JPH04175293A - Method for selective crystal growth - Google Patents

Method for selective crystal growth

Info

Publication number
JPH04175293A
JPH04175293A JP30497390A JP30497390A JPH04175293A JP H04175293 A JPH04175293 A JP H04175293A JP 30497390 A JP30497390 A JP 30497390A JP 30497390 A JP30497390 A JP 30497390A JP H04175293 A JPH04175293 A JP H04175293A
Authority
JP
Japan
Prior art keywords
tantalum oxide
single crystal
growth
gaas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30497390A
Other languages
Japanese (ja)
Inventor
Hideji Kawasaki
秀司 川崎
Hiroyuki Tokunaga
博之 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30497390A priority Critical patent/JPH04175293A/en
Publication of JPH04175293A publication Critical patent/JPH04175293A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly selective crystal growth through vapor growth technique by using tantalum oxide as the non-forming surface for single crystal or polycrystal and by containing chlorine in a feedstock gas. CONSTITUTION:Firstly, tantalum oxide 1 is formed as a mask on a nonforming surface portion for single crystal or polycrystal on the surface of a single crystal substrate 2. Thence, a feedstock gas 3 containing a group V raw material (e.g. AsH3), group III raw material (e.g. triethylgallium) and chlorine is fed to grow selectively group III-V compound semiconductor crystal by vapor growth technique on the surface portion not masked with the tantalum oxide 1. Thereby, because of the presence of the chlorine in the feedstock gas, the tantalum oxide 1 will be gradually etched by the chlorine during crystal growth; therefore, through controlling the film thickness of the tantalum oxide 1, both the selective and whole growths can be performed within one growth process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はm−v族化合物半導体の選択結晶成長方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for selective crystal growth of m-v group compound semiconductors.

〔従来の技術〕[Conventional technology]

従来、GaAs (ガリウムヒ素)等の■−v族化合物
半導体の集積化あるいは高性能化のために、選択的に限
定された領域のみにGaAs等の■−v族化合物半導体
を形成する手法として、選択成長が用いられてきた。
Conventionally, in order to integrate or improve the performance of ■-v group compound semiconductors such as GaAs (gallium arsenide), methods have been used to form ■-v group compound semiconductors such as GaAs only in selectively limited areas. Selective growth has been used.

これらの場合、酸化けい素、窒化けい素薄膜面上にGa
As等の化合物半導体が形成されにくいことを利用し、
酸化けい素、窒化けい素薄膜面とGaAs単結晶面を用
いて、この酸化けい素、窒化けい素上にGaAs単結晶
あるいは多結晶を形成せずに、GaAs単結晶面上にG
aAs単結晶を形成している。
In these cases, Ga is deposited on the silicon oxide or silicon nitride thin film surface.
Taking advantage of the fact that compound semiconductors such as As are difficult to form,
By using a silicon oxide or silicon nitride thin film surface and a GaAs single crystal surface, G is formed on the GaAs single crystal surface without forming a GaAs single crystal or polycrystal on the silicon oxide or silicon nitride.
It forms an aAs single crystal.

〔発明が解決しようとしている課題〕[Problem that the invention is trying to solve]

しかしながら、上記従来例では非形成面の面積が大きく
なると酸化けい素、窒化けい素等のGaAs単結晶、多
結晶を形成しない面上にGaAs単結晶核あるいは多結
晶が形成されてしまう。
However, in the conventional example described above, when the area of the non-forming surface becomes large, GaAs single crystal nuclei or polycrystals are formed on the surface where GaAs single crystals or polycrystals such as silicon oxide or silicon nitride are not formed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の選択結晶成長方法は気相成長法を用いる選択結
晶成長方法において、単結晶あるいは多結晶を形成しな
い非形成面として酸化タンタルを用い、塩素を含む原料
ガスを供給することを特徴とする特 本発明は、選択成長を行う際に、塩素を含む原料ガスを
供給し、単結晶あるいは多結晶を形成しない非形成面と
して、酸化けい素や窒化けい素に比べ、より速くエツチ
ングされる酸化タンタルを用いるものである。
The selective crystal growth method of the present invention is a selective crystal growth method using a vapor phase growth method, characterized in that tantalum oxide is used as a non-formation surface where single crystals or polycrystals are not formed, and a raw material gas containing chlorine is supplied. In particular, the present invention supplies raw material gas containing chlorine during selective growth, and uses oxidized oxide, which is etched more quickly than silicon oxide or silicon nitride, as a non-forming surface that does not form single crystals or polycrystals. It uses tantalum.

〔作用〕[Effect]

単結晶あるいは多結晶を形成しない非形成面とする酸化
タンタルをエツチングする塩素を含む原料ガスを供給す
ることにより、非形成面上に単結晶あるいは多結晶が生
ずることを抑制し、選択性を向上できる。また、単結晶
あるいは多結晶を形成しない面は成長中にエツチングさ
れて行くため、酸化タンタルの膜厚を制御することによ
り、選択成長、全面成長を連続的に行うことが可能であ
る。
By supplying raw material gas containing chlorine that etches tantalum oxide on the non-forming surface where single crystals or polycrystals are not formed, the formation of single crystals or polycrystals on the non-forming surface is suppressed and selectivity is improved. can. Furthermore, since the surfaces on which single crystals or polycrystals are not formed are etched during growth, by controlling the thickness of the tantalum oxide film, selective growth and full-scale growth can be performed continuously.

〔実施態様例〕[Example of implementation]

本発明の実施態様例を示す。 An example embodiment of the present invention is shown.

第1図に示すように基板表面に単結晶あるいは多結晶を
形成しない非形成面部分に酸化タンタルlを形成し、単
結晶を形成する部分にGaAs、 InPSSi。
As shown in FIG. 1, tantalum oxide is formed on the surface of the substrate where no single crystal or polycrystal will be formed, and GaAs and InPSSi are formed on the area where the single crystal will be formed.

AA QaAsXGaInAsP等の半導体結晶2が露
出した面を形成する。酸化タンタルの形成法としては、
例えばEB(電子線)蒸着法、スパッタ法等を用いる。
An exposed surface of semiconductor crystal 2 such as AA QaAsXGaInAsP is formed. The method of forming tantalum oxide is as follows:
For example, an EB (electron beam) evaporation method, a sputtering method, or the like is used.

つぎに、MOCVD法(有機金属化学気相成長法)ある
いはVPE法(塩化物気相成長法)等のガス状の原料を
用いた気相成長法を用いて、選択成長を行う。この時、
V族原料としてAsH3、TBAs (ターシャルブチ
ルアルシン)、TMAs (トリメチルアルシン)、P
H3、TBP (ターシャルブチルホスフィン)等を用
いる。また、■族原料としては、TMG(トリメチルガ
リウム)、TEG(トリエチルカリウム)、TMA(ト
リメチルアルミニウム)、TEA(トリエチルアルミニ
ウム)、TMIn ()リメチルインジウム)、TEI
n (トリエチルインジウム)等の原料が用いられる。
Next, selective growth is performed using a vapor phase growth method using a gaseous raw material, such as MOCVD (metal organic chemical vapor deposition) or VPE (chloride vapor phase epitaxy). At this time,
Group V raw materials include AsH3, TBAs (tertiary butylarsine), TMAs (trimethylarsine), P
H3, TBP (tertiary butylphosphine), etc. are used. In addition, as group III raw materials, TMG (trimethylgallium), TEG (triethylpotassium), TMA (trimethylaluminum), TEA (triethylaluminum), TMIn ()limethylindium), TEI
Raw materials such as n (triethyl indium) are used.

これらの原料と同時にHCAガス3を供給し、選択成長
を行うのが望ましい。
It is desirable to supply HCA gas 3 simultaneously with these raw materials to perform selective growth.

MOCVD法を用いて選択成長を行う場合、以下のよう
な条件で行う。
When performing selective growth using the MOCVD method, it is performed under the following conditions.

成長温度は一般には500〜800°C1望ましくは5
70〜760℃、最適には600〜700°Cで行い、
圧力は一般には760Torr以下、望ましくは100
Torr以下、最適には20Torr以下で行う。また
、V族原料供給量/■族原料供給量の比は一般には5〜
300、望ましくは10〜200、最適には30〜15
0で行い原料とともに供給するHCIの供給モル量の全
供給ガスに占める割合は一般には1〜11000pp、
望ましくは1〜500 p p m 、最適には5〜l
100ppとする。
The growth temperature is generally 500 to 800°C, preferably 5
Perform at 70-760°C, optimally at 600-700°C,
The pressure is generally below 760 Torr, preferably 100 Torr.
Torr or less, optimally 20 Torr or less. In addition, the ratio of Group V raw material supply/■ Group raw material supply is generally 5 to 5.
300, preferably 10-200, optimally 30-15
The proportion of the molar amount of HCI supplied together with the raw material in the total supply gas is generally 1 to 11000 pp,
Desirably 1-500 ppm, optimally 5-1
It is set to 100pp.

また、EB蒸着法により酸化タンタルを形成する際、酸
素供給量を変化させた試料を作成し、この後、MOCV
D法を用いて、結晶形成処理を施し5cm角の酸化タン
タル上に形成された単結晶核の密度を測定した。この結
果を第2図に示す。これより、酸化タンタルの作成条件
により、酸化タンタル上に形成される単結晶核の数は異
なることが分かる。
In addition, when forming tantalum oxide by the EB evaporation method, samples were created with varying oxygen supply amounts, and then MOCV
Using the D method, the density of a single crystal nucleus formed on a 5 cm square tantalum oxide subjected to crystal formation treatment was measured. The results are shown in FIG. This shows that the number of single crystal nuclei formed on tantalum oxide varies depending on the tantalum oxide production conditions.

これは、酸化タンタルの組成により酸化タンタル上に形
成される単結晶核の数が異なることを示していると考え
られる。第2図が極小値を持っていることは、酸素の組
成比が大きい場合には酸化タンタルのエツチングレート
が小さくなりGaAsの形成を抑制することが出来な(
なるためGaAs単結晶核が増加し、酸素の組成比が小
さい場合には酸化タンタルの表面モホロジーが悪化する
ためにGaAs単結晶核が増加すると考えられる。ここ
で、MO(、VD法を用いた結晶形成処理の条件は、ま
ず、基板温度760℃、圧力100TorrてAsH3
を6 X 10−’molt/min、、水素を101
/min、供給し、20分間表面処理を行う。その後基
板温度780℃、圧力10Torrて原料ガスとしてA
sH3を4 X 10−’mol/min、、TMGを
1 x 1010−ll E / min、、水素を1
01! / min、HCj!ガスを2 x 10−5
mo 1. /m i n 、を20分供給した。
This is considered to indicate that the number of single crystal nuclei formed on tantalum oxide varies depending on the composition of tantalum oxide. The fact that FIG. 2 has a minimum value is because when the oxygen composition ratio is large, the etching rate of tantalum oxide becomes small and the formation of GaAs cannot be suppressed (
Therefore, it is thought that the number of GaAs single crystal nuclei increases, and when the oxygen composition ratio is small, the surface morphology of tantalum oxide deteriorates, so that the number of GaAs single crystal nuclei increases. Here, the conditions for the crystal formation treatment using the MO (VD method) are as follows: first, the substrate temperature is 760°C, the pressure is 100 Torr, and AsH3
6 × 10-'molt/min, 101 hydrogen
/min, and perform surface treatment for 20 minutes. After that, the substrate temperature was 780°C, the pressure was 10 Torr, and A was used as the raw material gas.
sH3 at 4 x 10-'mol/min, TMG at 1 x 1010-ll E/min, hydrogen at 1
01! / min, HCj! 2 x 10-5 gas
mo1. /min for 20 minutes.

また、HCI供給量を変化させ、5cm角の酸化タンタ
ル上に形成されるGaAs単結晶核の密度変化を測定し
た。また比較のためSi基板を熱酸化処理し得られた5
cm角の酸化けい素上に形成されたGaAs単結晶核の
数の変化を酸化タンタルと同時に結晶形成処理を施し調
べた。この結果を第5図に示す。酸化タンタルはHCI
供給量に対して極小値を持っていることが分かる。これ
はHCI供給量が少ない場合には酸化タンタルのエツチ
ングレートが小さくなりGaAsの形成を抑制すること
が出来なくなるためGaAs単結晶核が増加し、HCj
7供給量が多い場合にはエツチングレートが大きすぎる
ため、酸化タンタルの表面モホロジーが悪化するために
GaAs単結晶核が増加すると考えられる。
Furthermore, the density change of GaAs single crystal nuclei formed on a 5 cm square tantalum oxide was measured by changing the amount of HCI supplied. For comparison, a Si substrate was thermally oxidized.
Changes in the number of GaAs single crystal nuclei formed on cm square silicon oxide were investigated by performing crystal formation treatment simultaneously with tantalum oxide. The results are shown in FIG. Tantalum oxide is HCI
It can be seen that it has a minimum value relative to the supply amount. This is because when the amount of HCI supplied is small, the etching rate of tantalum oxide becomes small and the formation of GaAs cannot be suppressed, so the number of GaAs single crystal nuclei increases and HCj
If the supply amount of 7 is large, the etching rate is too high, and it is thought that the surface morphology of tantalum oxide deteriorates and the number of GaAs single crystal nuclei increases.

ここで用いた酸化タンタルはEB蒸着により作成され、
この時の酸素供給量は10 c c / m i n 
、である。
The tantalum oxide used here was created by EB evaporation,
The oxygen supply amount at this time is 10 cc/min
, is.

また、結晶形成処理はMOCVD法を用いて、まず、基
板温度760℃、圧力100TorrてAsH3を6 
X 10−’mob/min、、水素を101 / m
 i n 、供給し、20分間表面処理を行う。その後
基板温度780℃、圧力10Torrで原料ガスとして
AsH3を4X10−’moj!/min、、TMGを
lXl0−’mo I! /min、、水素を101 
/min、HCI!ガスを2 X 10−’mo !!
 / min。
In addition, the crystal formation process was performed by using the MOCVD method, and first, 6 AsH3 was heated at a substrate temperature of 760°C and a pressure of 100 Torr.
X 10-'mob/min, hydrogen at 101/m
i n , and surface treatment for 20 minutes. After that, AsH3 was used as a raw material gas at a substrate temperature of 780°C and a pressure of 10 Torr. /min,, TMG as lXl0-'mo I! /min,, 101 hydrogen
/min, HCI! 2 X 10-'mo of gas! !
/ min.

を20分供給した。was supplied for 20 minutes.

〔実施例1〕 本発明の実施例を示す。[Example 1] An example of the present invention is shown.

第3図(a)に示すようにn型AI! GaAs 5、
GaAs6、p型AI!GaAs7、p型A I Ga
As Bを順次成長したn型GaAs基板4上に酸化タ
ンタル1を1500人をEB蒸着により蒸着する。ここ
で、EB蒸着の条件としては、バックグランドを10−
6T o r rまで真空にし、次に02を10cc/
min、供給し蒸着した。
As shown in Figure 3(a), n-type AI! GaAs 5,
GaAs6, p-type AI! GaAs7, p-type AI Ga
On an n-type GaAs substrate 4 on which AsB was sequentially grown, 1,500 pieces of tantalum oxide 1 were deposited by EB evaporation. Here, the conditions for EB evaporation are that the background is 10-
Vacuum to 6T o r r, then 02 to 10cc/
min, was supplied and deposited.

第3図(b)に示すようにホトリソグラフィにより20
0μmピッチで2μmのラインを抜いたパターンを形成
した。
As shown in Figure 3(b), 20
A pattern was formed in which lines of 2 μm were cut out at a pitch of 0 μm.

第3図(C)に示すようにIBEにより800μmのラ
イン部の酸化タンタルを残し、500μmのライン部G
aAsを表面に露出した。ここで、IBEの条件は、C
F4を20 c c 7 m i n 、 02を2c
c/min。
As shown in Figure 3(C), tantalum oxide in the 800 μm line portion was left by IBE, and the line portion G in the 500 μm line portion was removed.
aAs was exposed on the surface. Here, the conditions for IBE are C
F4 is 20 c c 7 min, 02 is 2 c
c/min.

供給し、圧力10Pa、パワー100Wで20分間エツ
チングした。
Etching was carried out for 20 minutes at a pressure of 10 Pa and a power of 100 W.

第3図(d)に示すようにその後、レジスト15を取り
去り、表面の清純化を行った。
As shown in FIG. 3(d), the resist 15 was then removed to purify the surface.

第3図(e)に示すようにMOCVD法を用いて基板温
度760°C1圧力100TorrでAsH3を6 X
 10−’moj!/min、、水素を101/min
、、供給し、20分間表面処理を行う。その後基板温度
760°C1圧力20Torrで原料ガスとしてAsH
3を4 X I O−’moji!/min、、TMG
をI X 10−5mo l / min、、水素を1
01/min、、H(1!ガスを2X10’mojl!
/ m i n 、供給してGaAs9を選択成長した
(1時間)。
As shown in Figure 3(e), AsH3 was 6
10-'moj! /min,, hydrogen 101/min
,, and perform surface treatment for 20 minutes. After that, AsH was used as the raw material gas at a substrate temperature of 760°C and a pressure of 20 Torr.
3 to 4 X I O-'moji! /min,,TMG
I x 10-5 mol/min, hydrogen 1
01/min,,H(1!Gas 2X10'mojl!
/min for selective growth of GaAs9 (1 hour).

非形成面としてSio2を用いて、同一条件で成長した
場合、Sio2上にGaAs単結晶核は50個/crr
?であったのに対して、酸化タンタル上に形成されたG
aAs単結晶核は20個/ c m 2であり、選択性
が向上したことが示された。
When grown under the same conditions using Sio2 as a non-forming surface, the number of GaAs single crystal nuclei on Sio2 is 50/crr.
? On the other hand, G formed on tantalum oxide
The number of aAs single crystal nuclei was 20/cm2, indicating that the selectivity was improved.

〔実施例2〕 本発明の実施例を示す。[Example 2] An example of the present invention is shown.

第4図(a)に示すようにS1ドープのn型GaAs基
板(2X 1018cm−3) 9上に酸化タンタルl
を200人をEB蒸着により蒸着した。ここで、EB蒸
着の条件としては、バックグランドを10’Torrま
で真空にし、次に02を10cc/min供給し、蒸着
した。
As shown in Fig. 4(a), tantalum oxide l is placed on an S1-doped n-type GaAs substrate (2X 1018 cm-3).
200 people were deposited by EB deposition. Here, the conditions for the EB vapor deposition were as follows: the background was vacuumed to 10' Torr, and then 02 was supplied at 10 cc/min for vapor deposition.

第4図(b)に示すようにホトリソグラフィにより20
0μmピッチで2μmのラインを残したパターンを形成
した。
As shown in FIG. 4(b), 20
A pattern was formed with a pitch of 0 μm and lines of 2 μm remaining.

第4図(C)に示すようにIBEにより2μmのライン
部以外の酸化タンタルを取り去り、GaAsを表面に露
出させる。ここで、IBEの条件は、CF4を20cc
/min、、0□を2cc/min、供給し、圧力10
Pa、パワー100Wで3分間エツチングする。
As shown in FIG. 4(C), tantalum oxide other than the 2 μm line portion is removed by IBE to expose GaAs on the surface. Here, the conditions for IBE are 20cc of CF4.
/min,, 0□ is supplied at 2cc/min, and the pressure is 10
Etch for 3 minutes at Pa and power of 100W.

第4図(d)に示すようにその後、レジスト15を取り
去り、表面の清純化を行う。
As shown in FIG. 4(d), the resist 15 is then removed and the surface is purified.

第4図(e)に示すようにMOCVD法を用いて基板温
度760℃、圧力100TorrでAsH3を6 X 
10−’mof/min、、水素10j!/min、供
給し、20分間表面処理を行った。その後基板温度76
0℃、圧力20Torrで原料ガスとしてAsH3を4
 X 10−’mo1/min、、TMGをI X 1
0−6mo i/ min、、水素を10f/min、
、HClガスを2X10−’mol/min、、DEZ
nをI X 10−6mo I! / min、供給し
てp型GaAs (I X 10”cm=) 11を選
択成長した(1時間)。
As shown in FIG. 4(e), AsH3 was 6
10-'mof/min,, hydrogen 10j! /min, and surface treatment was performed for 20 minutes. Then the substrate temperature 76
AsH3 was used as the source gas at 0°C and 20 Torr.
X 10-'mo1/min,, TMG I X 1
0-6mo i/min, hydrogen 10f/min,
, HCl gas at 2X10-'mol/min, DEZ
n to I x 10-6mo I! p-type GaAs (I x 10"cm=) 11 was selectively grown (1 hour).

次に、連続的にDEZnをSiH4に切り換えて、I 
X 10−’mo l! / m in 、供給し、n
型GaAs(Ixlσ8cm−5)12を形成した(3
0分)。
Next, continuously switch DEZn to SiH4 and
X 10-'mol! /min,supply,n
type GaAs (Ixlσ8cm-5)12 was formed (3
0 minutes).

第4図(f)に示すように次に、HCIガスの供給を止
め、TMA (1−リンチルガリウム)を3 X 10
−’mol!/min、供給し、TMG供給量を7 X
 1 ()−6mo 1/min、5iH4供給量を5
X 10’mo I! /min、に変え、n型ARG
aAs5を形成する。次にTMAをI X 10−6m
o I /min、、TMGを9XIO−’moA’/
m i n 、に変化させ、SiH4、TMAの供給を
止め、GaAs 6を形成する。次に、TMAを3×l
O−6mol/min、、TMGを7x 10=mo 
I!/min、に変え、DEZnを5 X 10−’m
o 12 / min、供給し、p型AI!GaAs 
7を形成する。次に、TMAの供給を止め、TMGを7
X10−6mo j! /min、、DEZnを2 X
 10−’mof/min、に変え、n型GaAs B
を形成した。
Next, as shown in FIG. 4(f), the supply of HCI gas was stopped, and TMA (1-lymphylgallium) was added to 3×10
-'mol! /min, and the TMG supply amount is 7
1 ()-6mo 1/min, 5iH4 supply amount 5
X 10'mo I! /min, change to n-type ARG
Form aAs5. Then TMA I x 10-6m
o I /min,, TMG is 9XIO-'moA'/
m i n , the supply of SiH4 and TMA is stopped, and GaAs 6 is formed. Next, add 3×l TMA
O-6mol/min, TMG 7x 10=mo
I! /min, and DEZn to 5 x 10-'m.
o 12/min, supply, p-type AI! GaAs
form 7. Next, stop the TMA supply and increase the TMG to 7
X10-6mo j! /min,, DEZn 2 X
10-'mof/min, n-type GaAs B
was formed.

第4図(g)に示すように成長表面にA u / Z 
n /Au電極13を、基板裏面にAuGe電極14を
抵抗加熱蒸着した。
As shown in Figure 4(g), A u / Z is formed on the growth surface.
An n /Au electrode 13 and an AuGe electrode 14 were deposited on the back surface of the substrate by resistance heating vapor deposition.

以上のように1回の成長で製作された埋め込み型発光素
子の基本特性を測定した。酸化タンタルを形成した部分
からの発光が観測され、他の部分での耐圧が5v有り、
電流狭窄層が形成されていた。
The basic characteristics of the embedded light emitting device fabricated in one growth process as described above were measured. Luminescence was observed from the part where tantalum oxide was formed, and the withstand voltage in other parts was 5V.
A current confinement layer was formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、選択成長を行う際、マスクとして
酸化タンタルを用い、原料ガスとともにHCfガスを供
給することにより、高選択性を得ることができるととも
に、酸化タンタルの膜厚を制御することにより選択成長
、全面成長を1つの成長プロセスの中で行うことができ
る。
As explained above, when performing selective growth, high selectivity can be obtained by using tantalum oxide as a mask and supplying HCf gas together with the source gas, and by controlling the film thickness of tantalum oxide. Selective growth and full-scale growth can be performed in one growth process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による結晶成長法説明図。 第2図は酸化タンタル作成条件による酸化タンタル上に
形成されたGaAs単結晶核密度の変化を示す図。 第3図は本発明による結晶成長法実施例1を説明するた
めの図。 第4図は本発明による結晶成長法実施例2を示すための
図。 第5図はHCA供給量による酸化タンタル上に形成され
たGaAs単結晶核密度の変化を示すための図。 1・・・酸化タンタル 2・・・GaAs (ガリウムヒ素)、InP (イン
ジウムリン)、Si等の単結晶基板 3・・・V族原料、■族原料、MCI!ガス4・・・n
型GaAs (ガリウムヒ素)基板5・・・n型GaA
 I As (ガリウムアルミニウムヒ素)膜 6・・・GaAs (ガリウムヒ素)膜7・・・p型G
aA I! As (ガリウムアルミニウムヒ素)膜 8・・・n型GaAs (ガリウムヒ素)膜9・・・n
型GaAs (ガリウムヒ素)膜10・・・エツチング
された酸化タンタル形成部11・・・n型GaAs (
ガリウムヒ素)膜12・・・n型GaAs (ガリウム
ヒ素)膜13−−・A u / Z n / A u電
極14−−・A u G e電極 15・・・レジスト −V乙りンタル乍釈謬書千1ごよる面晩イ乙タンタル工
1てhn=yNrc Da4 *#;j−不阪dlKn
変イ乙八・77へ′lシント /Xl0−’Ttrnn
6ソ併胎量  (cc/minン 第 3 図 ((2> (b) (C) (d) (ε) (’f)
FIG. 1 is an explanatory diagram of the crystal growth method according to the present invention. FIG. 2 is a diagram showing changes in the density of GaAs single crystal nuclei formed on tantalum oxide depending on tantalum oxide production conditions. FIG. 3 is a diagram for explaining Example 1 of the crystal growth method according to the present invention. FIG. 4 is a diagram showing Example 2 of the crystal growth method according to the present invention. FIG. 5 is a diagram showing changes in the density of GaAs single crystal nuclei formed on tantalum oxide depending on the amount of HCA supplied. 1... Tantalum oxide 2... Single crystal substrate of GaAs (gallium arsenide), InP (indium phosphide), Si, etc. 3... Group V raw material, Group ■ raw material, MCI! Gas 4...n
Type GaAs (gallium arsenide) substrate 5... n-type GaA
I As (gallium aluminum arsenide) film 6...GaAs (gallium arsenide) film 7...p-type G
aAI! As (gallium aluminum arsenide) film 8... n-type GaAs (gallium arsenide) film 9... n
Type GaAs (gallium arsenide) film 10...etched tantalum oxide forming portion 11...n type GaAs (
Gallium arsenide) film 12...N-type GaAs (gallium arsenide) film 13--Au/Zn/Au electrode 14--AuGe electrode 15...Resist-V 100000001
Weird Otohachi 77 to 'l sint /Xl0-'Ttrnn
Figure 3 ((2> (b) (C) (d) (ε) ('f)

Claims (3)

【特許請求の範囲】[Claims] (1)気相成長法を用いる選択結晶成長方法において、
単結晶あるいは多結晶を形成しない非形成面として酸化
タンタルを用い、塩素を含む原料ガスを供給することを
特徴とする選択結晶成長方法。
(1) In a selective crystal growth method using vapor phase growth,
A selective crystal growth method characterized by using tantalum oxide as a non-forming surface that does not form single crystals or polycrystals, and supplying a raw material gas containing chlorine.
(2)結晶形成原料ガスと塩化水素とを供給する請求項
1記載の選択結晶成長方法。
(2) The selective crystal growth method according to claim 1, wherein the crystal forming raw material gas and hydrogen chloride are supplied.
(3)前記単結晶はIII−V族化合物半導体である請求
項1記載の選択結晶成長方法。
(3) The selective crystal growth method according to claim 1, wherein the single crystal is a III-V group compound semiconductor.
JP30497390A 1990-11-09 1990-11-09 Method for selective crystal growth Pending JPH04175293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30497390A JPH04175293A (en) 1990-11-09 1990-11-09 Method for selective crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30497390A JPH04175293A (en) 1990-11-09 1990-11-09 Method for selective crystal growth

Publications (1)

Publication Number Publication Date
JPH04175293A true JPH04175293A (en) 1992-06-23

Family

ID=17939543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30497390A Pending JPH04175293A (en) 1990-11-09 1990-11-09 Method for selective crystal growth

Country Status (1)

Country Link
JP (1) JPH04175293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982435B2 (en) * 1999-03-31 2006-01-03 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982435B2 (en) * 1999-03-31 2006-01-03 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same

Similar Documents

Publication Publication Date Title
CN101635255A (en) A method of forming a semiconductor structure
CN108767055B (en) P-type AlGaN epitaxial film and preparation method and application thereof
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH04175293A (en) Method for selective crystal growth
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
JP4742399B2 (en) Method for producing group 3-5 compound semiconductor
US7550786B2 (en) Compound semiconductor epitaxial substrate
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP3575618B2 (en) Crystal growth method of gallium nitride based compound semiconductor film
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JPH02203520A (en) Growth of compound semiconductor crystal
JPH04182385A (en) Growing method for crystal
JP3188931B2 (en) Thin film growth method
JP2897107B2 (en) Crystal growth method
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors
JP3251667B2 (en) Semiconductor device
JP3883303B2 (en) Method for producing p-type group III nitride semiconductor
JP2001085334A (en) Manufacture of iii-v compound semiconductor crystal laminate
JP2004096122A (en) Method for producing gallium nitride compound semiconductor
JP2001185499A (en) Manufacture of gallium nitride-based compound semiconductor
Tokuda et al. Selective Growth of GaAs and A1xGa1− xas by Omvpe Using Tertiarybutylarsine
JP2001168389A (en) Method for manufacturing gallium nitride compound semiconductor light emitting element
JPH01173764A (en) Manufacture of light-emitting element