassing the raw material boat and supplying gas to the upstream side of the substrate 7. There is. In addition, 9 is a gas exhaust pipe.
【0004】[0004]
【発明が解決しようとする課題】ところで、多層ヘテロ
接合構造を気相成長法で形成する場合、成長ガスの組成
の切換え直後に成長室内の状態が不安定になるため、組
成変化が急峻でかつ良好な成長界面を得ることが困難で
あった。そこで、成長装置に基板を待機させておく室を
設けたり、複数の成長室を設けるあるいは基板ホルダー
にスライド式のカバーを取り付ける等の工夫が提案され
ている。しかしながら、これらの工夫を施した場合、成
長装置が複雑となる上、それぞれ機械的動作部分を有し
ているためシールが必要となり、しかもそのシール部分
でのガス漏れを完全に防止することが困難で安全上も問
題があった。By the way, when the multilayer heterojunction structure is formed by the vapor phase epitaxy method, the state in the growth chamber becomes unstable immediately after the composition of the growth gas is switched, so that the composition change is sharp and It was difficult to obtain a good growth interface. Therefore, it has been proposed to provide a growth apparatus with a chamber for waiting the substrate, to provide a plurality of growth chambers, or to attach a slide type cover to the substrate holder. However, when these measures are taken, the growth apparatus becomes complicated, and each has a mechanical operation part, so a seal is required, and it is difficult to completely prevent gas leakage at the seal part. There was also a safety issue.
【0005】本発明は、上記のような問題点に着目して
なされたもので、成長装置を複雑にすることなく、組成
変化が急峻でかつ良好な成長界面を有するヘテロ接合構
造を得ることができる気相成長方法を提供することにあ
る。The present invention has been made in view of the above problems, and it is possible to obtain a heterojunction structure having a sharp composition change and a good growth interface without complicating a growth apparatus. It is to provide a vapor growth method that can be performed.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、組成の異なる2以上の化合物半導体層を
連続して気相成長させるにあたって、成長ガスの切換え
の際に前の組成の成長層を気相エッチングにてエッチン
グし、不所望の組成の層を除去してから異なる組成の層
を気相成長させるようにしたものである。In order to achieve the above object, the present invention provides a method of continuously growing a compound gas having different compositions by vapor phase growth. The growth layer is etched by vapor phase etching to remove a layer having an undesired composition, and then a layer having a different composition is vapor phase grown.
【0007】[0007]
【作用】気相成長において、組成の異なる2以上の化合
物半導体層を連続して気相成長させる場合、成長ガスを
切り換えると成長室内のガス組成が一時期不安定になる
ため、所望しない組成の層が成長してしまうが、上記し
た手段によれば、気相エッチングにより所望しない組成
の層が除去されるため、ガスの切換え制御のみで組成変
化が急峻でかつ良好な成長界面を有するヘテロ接合構造
を得ることができる。In vapor phase growth, when two or more compound semiconductor layers having different compositions are continuously vapor phase grown, the gas composition in the growth chamber becomes temporarily unstable when the growth gas is switched. However, according to the above-mentioned means, a layer having an undesired composition is removed by vapor phase etching, so that the heterojunction structure having a sharp growth in composition change and a good growth interface only by controlling gas switching. Can be obtained.
【0008】[0008]
【実施例】以下、本発明をハイドライドVPE法による
InGaAsP/InPヘテロ接合構造の気相成長に適
用した場合の実施例について説明する。まず、InP単
結晶基板を図1に示すような成長装置のサセプタ8上に
設置する。また、原料ボート5内にIn(インジウ
ム)、原料ボート6内にGa(ガリウム)を入れて反応
管の上流側に設置する。そして、ガス導入管2,3より
水素ガスを1000cc/minの流量で、また、ガス
導入管4より水素で10%に稀釈されたPH3(フォス
フィン)およびAsH3(アルシン)をそれぞれ200
cc/minと100cc/minの流量で供給しなが
ら基板温度を650℃に昇温した。また、同時に原料ボ
ート5,6内の金属原料を800℃に昇温した。EXAMPLE An example in which the present invention is applied to vapor phase growth of an InGaAsP / InP heterojunction structure by the hydride VPE method will be described below. First, the InP single crystal substrate is placed on the susceptor 8 of the growth apparatus as shown in FIG. In addition, In (indium) is placed in the raw material boat 5 and Ga (gallium) is placed in the raw material boat 6 and installed in the upstream side of the reaction tube. Hydrogen gas was supplied from the gas introduction pipes 2 and 3 at a flow rate of 1000 cc / min, and PH 3 (phosphine) and AsH 3 (arsine) diluted to 10% with hydrogen were introduced from the gas introduction pipe 4 to 200 times, respectively.
The substrate temperature was raised to 650 ° C. while being supplied at flow rates of cc / min and 100 cc / min. At the same time, the metal raw materials in the raw material boats 5 and 6 were heated to 800 ° C.
【0009】温度が安定してから、ガス導入管2,3よ
りHClガスを30cc/minと5cc/minの流
量でそれぞれ供給して、30分かけてInGaAsP層
を15μmの厚みに成長させた。その後、ガス導入管4
からのAsH3,PH3の供給を停止してHClガスに切
換えるとともに、ガス導入管3から原料ボート6へのH
Clガスの供給を停止した(図2タイミングT1)。ガ
ス導入管4からのHClガスは10cc/minの流量
で30秒間供給して、基板表面のInGaAsP層を約
2μm気相エッチングした。上記ガス導入管4のAsH
3,PH3からHClガスへ切換えの際に、ガス導入管2
からのHClガスの流量(30cc/min)を次のI
nP層の気相成長の際に必要とされる流量(100cc
/min)に変化させた。After the temperature became stable, HCl gas was supplied from the gas introduction pipes 2 and 3 at flow rates of 30 cc / min and 5 cc / min, respectively, and the InGaAsP layer was grown to a thickness of 15 μm over 30 minutes. After that, gas introduction pipe 4
The supply of AsH 3 and PH 3 from the reactor is stopped to switch to HCl gas, and H from the gas introduction pipe 3 to the raw material boat 6
The supply of Cl gas was stopped (timing T1 in FIG. 2). HCl gas from the gas introducing tube 4 was supplied at a flow rate of 10 cc / min for 30 seconds to vapor-etch the InGaAsP layer on the substrate surface by about 2 μm. AsH of the gas introduction pipe 4
3 , when switching from PH 3 to HCl gas, gas introduction pipe 2
The flow rate of HCl gas (30 cc / min) from
Flow rate required for vapor phase growth of nP layer (100 cc
/ Min).
【0010】上記ガス導入管4からのHClガス供給に
よる基板のエッチング後、ガス導入管4からのHClガ
スの供給を停止し、PH3に切り換えた(タイミングT
2)。PH3は流量500cc/minとし、これを1
0分間流すことによりInP層を10μmの厚みに成長
させた。得られたエピタキシャル層の組成を分析した。
その結果、組成プロファイルは図3に示すようになって
おり、InGaAsP層からInP層へ移行する遷移層
の厚みは0.3μmであった。After etching the substrate by supplying the HCl gas from the gas introducing pipe 4, the supply of the HCl gas from the gas introducing pipe 4 is stopped and the pH is switched to PH 3 (timing T).
2). PH 3 has a flow rate of 500 cc / min, which is 1
The InP layer was grown to a thickness of 10 μm by flowing for 0 minutes. The composition of the obtained epitaxial layer was analyzed.
As a result, the composition profile was as shown in FIG. 3, and the thickness of the transition layer transitioning from the InGaAsP layer to the InP layer was 0.3 μm.
【0011】(比較例)図2に示されているタイミング
T1とT2の間のエッチング工程を省略し、タイミング
T1でガス導入管3から原料ボート6へのHClガスの
供給を停止するとともに、ガス導入管4からの供給ガス
をAsH3とPH3からPH3のみに切り換え、InP単
結晶基板の上に厚さ15μmのInGaAsP層を成長
させ、その上に厚さ10μmのInP層の気相成長させ
た。各エピタキシャル層の成長条件(基板温度、原料ボ
ート部温度、成長ガス流量)は上記実施例と同一にし
た。得られたエピタキシャル層の組成を分析したとこ
ろ、組成プロファイルは図4に示すようになっており、
InGaAsP層からInP層へ移行する遷移層の厚み
は1.5μmであった。(Comparative Example) The etching process between the timings T1 and T2 shown in FIG. 2 is omitted, and at the timing T1, the supply of the HCl gas from the gas introducing pipe 3 to the raw material boat 6 is stopped and the gas is supplied. The supply gas from the introduction tube 4 is switched to only AsH 3 and PH 3 to PH 3 , and a 15 μm thick InGaAsP layer is grown on the InP single crystal substrate, and a 10 μm thick InP layer is vapor-phase grown thereon. Let The growth conditions (substrate temperature, raw material boat portion temperature, growth gas flow rate) of each epitaxial layer were the same as those in the above-mentioned examples. When the composition of the obtained epitaxial layer was analyzed, the composition profile was as shown in FIG.
The thickness of the transition layer transitioning from the InGaAsP layer to the InP layer was 1.5 μm.
【0012】なお、上記実施例では、InGaAsP/
InPの成長を例にとって説明したが、この発明はそれ
に限定されず、他のIII−V族化合物半導体やII−VI族
化合物半導体の混晶を積層したヘテロ接合構造の形成一
般に適用することができる。また、実施例では、気相成
長法としてハイドライドVPE法を使用したが、他の気
相成長法を使用する場合にも利用することができる。そ
の場合のエッチングガスもHClに限定されず、エッチ
ング作用があればどのようなガスを使用しても良い。In the above embodiment, InGaAsP /
Although the growth of InP has been described as an example, the present invention is not limited thereto and can be generally applied to the formation of a heterojunction structure in which mixed crystals of other III-V group compound semiconductors or II-VI group compound semiconductors are laminated. . Further, in the embodiment, the hydride VPE method is used as the vapor phase growth method, but it can also be used when other vapor phase growth methods are used. The etching gas in that case is not limited to HCl, and any gas may be used as long as it has an etching action.
【0013】[0013]
【発明の効果】以上説明したようにこの発明は、組成の
異なる2以上の化合物半導体層を連続して気相成長させ
るにあたって、成長ガスの切換えの際に前の組成の成長
層を気相エッチングにてエッチングし、不所望の組成の
層を除去してから異なる組成の層を気相成長させるよう
にしたので、成長ガスの切換えの際に成長する不所望の
組成の層が除去されるため、ガスの切換え制御のみで成
長装置を複雑にすることなく組成変化が急峻でかつ良好
な成長界面を有するヘテロ接合構造を得ることができる
という効果がある。As described above, according to the present invention, when two or more compound semiconductor layers having different compositions are continuously vapor-phase grown, the growth layer having the previous composition is vapor-phase etched when the growth gas is switched. Since the layer with an undesired composition is removed by etching with the above method and the layer with a different composition is vapor-grown, the layer with an undesired composition that grows when the growth gas is switched is removed. There is an effect that a heterojunction structure having a sharp composition change and a good growth interface can be obtained without complicating the growth apparatus only by controlling gas switching.
【図1】本発明の一実施例に用いた気相成長装置の構成
例を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration example of a vapor phase growth apparatus used in an embodiment of the present invention.
【図2】本発明の一実施例におけるガス制御タイミング
を示すタイムチャートである。FIG. 2 is a time chart showing gas control timing in one embodiment of the present invention.
【図3】本発明の一実施例を適用することにより得られ
た気相成長層の組成分析結果を示す組成プロファイルで
ある。FIG. 3 is a composition profile showing a composition analysis result of a vapor phase growth layer obtained by applying one example of the present invention.
【図4】従来法により得られた気相成長層の組成分析結
果を示す組成プロファイルである。FIG. 4 is a composition profile showing a result of composition analysis of a vapor phase growth layer obtained by a conventional method.
1 反応管 2,3,4 ガス導入管 5,6 原料ボート 7 成長用基板 8 サセプタ 1 reaction tube 2,3,4 gas introduction tube 5,6 raw material boat 7 growth substrate 8 susceptor
Claims (1)
連続して気相成長させるにあたって、成長ガスの切換え
の際に前の組成の成長層を気相エッチングにてエッチン
グし、不所望の組成の層を除去してから異なる組成の層
を気相成長させるようにしたことを特徴とする化合物半
導体混晶の気相成長方法。1. When continuously vapor-depositing two or more compound semiconductor layers having different compositions, the growth layer having the previous composition is etched by vapor-phase etching when the growth gas is switched, and an undesired composition is obtained. The method for vapor phase growth of compound semiconductor mixed crystal, characterized in that the layers of different composition are removed, and then layers of different compositions are vapor-phase grown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16770792A JPH0613323A (en) | 1992-06-25 | 1992-06-25 | Vapor phase epitaxy method for compound semiconductor mixed crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16770792A JPH0613323A (en) | 1992-06-25 | 1992-06-25 | Vapor phase epitaxy method for compound semiconductor mixed crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0613323A true JPH0613323A (en) | 1994-01-21 |
Family
ID=15854726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16770792A Pending JPH0613323A (en) | 1992-06-25 | 1992-06-25 | Vapor phase epitaxy method for compound semiconductor mixed crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0613323A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010807A (en) * | 2006-05-30 | 2008-01-17 | Mitsubishi Electric Corp | Method of manufacturing semiconductor multilayer structure |
JP6509455B1 (en) * | 2018-05-24 | 2019-05-08 | 三菱電機株式会社 | Method of manufacturing III-V compound semiconductor device |
-
1992
- 1992-06-25 JP JP16770792A patent/JPH0613323A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010807A (en) * | 2006-05-30 | 2008-01-17 | Mitsubishi Electric Corp | Method of manufacturing semiconductor multilayer structure |
JP6509455B1 (en) * | 2018-05-24 | 2019-05-08 | 三菱電機株式会社 | Method of manufacturing III-V compound semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0667638B1 (en) | Method of etching a compound semiconductor | |
JPH0613323A (en) | Vapor phase epitaxy method for compound semiconductor mixed crystal | |
JPH08316151A (en) | Manufacture of semiconductor | |
JP4528413B2 (en) | Vapor growth method | |
JPH06291058A (en) | Manufacture of semiconductor substrate | |
JPH0684805A (en) | Compound semiconductor crystalline growth method | |
JP2000208423A (en) | Method for compound semiconductor vapor phase epitaxial growth | |
US5685904A (en) | Method of making multi-quantum well lasers | |
JPH07335988A (en) | Compd. semiconductor device and production process thereof | |
JP2952831B2 (en) | Method for manufacturing semiconductor device | |
JP2827736B2 (en) | Vapor growth method | |
JP3101753B2 (en) | Vapor growth method | |
JP2661155B2 (en) | Vapor phase epitaxial growth method | |
JP2763560B2 (en) | Method for manufacturing semiconductor device | |
JPH0697076A (en) | Vapor growth method of thin film | |
JPH04199507A (en) | Solid phase diffusion of n-type impurity to iii-v compound semiconductor | |
JPH0265125A (en) | Reaction pipe of mocvd crystal growth device | |
JP2576524B2 (en) | Vapor growth method | |
JPS6237000B2 (en) | ||
JPH0594949A (en) | Semiconductor vapor growth device | |
JPH04354325A (en) | Epitaxial growing method of compound semiconductor | |
JPH05102039A (en) | Manufacture of semiconductor device | |
JPH03145718A (en) | Vapor epitaxial growth method | |
JPH04333220A (en) | Inp substrate, inp semiconductor device and manufacture of inp substrate | |
JPH04175293A (en) | Method for selective crystal growth |