JPH0265125A - Reaction pipe of mocvd crystal growth device - Google Patents

Reaction pipe of mocvd crystal growth device

Info

Publication number
JPH0265125A
JPH0265125A JP21713088A JP21713088A JPH0265125A JP H0265125 A JPH0265125 A JP H0265125A JP 21713088 A JP21713088 A JP 21713088A JP 21713088 A JP21713088 A JP 21713088A JP H0265125 A JPH0265125 A JP H0265125A
Authority
JP
Japan
Prior art keywords
group
material gas
crystal growth
wafer
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21713088A
Other languages
Japanese (ja)
Inventor
Akihiro Takami
明宏 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21713088A priority Critical patent/JPH0265125A/en
Publication of JPH0265125A publication Critical patent/JPH0265125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sharply change a gas to make the composition, layer thickness and the like of a crystal growth layer uniform by providing a III group material gas supply opening vertically to a wafer face and a V group material gas supply opening horizontal to the wafer face. CONSTITUTION:A III group material gas is vertically supplied from a gas supply opening 2A to the face of a wafer 5 on a susceptor 4 and a V group material gas is supplied from a V group gas supply opening 2B horizontally to the face of the wafer 5. Thereby, a III group compound which controls the composition and the like of a crystal growth layer is uniformly supplied in a wafer face.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、有機金属気相成性(以下、MOCVD法と
いう)により結晶成長を行う措置の反応管に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a reaction tube for crystal growth by metal organic vapor deposition (hereinafter referred to as MOCVD method).

[従来の技術] 第2図は従来のMOCVD結晶成長装置の縦型反応管を
示す模式断面図である。図において、(lA)は縦型反
応管、(2)は縦型反応管(1)への材料ガス供給口、
(3)は反応副生成物、廃ガスの排気口、(4)はサセ
プタ、(5)はウェハ、(6)は材料ガス供給口(2)
より導入して材料ガスの流れ、(7)は排気口(3)へ
向かう廃ガスの流れを示す。
[Prior Art] FIG. 2 is a schematic cross-sectional view showing a vertical reaction tube of a conventional MOCVD crystal growth apparatus. In the figure, (lA) is a vertical reaction tube, (2) is a material gas supply port to the vertical reaction tube (1),
(3) is an exhaust port for reaction byproducts and waste gas, (4) is a susceptor, (5) is a wafer, and (6) is a material gas supply port (2).
(7) shows the flow of waste gas toward the exhaust port (3).

次に動作について説明する。材料ガス供給口(2)より
、アルシン(ASHI)  ホスフィン(PH3)、有
機金属ガス(MOガス)などの材料ガスを導入し、高温
に加熱されたサセプター(4)上のウェハ(5)の表面
上に真上より材料ガスの流れ(6)を導く。ガスがウェ
ハ(5)近傍で熱分解して結晶成長が行われる。反応後
に生成した反応副生成物・廃ガスは廃ガスの流れ(7)
 として排気口(3)より排気される。
Next, the operation will be explained. Material gases such as arsine (ASHI), phosphine (PH3), and organometallic gas (MO gas) are introduced through the material gas supply port (2), and the surface of the wafer (5) on the susceptor (4) is heated to a high temperature. A flow of material gas (6) is guided from directly above. The gas is thermally decomposed near the wafer (5) and crystal growth occurs. Reaction by-products and waste gas generated after the reaction are waste gas flow (7)
is exhausted from the exhaust port (3).

しかし、上記のような構成ではサセプタ(4)が高温に
加熱されているため上昇気流が発生し、材料ガスの流れ
(6)を乱す対流を起こす。このために超格子構造の超
薄膜の結晶成長やInGaAs P系あるいはInAl
Ga P系などの格子不整合系の多層成長のように急峻
なガスの切り換わりを要求される場合に対応できない。
However, in the above configuration, since the susceptor (4) is heated to a high temperature, an upward air current is generated, causing a convection that disturbs the flow (6) of the material gas. For this purpose, crystal growth of ultra-thin films with superlattice structure, InGaAs P system or InAl
It cannot cope with cases where steep gas switching is required, such as multilayer growth of lattice mismatched systems such as Ga P systems.

第3図は従来のMO(:VD結晶成長装置の模型反応管
を示す模式断面図である。図中、同一符号は第2図と同
等部分を示す。(IB)は横型反応管である。横型反応
管(1B)を用いることにより、材料ガスの流れ(6)
をウェハ(5)表面に真横から導く。
FIG. 3 is a schematic cross-sectional view showing a model reaction tube of a conventional MO(:VD crystal growth apparatus). In the figure, the same reference numerals indicate the same parts as in FIG. 2. (IB) is a horizontal reaction tube. By using the horizontal reaction tube (1B), the flow of material gas (6)
is guided to the surface of the wafer (5) from right side.

これによりウェハ(5)表面での材料ガスの流れ(6)
を層流化することが可能であり、第2図に示した縦型反
応管(IA)で問題となった急しゅんなガスの切り換わ
りという点については解決できる。
This allows the flow of material gas (6) on the surface of the wafer (5).
It is possible to create a laminar flow of gas, and the problem of abrupt gas switching, which was a problem with the vertical reaction tube (IA) shown in FIG. 2, can be solved.

しかし、横型反応管(IB)では縦型反応管(IA)に
比較して結晶成長層のウェハ(5)面内における層厚、
組成等の均一性が悪い。これはウェハ(5)の真横から
材料ガスの流れ(6)を供給するために、ウェハ(5)
内の材料ガスの流れ(6)の上流側と下流側とで材料ガ
スの混合比がずれるためである。
However, in the horizontal reaction tube (IB), the layer thickness of the crystal growth layer in the wafer (5) plane is smaller than that in the vertical reaction tube (IA).
Uniformity of composition etc. is poor. This is to supply the material gas flow (6) from right beside the wafer (5).
This is because the mixing ratio of the material gas is different between the upstream side and the downstream side of the material gas flow (6).

すなわち、材料ガスがウェハ(5)の上流側で熱分解す
るが、各材料ガスの分解効率が異なるために、上流側へ
行くほど材料ガスの混合比が異なるようになってくるか
らである。
That is, the material gas is thermally decomposed on the upstream side of the wafer (5), but since the decomposition efficiency of each material gas is different, the mixing ratio of the material gases becomes different as you go upstream.

[発明が解決しようとするXl!] 上記のように、従来のM OCV D装置の反応管は、
第2図の縦型反応管(IA)では急しゅんなガスの切り
換わりが得られず、また、第3図の横型反応管(1B)
では、結晶成長層の組成、層厚等の面内均性に劣るとい
う問題点かあった。
[Xl that the invention attempts to solve! ] As mentioned above, the reaction tube of the conventional MOCVD device is
The vertical reaction tube (IA) shown in Figure 2 does not allow rapid gas switching, and the horizontal reaction tube (1B) shown in Figure 3
However, there was a problem in that the in-plane uniformity of the crystal growth layer, such as the composition and layer thickness, was poor.

この発明は上記のような問題点を解消するためになされ
たもので、急しゅノυなガスの切り換わりが得られると
共に、結晶成長層の組成、層厚等の面内均一性に優れる
MOCVD装置の反応管を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a MOCVD method that can achieve rapid gas switching and has excellent in-plane uniformity of the composition and layer thickness of the crystal growth layer. The purpose is to obtain a reaction tube for the device.

L課題を解決するための手段コ この発明に係るMOCVD装置の反応管は、材料ガス供
給口を■族(■族)系材料とV族(■族)系材料とに分
離し、■族系材料ガス供給口をウェハ面に垂直な方向に
設けるとともに、■族系材料ガス供給口をウェハ面に水
平な方向に設けたものである。
Means for Solving Problem L The reaction tube of the MOCVD apparatus according to the present invention separates the material gas supply port into a group (■) material and a group V (group ■) material, and The material gas supply port is provided in a direction perpendicular to the wafer surface, and the Group 1 material gas supply port is provided in a direction horizontal to the wafer surface.

[作用] この発明におけるMOにVD装置の反応管は、■族系材
料ガス供給口をウェハ面に垂直方向に、V族系材料ガス
供給口をウェハ面に水平方向に設けることにより、縦型
反応管と横型反応管と両者の長所を併せ持つ。
[Function] The reaction tube of the VD device for MO in this invention can be made into a vertical type by providing the group (III) material gas supply port in the vertical direction to the wafer surface and the V group material gas supply port in the horizontal direction to the wafer surface. It combines the advantages of both reaction tubes and horizontal reaction tubes.

[実施例] 以下、この発明を図を用いて説明する。第1図はこの発
明の一実施例によるNOにVD結晶成長装置の反応管を
示す模式断面図である。
[Example] This invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a reaction tube of an NO VD crystal growth apparatus according to an embodiment of the present invention.

図において、(3)〜 (5)、(7)は第2図の従来
例に示したものと同等であるので説明を省略する。
In the figure, (3) to (5) and (7) are the same as those shown in the conventional example of FIG. 2, and therefore their explanation will be omitted.

(1)は反応管、(2A)は反応管(1)へのm族材料
ガス供給口、(2B)は反応管(1)へのV族材料ガス
供給口、(6A)は■族材料ガス供給口(2A)より導
入した■原材料ガスの流れ、(61I)は■族材料ガス
供給口(2B)より導入した■族材料ガスの流れを示す
(1) is the reaction tube, (2A) is the M group material gas supply port to the reaction tube (1), (2B) is the V group material gas supply port to the reaction tube (1), (6A) is the group ■ material gas supply port (61I) shows the flow of the group (2) material gas introduced from the group (2) material gas supply port (2B).

次に動作について説明する。■原材料ガスはウェハ(5
)面に垂直な方向のm族材料ガス供給口(2人)より供
給され、V族材料ガスはウェハ(5)面に水平な方向の
V族材料ガス供給口(2B)より供給される。このため
に第3図に示した横型反応管(IB)で問題となったウ
ェハ(5)面内の不均一は解消できる。なぜなら、MO
CVD法による結晶成長で結晶成長層の組成等を制御す
るのは、■族材料であるトリメチルガリウム(TMG)
   トリメチルアルミニウム(TMA)   トリメ
チルインジウム(TMI)等のガス供給量であり、m族
材料ガスの流れ(6A)をウェハ面に垂直方向に供給す
ることによりウェハ(5)面内に均一に供給できるから
である。
Next, the operation will be explained. ■The raw material gas is the wafer (5
) The group V material gas is supplied from the group V material gas supply ports (2B) in the direction perpendicular to the wafer (5) surface. Therefore, the non-uniformity within the plane of the wafer (5), which was a problem in the horizontal reaction tube (IB) shown in FIG. 3, can be solved. Because M.O.
Trimethylgallium (TMG), a group II material, is used to control the composition of the crystal growth layer during crystal growth using the CVD method.
This is the amount of gas supplied such as trimethylaluminum (TMA), trimethylindium (TMI), etc., and it can be uniformly supplied within the wafer (5) surface by supplying the flow (6A) of the M group material gas in a direction perpendicular to the wafer surface. It is.

一方、V族材料であるアルシン(As+43)、ホスフ
ィン(PHI)等は、ガリウムヒ素(GaAs)あるい
はインジウムリン(InP)等のウェハ(5)の熱分解
を防ぐために大過剰に供給され、またV族材料ガスの流
れ(6B)の流量も■原材料ガスの流れ(6A)の流量
に比較して圧倒的に大きい。このため、V族材料ガスの
流れ(6B)はウェハ(5)面の水平方向の■族材料ガ
ス供給口(2B)より供給されているので、縦型反応管
(IA)に比べ格段の、また横型反応管(IB)に比べ
てそん色ない急しゅんなガスの切り換わりが得られる。
On the other hand, V group materials such as arsine (As+43) and phosphine (PHI) are supplied in large excess to prevent thermal decomposition of the wafer (5) made of gallium arsenide (GaAs) or indium phosphide (InP). The flow rate of the group material gas flow (6B) is also overwhelmingly larger than the flow rate of the raw material gas flow (6A). For this reason, since the flow of group V material gas (6B) is supplied from the group II material gas supply port (2B) in the horizontal direction on the wafer (5) surface, the flow rate is much higher than in the vertical reaction tube (IA). Also, compared to the horizontal reaction tube (IB), it is possible to switch the gas as quickly as possible.

なお、上記実施例はm−v族材料の結晶成長の場合につ
いて述べたが、さらにII −V族、II −Vl族材
料についても、あるいは、それら化合物半導体結晶の二
元系、三元系及び四元系についても同様の効果を奏する
ことは明らかである。
In addition, although the above-mentioned example described the case of crystal growth of m-v group materials, it also applies to II-V group, II-Vl group materials, or binary, ternary, and compound semiconductor crystals. It is clear that the same effect can be achieved for quaternary systems.

[発明の効果] 以上のように、この発明になるMOCVD装置の反応管
によれば、m族材料ガス供給口をウェハ面に垂直な方向
に、■族材料ガス供給口をウェハ面に水平な方向に設け
たので、急しゅんなガスの切り換わりが得られるととも
に、結晶成長層のウェハ面内の均一性にも優れるという
効果がある。
[Effects of the Invention] As described above, according to the reaction tube of the MOCVD apparatus according to the present invention, the M group material gas supply port is arranged perpendicular to the wafer surface, and the Group I material gas supply port is arranged parallel to the wafer surface. Since it is provided in the same direction, it is possible to achieve rapid gas switching, and the uniformity of the crystal growth layer within the wafer surface is also excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による111OCVD結晶
成長装置の反応管を示す模式断面図、第2図は従来のM
OCVD結晶成長装置の縦型反応管を示す模式断面図、
第3図は従来のMOCVD結晶成長装置の横型反応管を
示す模式断面図である。 図において、(1)は反応管、(2A)はm族材料ガス
供給口、(2B)は■族材料ガス供給口、(3)は排気
[1、(4)はサセプタ、(5)はウェハ、(6A)は
■族材料ガスの流れ、(6B)はV族材料ガスの流れ、
(7)は廃ガスの流わである。 なお、図中、同一符号は同一 又は相当部分を示す。 代理人  大  岩  増  維 第2図 第1図 A / 第3図 (自発)
FIG. 1 is a schematic sectional view showing a reaction tube of a 111OCVD crystal growth apparatus according to an embodiment of the present invention, and FIG.
A schematic cross-sectional view showing a vertical reaction tube of an OCVD crystal growth apparatus,
FIG. 3 is a schematic cross-sectional view showing a horizontal reaction tube of a conventional MOCVD crystal growth apparatus. In the figure, (1) is the reaction tube, (2A) is the M-group material gas supply port, (2B) is the ■-group material gas supply port, (3) is the exhaust [1, (4) is the susceptor, and (5) is the wafer, (6A) is the flow of group ■ material gas, (6B) is the flow of group V material gas,
(7) is the flow of waste gas. In addition, the same symbols in the figures indicate the same or equivalent parts. Agent Masu Oiwa Figure 2 Figure 1 A / Figure 3 (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 二元系、三元系あるいは四元系の化合物半導体結晶を成
長させるMOCVD(有機金属気相成長)装置の反応管
において、上記反応管の材料ガス供給口がIII族あるい
はII族材料供給口と、V族あるいはVI族材料供給口とに
分離されており、かつ上記III族あるいはII族材料ガス
供給口は結晶成長を行う基板であるウェハ面に垂直方向
に設置されており、上記V族あるいはVI族材料ガス供給
口は上記ウェハ面の水平方向に配置されていることを特
徴とするMOCVD結晶成長装置の反応管。
In a reaction tube of an MOCVD (metal-organic chemical vapor deposition) apparatus for growing binary, ternary, or quaternary compound semiconductor crystals, the material gas supply port of the reaction tube is a group III or group II material supply port. , Group V or Group VI material supply port, and the Group III or Group II material gas supply port is installed perpendicularly to the wafer surface, which is the substrate on which crystal growth is performed, and A reaction tube for an MOCVD crystal growth apparatus, characterized in that a group VI material gas supply port is arranged in a horizontal direction of the wafer surface.
JP21713088A 1988-08-30 1988-08-30 Reaction pipe of mocvd crystal growth device Pending JPH0265125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21713088A JPH0265125A (en) 1988-08-30 1988-08-30 Reaction pipe of mocvd crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21713088A JPH0265125A (en) 1988-08-30 1988-08-30 Reaction pipe of mocvd crystal growth device

Publications (1)

Publication Number Publication Date
JPH0265125A true JPH0265125A (en) 1990-03-05

Family

ID=16699324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21713088A Pending JPH0265125A (en) 1988-08-30 1988-08-30 Reaction pipe of mocvd crystal growth device

Country Status (1)

Country Link
JP (1) JPH0265125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636295C1 (en) * 2017-02-27 2017-11-21 Юлия Алексеевна Щепочкина Cast iron
RU2636294C1 (en) * 2017-02-27 2017-11-21 Юлия Алексеевна Щепочкина Cast iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636295C1 (en) * 2017-02-27 2017-11-21 Юлия Алексеевна Щепочкина Cast iron
RU2636294C1 (en) * 2017-02-27 2017-11-21 Юлия Алексеевна Щепочкина Cast iron

Similar Documents

Publication Publication Date Title
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JPH05186292A (en) Semiconductor growth device and method for growing semiconductor using the same
JP2002316892A (en) Vapor phase epitaxial growth system
JPS6291495A (en) Vapor growth method for thin semiconductor film
JPH01130519A (en) Mocvd crystal growing apparatus
JPH0265125A (en) Reaction pipe of mocvd crystal growth device
JPH0547666A (en) Vapor growth apparatus
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2757944B2 (en) Thin film forming equipment
JPH0748478B2 (en) Vapor phase growth equipment
JPH10223539A (en) Organic metal vapor growth method and its vapor growth device
JPH10199814A (en) Semiconductor chemical vapor deposition apparatus
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPS63292620A (en) Apparatus for depositing single atom layer thin film
JPS6266621A (en) Vapor growth apparatus
JPS6290925A (en) Method for vapor growth
JPH0536397B2 (en)
JPH04254493A (en) Vapor growth method
JPS6333811A (en) Vopor growth method
JPH06132227A (en) Vapor growth method
JP2008053669A (en) Crystal growing method, and device using temperature-controlled process gas
JPH10256166A (en) Device and method for vapor growth
JPH03224215A (en) Organic metal vapor phase deposition device