JPH06132227A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH06132227A
JPH06132227A JP27883492A JP27883492A JPH06132227A JP H06132227 A JPH06132227 A JP H06132227A JP 27883492 A JP27883492 A JP 27883492A JP 27883492 A JP27883492 A JP 27883492A JP H06132227 A JPH06132227 A JP H06132227A
Authority
JP
Japan
Prior art keywords
raw material
susceptor
group
tmi
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27883492A
Other languages
Japanese (ja)
Inventor
Taku Matsumoto
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27883492A priority Critical patent/JPH06132227A/en
Publication of JPH06132227A publication Critical patent/JPH06132227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a crystal growth with high intra-plane uniformity of a group III mixed crystal composition in the vapor growth of a III-V compound semiconductor crystal containing In and Ga. CONSTITUTION:A carbon susceptor 4 is heated by a high-frequency coil 6, a group V raw material and a group III raw material gas except for In are introduced into a reaction tube 3 from a first raw material introducing port 1 near the susceptor 4, and a TMI using an inert gas as a carrier is introduced independently of the other group III raw material gas into the reaction tube 3 from a second raw material introducing port 2 distant from the susceptor 4 to grow a thin film on a InP substrate 5, whereby the intra-plane uniformity of the group III mixed crystal composition on the substrate is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、III−V族化合物半
導体結晶の気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for III-V compound semiconductor crystals.

【0002】[0002]

【従来の技術】光デバイスや高速デバイスの作製に用い
られる有機金属気相成長方法(MOVPE法)において
は、良好な特性を有する結晶が大面積にわたって成長が
可能とされ、活発な研究が進められてきた。
2. Description of the Related Art In the metal-organic vapor phase epitaxy method (MOVPE method) used for manufacturing optical devices and high-speed devices, crystals having good characteristics can be grown over a large area, and active research has been promoted. Came.

【0003】近年、反応管内のキャリアガスの流れにつ
いてシミュレーションにより解析が進められ(ジャーナ
ル・オブ・クリスタル・グロース(Journal o
fCrystal Growth)誌、第100巻、5
45頁)、減圧成長に限らず常圧成長においても良好な
結晶特性が得られるようになってきている(ジャーナル
・オブ・アプライド・フィジックス(Journal
of Applied Physics)誌、第67
巻、第12号、7578頁)。
In recent years, the analysis of carrier gas flow in a reaction tube has been advanced by simulation (Journal of Crystal Growth (Journal of Crystal Growth)).
fCrystal Growth), Volume 100, 5
(P. 45), good crystal characteristics are becoming obtainable not only under reduced pressure growth but also under normal pressure growth (Journal of Applied Physics (Journal)).
of Applied Physics, 67th
Vol. 12, p. 7578).

【0004】図3に一般的に用いられる反応管形状を示
す。MOVPE法に用いられる原料は、ルイス酸、ルイ
ス塩基に相当する物質が多く、中間生成物(アダクト)
を形成し易い。特に常圧成長においては中間生成物の形
成が顕著になる。そこで、図3に示すようにIII族原
料とV族原料との接触を少なくするために、原料導入口
として第1の原料導入口1と第2の原料導入口2とを別
個に設け、各々の原料導入口1,2を石英製反応管3内
に通してカーボンサセプター上の半導体結晶基板7の近
傍まで延長させ、第1の原料導入口1よりV族原料を、
第2原料導入口2よりIII族原料を別々に導入してい
る(ジャーナル・オブ・クリスタル・グロース(Jou
rnal of Crystal Growth)誌、
第107巻、192頁)。なお、図中、6は高周波コイ
ルである。
FIG. 3 shows a generally used reaction tube shape. Many of the raw materials used in the MOVPE method correspond to Lewis acids and Lewis bases, and intermediate products (adducts)
Easy to form. In particular, the formation of intermediate products becomes remarkable in atmospheric pressure growth. Therefore, as shown in FIG. 3, in order to reduce the contact between the group III raw material and the group V raw material, the first raw material introduction port 1 and the second raw material introduction port 2 are separately provided as the raw material introduction ports. The raw material introduction ports 1 and 2 are passed through the quartz reaction tube 3 to extend to the vicinity of the semiconductor crystal substrate 7 on the carbon susceptor, and the group V raw material is fed from the first raw material introduction port 1.
Group III raw materials are separately introduced from the second raw material introduction port 2 (Journal of Crystal Growth (Jou
rnal of Crystal Growth),
107, 192). In the figure, 6 is a high frequency coil.

【0005】[0005]

【発明が解決しようとする課題】図3に示す横型反応管
を用いてInとGaを含むIII−V族化合物半導体結
晶を成長させる場合、結晶成長温度におけるトリメチル
インジウム(TMI)とトリメチルガリウム(TMG)
の分解速度が大幅に異なるために結晶基板面内でIII
族組成の均一性を低下させていた。
When growing a III-V group compound semiconductor crystal containing In and Ga using the horizontal reaction tube shown in FIG. 3, trimethylindium (TMI) and trimethylgallium (TMG) at the crystal growth temperature are used. )
Because the decomposition rates of the
The homogeneity of the group composition was reduced.

【0006】本発明の目的は、この問題点を解決し、ド
ーピングの面内均一性が優れたIII−V族化合物半導
体の気相成長方法を提供することにある。
An object of the present invention is to solve this problem and to provide a vapor phase growth method for a III-V group compound semiconductor having excellent in-plane uniformity of doping.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る気相成長方法は、横型反応管内のサセ
プター上に基板を設置し、サセプターまでの拡散距離が
異なる複数の原料導入口から反応管内に、トリメチルイ
ンジウム(TMI)を含むIII族原料ガス及びV族原
料ガスを導入し、これらをサセプター上の基板に接触さ
せて該基板上にInとGaを含むIII−V族化合物半
導体結晶を成長させる気相成長方法であって、トリメチ
ルインジウム(TMI)は、サセプターから最も遠い距
離にある原料導入口から導入し、トリメチルインジウム
(TMI)を除く他のIII族原料ガス及びV族原料ガ
スは、他の原料導入口から導入するものである。
In order to achieve the above object, a vapor phase growth method according to the present invention comprises a substrate installed on a susceptor in a horizontal reaction tube and a plurality of raw material inlets having different diffusion distances to the susceptor. A group III source gas and a group V source gas containing trimethylindium (TMI) are introduced into the reaction tube from the above, and these are brought into contact with the substrate on the susceptor, and the group III-V compound semiconductor containing In and Ga is placed on the substrate. A vapor-phase growth method for growing a crystal, wherein trimethylindium (TMI) is introduced from a raw material inlet located at the farthest distance from the susceptor, and other group III source gas and group V source material other than trimethylindium (TMI) are introduced. Gas is introduced through another raw material inlet.

【0008】また、本発明に係る気相成長方法は、横型
反応管内のサセプター上に基板を設置し、サセプターま
での拡散距離が異なる複数の原料導入口から反応管内
に、トリメチルインジウム(TMI)を含むIII族原
料ガス及びV族原料ガスを導入し、これらをサセプター
上の基板に接触させて該基板上にInとGaを含むII
I−V族化合物半導体結晶を成長させる気相成長方法で
あって、トリメチルインジウム(TMI)は、不活性キ
ャリアガスを用いてサセプターから最も遠い距離にある
原料導入口から導入し、トリメチルインジウム(TM
I)を除く他のIII族原料ガス及びV族原料ガスは、
他の原料導入口から導入するものである。
Further, in the vapor phase growth method according to the present invention, a substrate is placed on a susceptor in a horizontal reaction tube, and trimethylindium (TMI) is introduced into the reaction tube from a plurality of raw material inlets having different diffusion distances to the susceptor. A Group III source gas containing V and a Group V source gas containing V are introduced, and these are brought into contact with the substrate on the susceptor to contain In and Ga on the substrate II
A vapor phase epitaxy method for growing a group IV compound semiconductor crystal, wherein trimethylindium (TMI) is introduced from a raw material inlet located farthest from a susceptor using an inert carrier gas to produce trimethylindium (TMI).
The group III source gas and the group V source gas other than I) are
It is introduced from another raw material inlet.

【0009】[0009]

【作用】図3に示す横型反応管を用いてIII族原料ガ
スのトリメチルインジウム(TMI)及びトリメチルガ
リウム(TMG)を第2の原料導入口2より導入して結
晶成長を行なうと、基板面内のIII族組成は上流側で
In過剰になり、下流側でGa過剰となる。これは結晶
成長温度において用いたTMIがTMGより分解速度が
大きいために速く分解し、下流側で原料ガスが枯渇して
濃度が低下するものと考えられる。
When the crystal growth is performed by introducing trimethylindium (TMI) and trimethylgallium (TMG), which are group III source gases, through the second source inlet 2 using the horizontal reaction tube shown in FIG. In the group III composition of the above, In is excessive on the upstream side and Ga is excessive on the downstream side. It is considered that this is because the TMI used at the crystal growth temperature has a higher decomposition rate than TMG and thus decomposes faster, and the source gas is exhausted on the downstream side and the concentration decreases.

【0010】さらにガリウムの原料としてトリエチルガ
リウム(TEG)を用いた場合には、TMGよりさらに
原料分解速度が遅いためにIII族組成の均一性は一層
低下する。またインジウムの原料としてトリエチルイン
ジウム(TEI)を用いた場合には、V族原料との中間
反応が活発になり、アダクトの形成反応により、やはり
In濃度は低下し、III族組成の均一性は一層低下す
る。
Further, when triethylgallium (TEG) is used as a raw material for gallium, the decomposition rate of the raw material is slower than that of TMG, so that the uniformity of the group III composition is further deteriorated. When triethylindium (TEI) is used as the indium raw material, the intermediate reaction with the group V raw material becomes active, and the In concentration is lowered due to the adduct formation reaction, and the group III composition is more uniform. descend.

【0011】そこで本発明ではTMIの基板上流部への
供給を低減する方法として、サセプターに対して最も遠
い距離にある第2の原料導入口よりTMIのみを導入
し、TMIを除く他のIII族原料に比較してTMIの
拡散距離が長くなることを利用して基板面内のIII族
混晶組成を均一化する。
Therefore, in the present invention, as a method for reducing the supply of TMI to the upstream portion of the substrate, only TMI is introduced from the second raw material introduction port located farthest from the susceptor, and the other group III except TMI is introduced. By utilizing the fact that the diffusion distance of TMI is longer than that of the raw material, the group III mixed crystal composition in the substrate surface is made uniform.

【0012】また本発明ではTMIの原料分解速度を遅
くする方法として、TMIのキャリアガスを不活性ガス
とした。一般にメチル基の付いた有機金属の分解メカニ
ズムは、水素キャリアガス中では水素化分解であり、不
活性ガス中では熱分解であることが知られている(ジャ
ーナル・オブ・エレクトロケミカル・ソサイエティー
(Journal of Electrochemic
al Society)誌、第132巻、677頁)。
さらに熱分解は水素化分解に比べて分解速度が遅いこと
が知られている。そこで本発明ではTMIのキャリアガ
スを不活性ガスとし、TMIを水素キャリアガスのTM
Gとは混合させずに、サセプターに対して最も遠い距離
にある第2の原料導入口より独立に導入し、TMIの分
解速度を低下させることにより基板面内のIII族混晶
組成を均一化する。
Further, in the present invention, as a method of slowing down the decomposition rate of TMI raw material, the carrier gas of TMI is an inert gas. It is generally known that the decomposition mechanism of an organic metal having a methyl group is hydrogenolysis in a hydrogen carrier gas and thermal decomposition in an inert gas (Journal of Electrochemical Society (Journal). of Electrochemical
al Society), Vol. 132, p. 677).
Furthermore, it is known that pyrolysis has a slower decomposition rate than hydrocracking. Therefore, in the present invention, the carrier gas of TMI is an inert gas, and the TMI is TM of hydrogen carrier gas.
It is not mixed with G, but is introduced independently from the second raw material introduction port located at the farthest distance from the susceptor, and the decomposition rate of TMI is reduced to homogenize the group III mixed crystal composition in the plane of the substrate. To do.

【0013】[0013]

【実施例】以下に本発明の実施例を図によって説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)図1は、本発明の実施例1に
係る気相成長方法を用いた装置を示す構成図である。
(Embodiment 1) FIG. 1 is a block diagram showing an apparatus using a vapor phase growth method according to Embodiment 1 of the present invention.

【0015】図1において、石英製反応管3の中央部壁
にカーボンサセプター4が設けられており、2インチI
nP基板5がカーボンサセプター4に支持されて反応管
3内に設置されている。6は高周波コイルである。
In FIG. 1, a carbon susceptor 4 is provided on the central wall of a quartz reaction tube 3 and has a size of 2 inches I
The nP substrate 5 is supported by the carbon susceptor 4 and installed in the reaction tube 3. 6 is a high frequency coil.

【0016】原料導入口は上下2つに別れており、カー
ボンサセプター4に近い側から順に第1の原料導入口
1、第2の原料導入口2とする。
The raw material introduction port is divided into two parts, the upper and lower parts, and the first raw material introduction port 1 and the second raw material introduction port 2 are arranged in this order from the side closer to the carbon susceptor 4.

【0017】トリメチルインジウム(TMI)、トリメ
チルガリウム(TMG)、アルシン(AsH3 )を原料
として、InP基板に格子整合するInGaAa層を成
長させる。
An InGaAa layer lattice-matched to the InP substrate is grown using trimethylindium (TMI), trimethylgallium (TMG), and arsine (AsH 3 ) as raw materials.

【0018】実施例1では、カーボンサセプター4を高
周波コイル6により加熱させる。そして、TMIは他の
III族原料ガス及びV族原料ガスから独立させ、TM
Iは水素キャリアガスを用いてサセプター4に対し最も
遠い距離にある第2の原料導入口2より反応管3内に導
入した。一方、TMIを除く他のIII族原料ガス及び
V族原料ガス(TMG,AsH3 )は水素キャリアガス
を用いて第1の原料導入口1より反応管3内に導入し
た。
In the first embodiment, the carbon susceptor 4 is heated by the high frequency coil 6. Then, TMI is made independent from other group III source gas and group V source gas,
I was introduced into the reaction tube 3 from the second raw material introduction port 2 which is the farthest distance from the susceptor 4 using hydrogen carrier gas. On the other hand, the group III source gases other than TMI and the group V source gases (TMG, AsH 3 ) were introduced into the reaction tube 3 through the first source inlet 1 using a hydrogen carrier gas.

【0019】反応管3の圧力は760Torrとし、キ
ャリアガス流量を各々10SLMとして基板5上にIn
GaAs層を成長させたところ、2インチInP基板面
内のX線回折による格子不整は1×10-3以内であり、
III族組成の面内均一性は良好であった。
The pressure in the reaction tube 3 is 760 Torr, the carrier gas flow rate is 10 SLM, and the In
When the GaAs layer was grown, the lattice irregularity due to X-ray diffraction in the plane of the 2-inch InP substrate was within 1 × 10 −3 ,
The in-plane uniformity of the group III composition was good.

【0020】(実施例2)図2は、本発明の実施例2に
係る気相成長方法に用いた装置を示す構成図である。本
実施例の装置は実施例1と同一構成のものである。
(Embodiment 2) FIG. 2 is a constitutional view showing an apparatus used in a vapor phase growth method according to Embodiment 2 of the present invention. The apparatus of this embodiment has the same configuration as that of the first embodiment.

【0021】本実施例では、TMIを除く他のIII族
原料ガス及びV族原料ガスは水素キャリアガスを用いて
第1の原料導入口1より反応管3内に導入した。
In the present embodiment, the group III source gas other than TMI and the group V source gas were introduced into the reaction tube 3 from the first source inlet 1 using hydrogen carrier gas.

【0022】TMIは他のIII族原料ガス及びV族原
料ガス(TMG,AsH3 )から独立させ、TMIは窒
素キャリアガスを用いてサセプター4に対し最も遠い距
離にある第2の原料導入口2より反応管3内に導入し
た。
The TMI is made independent of the other group III source gas and the group V source gas (TMG, AsH 3 ), and the TMI uses the nitrogen carrier gas and the second source material introduction port 2 which is the farthest distance from the susceptor 4. It was introduced into the reaction tube 3.

【0023】反応管3の圧力は760Torrとし、キ
ャリアガス流量を各々10SLMとして基板5上にIn
GaAs層を成長したところ、2インチInP基板面内
のX線回折による格子不整は5×10-4以内であり、I
II族組成の面内均一性は極めて良好であった。
The pressure of the reaction tube 3 is 760 Torr, the carrier gas flow rate is 10 SLM, and the In
When the GaAs layer was grown, the lattice mismatch due to X-ray diffraction in the plane of the 2-inch InP substrate was within 5 × 10 −4.
The in-plane uniformity of the group II composition was extremely good.

【0024】一方、TMIを水素キャリアガスによりT
MGと共に第2の原料導入口2より導入した場合には、
2インチInP基板面内のX線回折による格子不整は3
×10-3程度であった。
On the other hand, TMI is changed to T by hydrogen carrier gas.
When introduced through the second raw material inlet 2 together with MG,
The lattice mismatch due to X-ray diffraction in the plane of the 2-inch InP substrate is
It was about 10 −3 .

【0025】[0025]

【発明の効果】以上説明したように本発明を用いれば、
複数の原料導入口を有する横型反応管を用いてInとG
aを含むIII−V族化合物半導体結晶を基板上に成長
させる気相成長方法において、トリメチルインジウム
(TMI)をサセプターから最も遠い原料導入口より他
のIII族原料とは独立させて導入することにより、I
II族組成の面内均一性の高い結晶成長を行わせること
ができる。
As described above, by using the present invention,
Using a horizontal reaction tube having a plurality of raw material inlets, In and G
In a vapor phase growth method of growing a III-V group compound semiconductor crystal containing a on a substrate, by introducing trimethylindium (TMI) from a raw material introduction port farthest from a susceptor, independently of other III group raw materials. , I
Crystal growth with high in-plane uniformity of the II group composition can be performed.

【0026】さらにトリメチルインジウム(TMI)を
不活性キャリアガスを用いて導入することにより、II
I族組成の面内均一性の高い結晶成長を行わせることが
できる。
By further introducing trimethylindium (TMI) using an inert carrier gas, II
Crystal growth with high in-plane uniformity of group I composition can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る気相成長方法に用いた
装置を示す構成図である。
FIG. 1 is a configuration diagram showing an apparatus used in a vapor phase growth method according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る気相成長方法に用いた
装置を示す構成図である。
FIG. 2 is a configuration diagram showing an apparatus used for a vapor phase growth method according to a second embodiment of the present invention.

【図3】従来の気相成長方法に用いた装置を示す構成図
である。
FIG. 3 is a configuration diagram showing an apparatus used in a conventional vapor phase growth method.

【符号の説明】[Explanation of symbols]

1 第1の原料導入口 2 第2の原料導入口 3 石英製反応管 4 カーボンサセプター 5 InP基板 6 高周波コイル 7 半導体結晶基板 1 1st raw material inlet 2 2nd raw material inlet 3 Quartz reaction tube 4 Carbon susceptor 5 InP substrate 6 High frequency coil 7 Semiconductor crystal substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 横型反応管内のサセプター上に基板を設
置し、サセプターまでの拡散距離が異なる複数の原料導
入口から反応管内に、トリメチルインジウム(TMI)
を含むIII族原料ガス及びV族原料ガスを導入し、こ
れらをサセプター上の基板に接触させて該基板上にIn
とGaを含むIII−V族化合物半導体結晶を成長させ
る気相成長方法であって、 トリメチルインジウム(TMI)は、サセプターから最
も遠い距離にある原料導入口から導入し、 トリメチルインジウム(TMI)を除く他のIII族原
料ガス及びV族原料ガスは、他の原料導入口から導入す
ることを特徴とする気相成長方法。
1. A substrate is placed on a susceptor in a horizontal reaction tube, and trimethylindium (TMI) is introduced into the reaction tube from a plurality of raw material inlets having different diffusion distances to the susceptor.
A group III source gas and a group V source gas containing hydrogen are introduced, and these are brought into contact with the substrate on the susceptor to bring In
A vapor phase growth method for growing a III-V compound semiconductor crystal containing Ga and Ga, wherein trimethylindium (TMI) is introduced from a raw material inlet located farthest from the susceptor, and trimethylindium (TMI) is removed. Another group III source gas and group V source gas are introduced from another source inlet, which is a vapor phase growth method.
【請求項2】 横型反応管内のサセプター上に基板を設
置し、サセプターまでの拡散距離が異なる複数の原料導
入口から反応管内に、トリメチルインジウム(TMI)
を含むIII族原料ガス及びV族原料ガスを導入し、こ
れらをサセプター上の基板に接触させて該基板上にIn
とGaを含むIII−V族化合物半導体結晶を成長させ
る気相成長方法であって、 トリメチルインジウム(TMI)は、不活性キャリアガ
スを用いてサセプターから最も遠い距離にある原料導入
口から導入し、 トリメチルインジウム(TMI)を除く他のIII族原
料ガス及びV族原料ガスは、他の原料導入口から導入す
ることを特徴とする気相成長方法。
2. A substrate is placed on a susceptor in a horizontal reaction tube, and trimethylindium (TMI) is introduced into the reaction tube from a plurality of raw material inlets having different diffusion distances to the susceptor.
A group III source gas and a group V source gas containing hydrogen are introduced, and these are brought into contact with the substrate on the susceptor to bring In
A vapor phase growth method for growing a III-V group compound semiconductor crystal containing Ga and Ga, wherein trimethylindium (TMI) is introduced from a raw material introduction port farthest from the susceptor using an inert carrier gas, A vapor phase growth method, characterized in that the other group III source gas and the group V source gas other than trimethylindium (TMI) are introduced from another source inlet.
JP27883492A 1992-10-16 1992-10-16 Vapor growth method Pending JPH06132227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27883492A JPH06132227A (en) 1992-10-16 1992-10-16 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27883492A JPH06132227A (en) 1992-10-16 1992-10-16 Vapor growth method

Publications (1)

Publication Number Publication Date
JPH06132227A true JPH06132227A (en) 1994-05-13

Family

ID=17602807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27883492A Pending JPH06132227A (en) 1992-10-16 1992-10-16 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH06132227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067775A (en) * 2008-09-10 2010-03-25 Sumitomo Electric Ind Ltd Vapor phase growth method and vapor phase growth device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067775A (en) * 2008-09-10 2010-03-25 Sumitomo Electric Ind Ltd Vapor phase growth method and vapor phase growth device

Similar Documents

Publication Publication Date Title
JPH08316151A (en) Manufacture of semiconductor
JPH06132227A (en) Vapor growth method
JP2827736B2 (en) Vapor growth method
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
JP2768023B2 (en) Vapor growth method
JPH0547668A (en) Crystal growth method for compound semiconductor
US6245144B1 (en) Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers
JP2982333B2 (en) Vapor growth method
JP2712910B2 (en) Vapor growth method
JP2687862B2 (en) Method of forming compound semiconductor thin film
JP2982332B2 (en) Vapor growth method
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH06244110A (en) Vapor growth equipment
JP2732622B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPS6265996A (en) Production of compound semiconductor crystal
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPH04333220A (en) Inp substrate, inp semiconductor device and manufacture of inp substrate
JPH0620974A (en) Vapor phase growing method
JPH0590179A (en) Vapor deposition device
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH0697076A (en) Vapor growth method of thin film
JPH04254493A (en) Vapor growth method
JPH04254492A (en) Vapor growth method
JPH0562916A (en) Vapor growth method