JPS6237000B2 - - Google Patents

Info

Publication number
JPS6237000B2
JPS6237000B2 JP4079983A JP4079983A JPS6237000B2 JP S6237000 B2 JPS6237000 B2 JP S6237000B2 JP 4079983 A JP4079983 A JP 4079983A JP 4079983 A JP4079983 A JP 4079983A JP S6237000 B2 JPS6237000 B2 JP S6237000B2
Authority
JP
Japan
Prior art keywords
gas supply
supply pipe
gas
crystal growth
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4079983A
Other languages
Japanese (ja)
Other versions
JPS59170000A (en
Inventor
Yutaka Yoriume
Noryoshi Shibata
Juichi Noda
Noboru Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4079983A priority Critical patent/JPS59170000A/en
Publication of JPS59170000A publication Critical patent/JPS59170000A/en
Publication of JPS6237000B2 publication Critical patent/JPS6237000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板結晶上に単結晶をエピタキシヤ
ル成長させるための結晶成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal growth apparatus for epitaxially growing a single crystal on a substrate crystal.

〔従来技術〕[Prior art]

半導体レーザ、受光素子等には、AlGaAs、
GaAsあるいはInGaAsP及びInP等のヘテロ接合
が広く使われている。これらのヘテロ接合は通
常、液相成長法及び気相成長法等のエピタキシヤ
ル成長により製造されるが、量産性及び制御性が
良いことから最近では、有機金属材料を原料とす
る気相成長法、すなわちMOCVD法が注目されて
いる。該方法によれば、成長結晶の組成の切替え
及び添加不純物の切替え等は、反応室内へ導入す
るガスの切換えによりできるという特徴を有す
る。しかしながら、該方法では、ガス切換え後も
配管部分に残留したガスが反応室内に流入し、組
成の切替え及び添加不純物の切替え等の制御が不
十分になるという問題点があつた。最近注目を浴
びている超格子あるいは変調ドーピングの実現に
は、特に急しゆんな組成の切替えが必要であり、
上記問題点の解決が強く要請されている。
For semiconductor lasers, photodetectors, etc., AlGaAs,
Heterojunctions such as GaAs or InGaAsP and InP are widely used. These heterojunctions are usually manufactured by epitaxial growth methods such as liquid phase epitaxy and vapor phase epitaxy, but recently, vapor phase epitaxy using organometallic materials as raw materials has become more popular due to its ease of mass production and controllability. In other words, the MOCVD method is attracting attention. According to this method, the composition of the grown crystal and the added impurities can be changed by changing the gas introduced into the reaction chamber. However, this method has a problem in that gas remaining in the piping portion flows into the reaction chamber even after gas switching, resulting in insufficient control over switching of composition, switching of added impurities, etc. In order to realize superlattice or modulation doping, which has been attracting attention recently, it is necessary to switch the composition particularly quickly.
There is a strong demand for solutions to the above problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術における急しゆ
んなガス切替え制御を容易に行うことができる結
晶成長装置を提供することにある。
An object of the present invention is to provide a crystal growth apparatus that can easily perform rapid gas switching control in the prior art.

〔発明の構成〕[Structure of the invention]

本発明を概説すれば、本発明の第1の発明は結
晶成長装置に関する発明であつて、2種以上のガ
スをガス供給管からノズルを介して反応容器内に
導入し、容器内に配置された基板結晶上にエピタ
キシヤル結晶成長を行わせる結晶成長装置におい
て、該ガス供給管が、2以上のガス供給管からな
り、外側のガス供給管が内側のガス供給管を取囲
むように構成されており、該ガス供給管のうちの
少なくとも1つのガス供給管が排気装置に接続し
てなることを特徴とする。
To summarize the present invention, the first aspect of the present invention is an invention related to a crystal growth apparatus, in which two or more types of gases are introduced into a reaction vessel from a gas supply pipe through a nozzle, and are arranged in the vessel. In a crystal growth apparatus for epitaxial crystal growth on a substrate crystal, the gas supply pipe is composed of two or more gas supply pipes, and the outer gas supply pipe is configured to surround the inner gas supply pipe. At least one of the gas supply pipes is connected to an exhaust device.

本発明の第2の発明は、第1の発明と同様な基
板結晶上にエピタキシヤル結晶成長を行わせる結
晶成長装置に関する発明であつて、該ガス供給管
が、対をなす2つのガス供給管の組を単位として
複数の組のガス供給管により構成され、少なくと
も1つのガス供給管は排気装置に接続しており、
かつ各ガス供給管は内側から順に内側のガス供給
管を取囲むように配置されており、更に各組内の
ガス供給管の障壁のガス出口端が、各組間の障壁
のガス出口端より、管の長手方向でみて短くした
ことを特徴とする。
A second invention of the present invention relates to a crystal growth apparatus for performing epitaxial crystal growth on a substrate crystal similar to the first invention, wherein the gas supply pipe is a pair of two gas supply pipes. It is composed of a plurality of sets of gas supply pipes, with each set being a unit, and at least one gas supply pipe is connected to the exhaust device,
In addition, each gas supply pipe is arranged so as to surround the inner gas supply pipe in order from the inside, and furthermore, the gas outlet end of the barrier of the gas supply pipe in each set is closer than the gas outlet end of the barrier between each set. , the tube is characterized by being short when viewed in the longitudinal direction.

本発明の装置においては、化合物混晶半導体及
びシリコン等の半導体結晶の成長途中でのガス切
換えによる多層成長あるいはpn接合の形成の
際、切換え後の残留ガスを強制的に排気すること
ができる。またガス導入系統を分離することがで
きる。特に、本発明の第2の発明によれば、各組
内の各管の障壁のガス出口端が、各組間の障壁の
ガス出口端より、管の長手方向でみて短くなつて
いるかな、各系統のガスが他の系統の管中へ混入
することを避けることができる。
In the apparatus of the present invention, when performing multilayer growth or forming a pn junction by switching gases during the growth of semiconductor crystals such as compound mixed crystal semiconductors and silicon, residual gas after switching can be forcibly exhausted. Also, the gas introduction system can be separated. In particular, according to the second aspect of the present invention, the gas outlet ends of the barriers of each tube in each group are shorter than the gas outlet ends of the barriers between each group, as viewed in the longitudinal direction of the tubes. It is possible to prevent the gas of each system from mixing into the pipes of other systems.

それによつて以下に挙げるような効果が奏せら
れる。
As a result, the following effects can be achieved.

第1の効果は、ガスの切換え後の残留ガスのし
み出しを抑止できることにある。この結果、界面
の急しゆんな化合物半導体の多層エピタキシヤル
成長を実現することができ、したがつて超格子あ
るいは変調ドーピングも可能となる。また、シリ
コンの良好なエピタキシヤルpn接合が可能とな
る。
The first effect is that residual gas can be prevented from seeping out after gas switching. As a result, multilayer epitaxial growth of compound semiconductors with abrupt interfaces can be realized, and therefore superlattice or modulation doping is also possible. Furthermore, a good epitaxial pn junction of silicon can be formed.

第2の効果は、例えばインジウム化合物とアル
シンとの中間反応のような結晶成長に好ましくな
い影響を与える反応を抑止することができ、良好
なエピタキシヤル層を得ることができることにな
る。
The second effect is that reactions that have an unfavorable effect on crystal growth, such as intermediate reactions between indium compounds and arsine, can be suppressed, and a good epitaxial layer can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下添付図面によつて本発明の実施の態様を詳
細に説明する。しかし本発明は、これらに限定さ
れるものではない。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. However, the present invention is not limited to these.

なお添付図面の第1図は、本発明装置の一実施
の態様を示す部分断面概略図であり、第2図及び
第3図は、本発明装置の他の実施の態様における
ガス供給管及びノズルの部分の断面概略図であ
る。
Note that FIG. 1 of the accompanying drawings is a partial cross-sectional schematic diagram showing one embodiment of the device of the present invention, and FIGS. 2 and 3 show gas supply pipes and nozzles in other embodiments of the device of the present invention. FIG.

実施例 1 第1図に示す装置を使用した。第1図におい
て、符号1は反応容器基台、2はベルジヤー、3
はサセプタ、例えばカーボン及びSiCコートカー
ボン等、4はワークコイル、すなわち高周波電流
通電用のもの、5はワークコイルカバー、6は基
板、7はノズル、8,8′,9,9′,10及び1
0′はガス供給管、11及び12はストツプ弁、
13は排気管、14は排気装置、例えば真空ポン
プを意味する。
Example 1 The apparatus shown in FIG. 1 was used. In FIG. 1, reference numeral 1 is a reaction vessel base, 2 is a bell jar, and 3 is a reaction vessel base.
is a susceptor, such as carbon or SiC-coated carbon, 4 is a work coil, that is, for high-frequency current energization, 5 is a work coil cover, 6 is a substrate, 7 is a nozzle, 8, 8', 9, 9', 10, and 1
0' is a gas supply pipe, 11 and 12 are stop valves,
13 is an exhaust pipe, and 14 is an exhaust device, such as a vacuum pump.

以下、GaAs基板6上にGaAs/AlGaAsの多層
結晶成長を行う場合について説明する。
Hereinafter, a case will be described in which multilayer crystal growth of GaAs/AlGaAs is performed on the GaAs substrate 6.

トリメチルアルミニウム(以下、TMAと略記
する)、トリメチルガリウム(以下、TMGと略記
する)及びアルシン(すなわちAsH3)等の原料ガ
スは、ノズル7に設けられた噴射口から円周方向
に噴射され、一定の温度に加熱された基板上で熱
分解反応してGaAs又はAlGaAsを成長させる。
Raw material gases such as trimethylaluminum (hereinafter abbreviated as TMA), trimethylgallium (hereinafter abbreviated as TMG), and arsine (i.e. AsH 3 ) are injected in the circumferential direction from an injection port provided in the nozzle 7, GaAs or AlGaAs is grown by a thermal decomposition reaction on a substrate heated to a certain temperature.

GaAs結晶成長の際には、ガス供給管8から
TMG、AsH3及び水素を、ガス供給管8の内側に
配置したガス供給管9から水素を導入し、ガス供
給管9の内側に配置したガス供給管10は、真空
ポンプ等で反応容器を経ずに排気する。
During GaAs crystal growth, from the gas supply pipe 8
TMG, AsH 3 and hydrogen are introduced through a gas supply pipe 9 arranged inside the gas supply pipe 8, and the gas supply pipe 10 arranged inside the gas supply pipe 9 is passed through a reaction vessel using a vacuum pump or the like. Exhaust without.

AlGaAsの結晶成長の際には、ガス供給管10
は同じく排気装置に接続しているが、弁12を閉
じ、10からTMA及び水素を導入する。管8及
び9には、GaAs結晶成長の際と同じか、又はガ
ス流量を変更して、同様にガスを流入させる。1
1及び12は、このようなガスの切換えを行うた
めのストツプ弁であり、弁12には、ガス流量調
整のため流量調整弁を付加してもよい。管8′,
9′及び10′は、ガス流量等を調整して供給する
ガス供給装置に接続される。
During AlGaAs crystal growth, the gas supply pipe 10
is also connected to the exhaust system, but valve 12 is closed and TMA and hydrogen are introduced from 10. Gas flows into the tubes 8 and 9 in the same manner as during GaAs crystal growth, or by changing the gas flow rate. 1
Reference numerals 1 and 12 are stop valves for performing such gas switching, and a flow rate adjustment valve may be added to the valve 12 to adjust the gas flow rate. tube 8',
9' and 10' are connected to a gas supply device that adjusts and supplies gas flow rate, etc.

AlGaAs結晶の上に、更にGaAs結晶成長の
際、ガス供給管9から導入されるキラリアガス流
量をガス供給管10から排気される量より多くし
ておけば管10中に残留したTMAは反応容器内
に導入されず、界面の急しゆんなGaAs/
AlGaAsヘテロエピタキシヤル層が形成できる。
When growing a GaAs crystal on top of the AlGaAs crystal, if the flow rate of chiral gas introduced from the gas supply pipe 9 is made larger than the amount exhausted from the gas supply pipe 10, TMA remaining in the pipe 10 will be removed from the reaction vessel. GaAs/
An AlGaAs heteroepitaxial layer can be formed.

以下、操作条件を具体的に説明する。 The operating conditions will be specifically explained below.

基板温度750℃、反応容器内圧力1×104Paと
し、AlGaAs結晶成長のときには、TMAをバブル
させる水素50c.c./分、及びそのキヤリアガスとし
ての水素1/分をガス供給管10から反応容器
内に導入し、また、TMGをバブルさせる水素2
c.c./分、AsH3(5%水素希釈)150c.c./分、及び
そのキヤリアガスとしての水素1/分をガス供
給管8から導入し、更にガス供給管9からは、水
素を5/分で流入させる。次にその上にGaAs
結晶成長を行うときには、ストツプ弁11を閉、
12を開として、ガス供給管10から1/分で
強制的に排気を行う。これにより、ガス供給管1
0内に残留したTMAは、ストツプ弁切換えと同
時に反応容器には流れなくなり、境界が20Å以下
の急しゆんな界面を有するAlGaAs/GaAsヘテ
ロエピタキシヤル層を形成することができた。な
お、TMAの温度は20℃、TMGの温度は−12℃に
設定した。成長速度は、AlGaAs及びGaAs共、
約0.1μm/分であつた。上記各ガス流量は、標
準状態に換算した数値である。
The substrate temperature is 750°C, the pressure inside the reaction vessel is 1×10 4 Pa, and during AlGaAs crystal growth, 50 c.c./min of hydrogen to bubble TMA and 1/min of hydrogen as its carrier gas are reacted from the gas supply pipe 10. Hydrogen 2 introduced into the container and also bubbles TMG
cc/min, AsH 3 (5% hydrogen dilution) 150 c.c./min, and hydrogen 1/min as a carrier gas are introduced from the gas supply pipe 8, and further hydrogen is introduced from the gas supply pipe 9 at a rate of 5/min. Let it flow in. Then GaAs on top of that
When performing crystal growth, the stop valve 11 is closed.
12 is opened, and the gas is forcibly exhausted from the gas supply pipe 10 at a rate of 1/min. As a result, gas supply pipe 1
The TMA remaining within 0 stopped flowing into the reaction vessel at the same time as the stop valve was switched, and an AlGaAs/GaAs heteroepitaxial layer having a sharp interface with a boundary of 20 Å or less could be formed. In addition, the temperature of TMA was set to 20°C, and the temperature of TMG was set to -12°C. The growth rate for both AlGaAs and GaAs is
It was approximately 0.1 μm/min. The above gas flow rates are values converted to standard conditions.

この場合、ガス供給管8と9との間の隔壁を除
き、GaAs成長のための原料が、ガス供給管10
内に流入するようになつても障害は起らない。
In this case, the raw material for GaAs growth is removed from the gas supply pipe 10, except for the partition wall between the gas supply pipes 8 and 9.
Even if it begins to flow inside, no obstruction will occur.

実施例 2 第2図に示す装置を使用した。第2図におい
て、符号7はノズル、81,91,92及び10
1はガス供給管を意味する。ここでは、81と9
1とが対をなし、92と101とが対をなす組で
ある。
Example 2 The apparatus shown in FIG. 2 was used. In FIG. 2, numeral 7 is a nozzle, 81, 91, 92 and 10.
1 means a gas supply pipe. Here, 81 and 9
1 forms a pair, and 92 and 101 form a pair.

このガス供給管を用いてAlGaAs/GaAs多層
ヘテロエピタキシヤル結晶成長を行う場合につい
て説明すると、GaAsの結晶成長の際には、81
からTMGとAsH3を含むガスを流入し、101は
強制的に排気する。91及び92からはキヤリア
ガスを導入する。AlGaAsの結晶成長の際には、
81は強制的に排気し、101からTMA、TMG
及びAsH3を含むAlGaAsの結晶成長に必要なガス
を導入する。91及び92からは、同じくキヤリ
アガスを導入する。その際、管81,101と9
1,92との間の障壁のガス出口端部のなす面
を、管81と92との間の障壁のガス出口端部の
なす面より短く、すなわちこの場合には、第2図
に示したように低くすることによつて、各系統の
ガスが他の系統の管中へ混入することを避けるこ
とができる。
To explain the case of AlGaAs/GaAs multilayer heteroepitaxial crystal growth using this gas supply pipe, when growing GaAs crystal, 81
Gas containing TMG and AsH 3 flows in from 101, and is forcibly exhausted from 101. Carrier gas is introduced from 91 and 92. During AlGaAs crystal growth,
81 is forcibly exhausted, 101 is TMA, TMG
and a gas necessary for AlGaAs crystal growth containing AsH 3 is introduced. Similarly, carrier gas is introduced from 91 and 92. At that time, pipes 81, 101 and 9
The plane formed by the gas outlet end of the barrier between tubes 81 and 92 is shorter than the plane formed by the gas outlet end of the barrier between tubes 81 and 92, that is, in this case, as shown in FIG. By making the pressure as low as possible, it is possible to prevent the gas of each system from mixing into the pipes of other systems.

実施例 3 第3図に示す装置を使用した。第3図における
各符号は第2図と同義である。
Example 3 The apparatus shown in FIG. 3 was used. Each symbol in FIG. 3 has the same meaning as in FIG. 2.

第3図に示した装置は、第2図に示した実施例
を改良したものであり、第3図に示したように、
ノズル7を部分の径を細く絞ることにより、異な
る系統のガスが混合することを、より効果的に防
ぐことができる。
The device shown in FIG. 3 is an improved version of the embodiment shown in FIG. 2, and as shown in FIG.
By narrowing the diameter of the nozzle 7, it is possible to more effectively prevent gases of different systems from mixing.

第2図及び第3図のいずれの装置においても、
管81と91,101と92を入れ換えても効果
は変らない。
In both the devices shown in FIGS. 2 and 3,
Even if the tubes 81 and 91 and 101 and 92 are replaced, the effect remains the same.

以上各実施例は、AlGaAs、GaAsの単結晶エ
ピタキシヤル成長を行う場合について説明した
が、InGaAsP/InP等他の−族化合物混晶半
導体、ZnS等の−族化合物半導体等、他の結
晶の成長も有効に行うことができることは自明な
ことである。また、シリコンのエピタキシヤル成
長において、添加不純物の切換えによる接合形成
等にも応用することができる。
In each of the above embodiments, single-crystal epitaxial growth of AlGaAs and GaAs has been described, but growth of other crystals such as - group compound mixed crystal semiconductors such as InGaAsP/InP, - group compound semiconductors such as ZnS, etc. has been described. It is obvious that this can also be done effectively. Further, in silicon epitaxial growth, it can be applied to junction formation by switching added impurities.

各実施例では、説明の便宜のため、各ガス供給
管は同心円状に配置され、ガスの流れの方向は上
向きになるように図示し説明したが、下向きにし
てもよく、また同心円状である必要はなく、外側
の各ガス供給管が内側のガス供給管を取囲むよう
に配置されていれば十分である。また、反応容器
内へのガスの導入部分、すなわちガス供給管と反
応容器とのシール部分は、ガス供給管が一体化さ
れている状態について説明したが、各ガス供給管
若しくはその一部を別個に反応容器内に導入し、
反応容器内で、前記したようなノズルに接続して
もよい。
In each embodiment, for convenience of explanation, each gas supply pipe is arranged in a concentric circle, and the gas flow direction is shown and explained in an upward direction. However, the gas supply pipe may be arranged in a downward direction. It is not necessary, and it is sufficient that the outer gas supply pipes are arranged so as to surround the inner gas supply pipes. In addition, although the introduction of gas into the reaction vessel, that is, the sealing part between the gas supply pipe and the reaction vessel, has been explained in the case where the gas supply pipe is integrated, each gas supply pipe or a part thereof is separated. into the reaction vessel,
It may be connected to a nozzle as described above within the reaction vessel.

更に、ガス系統が2系統の場合について説明し
たが、系統数はこれ以上あつても、ガス供給管数
を増して、同様の効果を奏することができた。
Further, although the case where there are two gas systems has been described, even if the number of gas systems is more than this, the same effect can be achieved by increasing the number of gas supply pipes.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の装置によ
れば、(1)ガス切換え後の残留ガスのしみ出しを抑
止することができ、その結果、界面の急しゆんな
化合物半導体の多層エピタキシヤル結晶成長を実
現することができる。したがつて超格子、変調ド
ーピング及びシリコンのエピタキシヤルpn接合
が可能となる、(2)結晶成長に好ましくない影響を
与える反応を抑止でき、良好なエピタキシヤル層
を得ることができる、という顕著な効果が奏せら
れる。
As explained in detail above, according to the apparatus of the present invention, (1) it is possible to suppress the leakage of residual gas after gas switching, and as a result, it is possible to suppress the seepage of residual gas after gas switching, and as a result, it is possible to Crystal growth can be achieved. Therefore, superlattices, modulation doping, and epitaxial p-n junctions of silicon are possible. (2) Reactions that have an unfavorable effect on crystal growth can be suppressed, and a good epitaxial layer can be obtained. The effect is produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施の態様を示す部分
断面概略図であり、第2図及び第3図は本発明装
置の他の実施の態様におけるガス供給管及びノズ
ルの部分の断面概略図である。 1:反応容器基台、2:ベルジヤー、3:サセ
プタ、4:ワークコイル、5:ワークコイルカバ
ー、6:基板、7:ノズル、8,8′,81,
9,9′,91,92,10,10′及び101:
ガス供給管、11及び12:ストツプ弁、13:
排気管、14:排気装置。
FIG. 1 is a partial cross-sectional schematic diagram showing one embodiment of the device of the present invention, and FIGS. 2 and 3 are schematic cross-sectional diagrams of the gas supply pipe and nozzle portion in other embodiments of the device of the present invention. It is. 1: Reaction vessel base, 2: Belgear, 3: Susceptor, 4: Work coil, 5: Work coil cover, 6: Substrate, 7: Nozzle, 8, 8', 81,
9, 9', 91, 92, 10, 10' and 101:
Gas supply pipes, 11 and 12: Stop valve, 13:
Exhaust pipe, 14: Exhaust device.

Claims (1)

【特許請求の範囲】 1 2種以上のガスをガス供給管からノズルを介
して反応容器内に導入し、容器内に配置された基
板結晶上にエピタキシヤル結晶成長を行わせる結
晶成長装置において、該ガス供給管が、2以上の
ガス供給管からなり、外側のガス供給管が内側の
ガス供給管を取囲むように構成されており、該ガ
ス供給管のうちの少なくとも1つのガス供給管が
排気装置に接続してなることを特徴とする結晶成
長装置。 2 2種以上のガスをガス供給管からノズルを介
して反応容器内に導入し、容器内に配置された基
板結晶上にエピタキシヤル結晶成長を行わせる結
晶成長装置において、該ガス供給管が、対をなす
2つのガス供給管の組を単位として複数の組のガ
ス供給管により構成され、少なくとも1つのガス
供給管は排気装置に接続しており、かつ各ガス供
給管は内側から順に内側のガス供給管を取囲むよ
うに配置されており、更に各組内のガス供給管の
障壁のガス出口端が、各組間の障壁のガス出口端
より、管の長手方向でみて短くしたことを特徴と
する結晶成長装置。
[Scope of Claims] 1. A crystal growth apparatus in which two or more gases are introduced into a reaction vessel from a gas supply pipe through a nozzle to perform epitaxial crystal growth on a substrate crystal placed in the vessel, The gas supply pipe is composed of two or more gas supply pipes, and the outer gas supply pipe is configured to surround the inner gas supply pipe, and at least one of the gas supply pipes is A crystal growth apparatus characterized in that it is connected to an exhaust system. 2. A crystal growth apparatus in which two or more types of gases are introduced into a reaction vessel from a gas supply pipe through a nozzle to perform epitaxial crystal growth on a substrate crystal disposed in the vessel, wherein the gas supply pipe is It is composed of a plurality of sets of gas supply pipes, with each pair of gas supply pipes being a unit, and at least one gas supply pipe is connected to an exhaust device, and each gas supply pipe is arranged in order from the inside to the inside. The gas supply pipes are arranged to surround the gas supply pipes, and furthermore, the gas outlet ends of the barriers of the gas supply pipes in each set are shorter than the gas outlet ends of the barriers between each set when viewed in the longitudinal direction of the pipes. Characteristic crystal growth equipment.
JP4079983A 1983-03-14 1983-03-14 Device for crystal growth Granted JPS59170000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079983A JPS59170000A (en) 1983-03-14 1983-03-14 Device for crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079983A JPS59170000A (en) 1983-03-14 1983-03-14 Device for crystal growth

Publications (2)

Publication Number Publication Date
JPS59170000A JPS59170000A (en) 1984-09-26
JPS6237000B2 true JPS6237000B2 (en) 1987-08-10

Family

ID=12590670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079983A Granted JPS59170000A (en) 1983-03-14 1983-03-14 Device for crystal growth

Country Status (1)

Country Link
JP (1) JPS59170000A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770485B2 (en) * 1985-12-20 1995-07-31 キヤノン株式会社 Continuous production system for photovoltaic elements
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
JPS63299325A (en) * 1987-05-29 1988-12-06 Sony Corp Vapor growth equipment

Also Published As

Publication number Publication date
JPS59170000A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JP3395318B2 (en) Method for growing group 3-5 compound semiconductor crystal
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
JPS6237000B2 (en)
JPH08316151A (en) Manufacture of semiconductor
JPH0529218A (en) Organic metal molecular beam epitaxial growth method
JPH07312350A (en) Crystal growth method of gallium nitride-based compound semiconductor
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPH02203520A (en) Growth of compound semiconductor crystal
US10000845B2 (en) MOCVD system for growth of III-nitride and other semiconductors
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH0573322B2 (en)
JPH0536397B2 (en)
JPH0292893A (en) Mocvd apparatus
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JPH0590161A (en) Organic metal vapor growth apparatus
JPH0760800B2 (en) Vapor growth method for compound semiconductors
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JPS6148917A (en) Forming method of selective pope-hetero structure of group iii-v compound semiconductor
JPH02203519A (en) Growth of compound semiconductor crystal
WO1986002776A1 (en) Technique for the growth of epitaxial compound semiconductor films
JPH08130187A (en) Semiconductor vapor phase growth apparatus and semiconductor vapor phase growth method
JPS5930799A (en) Apparatus for growing crystal of compound semiconductor
JPH0265124A (en) Crystal growth of compound semiconductor