JP2982332B2 - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JP2982332B2
JP2982332B2 JP3032108A JP3210891A JP2982332B2 JP 2982332 B2 JP2982332 B2 JP 2982332B2 JP 3032108 A JP3032108 A JP 3032108A JP 3210891 A JP3210891 A JP 3210891A JP 2982332 B2 JP2982332 B2 JP 2982332B2
Authority
JP
Japan
Prior art keywords
raw material
material inlet
decomposition temperature
carrier gas
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3032108A
Other languages
Japanese (ja)
Other versions
JPH04254491A (en
Inventor
隆宏 中村
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3032108A priority Critical patent/JP2982332B2/en
Publication of JPH04254491A publication Critical patent/JPH04254491A/en
Application granted granted Critical
Publication of JP2982332B2 publication Critical patent/JP2982332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気相成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method.

【0002】[0002]

【従来の技術】光デバイスや高速デバイスの作製に用い
られる有機金属気相成長法(MOVPE法)において
は、急峻なヘテロ接合界面が要求されるため、キャリア
ガスの切り替え等について活発な研究が進められてき
た。近年、反応管内のキャリアガスの流れについてシュ
ミレーションにより解析が進められ(ジャーナル・オブ
・クリスタル・グロース(Journal of Cr
ystal Growth)誌、第100巻、545
頁)、減圧に限らず常圧においても急峻なヘテロ界面が
得られるようになっている(ジャーナル・オブ・アプラ
イド・フィジックス(Journal of Appl
ied Physics)誌、第67巻、第12号、7
576頁)。図3に一般的に用いられ反応管形状を示
す。MOVPE法に用いられる原料はルイス酸、ルイス
塩基にあたるものが多く、付加生成物(アダクト)をつ
くりやすい。特に常圧においては付加生成物が顕著にな
る。そこで図3に示すように各原料の接触を少なくする
ため原料導入口を原料導入口1と原料料導入口2との2
つに分け、半導体結晶基板9近くまで別々に原料を導入
している(IC−MOVPE 5、Abstract
s、85頁)。また、図中、5はカーボンサセプター、
7は高周波コイル、8は石英製反応管である。
2. Description of the Related Art In metal organic chemical vapor deposition (MOVPE) used for manufacturing optical devices and high-speed devices, a steep heterojunction interface is required. I have been. In recent years, the flow of carrier gas in a reaction tube has been analyzed by simulation (Journal of Crystal Growth (Journal of Cr).
ystal Growth), Vol. 100, 545
Page), a steep heterointerface can be obtained not only under reduced pressure but also under normal pressure (Journal of Applied Physics (Journal of Appl.
ied Physics), Vol. 67, No. 12, 7
576). FIG. 3 shows a generally used reaction tube shape. Many of the raw materials used in the MOVPE method correspond to Lewis acids and Lewis bases, so that an addition product (adduct) is easily formed. Particularly at normal pressure, the addition products become remarkable. Therefore, as shown in FIG. 3, in order to reduce the contact between the raw materials, the raw material inlet is connected to the raw material inlet 1 and the raw material inlet 2.
And the raw materials are separately introduced up to the vicinity of the semiconductor crystal substrate 9 (IC-MOVPE 5, Abstract).
s, 85). In the figure, 5 is a carbon susceptor,
7 is a high-frequency coil and 8 is a quartz reaction tube.

【0003】[0003]

【発明が解決しようとする課題】図3に示す従来より用
いられてきた横型反応管の気相成長装置を用いると、複
数の原料導入口1,2から導入される原料の拡散速度の
差により基板9上の原料濃度に差ができることをシュミ
レーションにより発見した。このことはサセプター5上
に結晶基板9を設置し結晶成長を行なった場合に、結晶
成長速度や結晶成長組成、不純物濃度等に影響を及ぼ
し、均一性の低下を生じさせていた。
When the conventional horizontal-type reaction tube vapor phase growth apparatus shown in FIG. 3 is used, the difference in the diffusion rates of the raw materials introduced from the plurality of raw material inlets 1 and 2 is increased. It has been found by simulation that a difference occurs in the concentration of the raw material on the substrate 9. This affects the crystal growth rate, the crystal growth composition, the impurity concentration, and the like when the crystal substrate 9 is placed on the susceptor 5 and crystal growth is performed, resulting in a decrease in uniformity.

【0004】本発明の目的は、これらの問題点を解決
し、均一な結晶成長が可能な気相成長方法を提供するこ
とにある。
An object of the present invention is to solve these problems and to provide a vapor phase growth method capable of uniform crystal growth.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る気相成長方法は、横型反応管で上下に
区切られた複数の原料導入口から分解温度の異なる2種
類以上の原料をガス状物質で結晶基板上に供給する気相
成長方法において、サセプターに近い原料導入口から順
に分解温度の高い原料を導入するものである。
In order to achieve the above object, a vapor phase growth method according to the present invention is characterized in that two or more kinds of raw materials having different decomposition temperatures are supplied from a plurality of raw material inlets vertically divided by a horizontal reaction tube. In a vapor phase growth method for supplying a gaseous substance onto a crystal substrate, a raw material having a higher decomposition temperature is sequentially introduced from a raw material inlet close to a susceptor.

【0006】また、本発明は、分解温度の高い原料を熱
伝導率の高いキャリアガスで導入し、分解温度の低い原
料を熱伝導率の低いキャリアガスで導入するものであ
る。
Further, the present invention introduces a raw material having a high decomposition temperature with a carrier gas having a high thermal conductivity and a raw material having a low decomposition temperature with a carrier gas having a low thermal conductivity.

【0007】[0007]

【作用】図3に示す従来より用いられてきた横型反応管
の気相成長装置を用いて分解温度の異なる原料ガスを導
入する場合、結晶成長速度や結晶成長組成、不純物濃度
等の均一性の低下の原因として以下の点が考えられる。
When a raw material gas having a different decomposition temperature is introduced by using a conventional horizontal reaction tube vapor phase growth apparatus shown in FIG. 3, uniformity of the crystal growth rate, crystal growth composition, impurity concentration, etc., is reduced. The following can be considered as causes of the decrease.

【0008】所定のサセプター温度で基板を加熱し原料
の熱分解反応により結晶成長を行う際に、分解温度の低
い原料は基板の上流で容易に熱分解するため上流で堆積
量が多くなる。一方、分解温度の高い原料は原料の分解
時間が長くなり基板の下流でより多く熱分解するため下
流で堆積量が多くなる。この結晶成長組成の不均一性を
防ぐために分解温度の低い原料の基板までの距離を大き
くし分解速度を遅くするように原料導入順序を決める必
要がある。そこで請求項1の本発明では、サセプターに
近い原料導入口から順に分解温度の高い原料を導入する
ことにより分解速度の差を小さくし、結晶成長組成や膜
厚、不純物濃度等の均一な成長が可能となる方法が得ら
れた。
When a substrate is heated at a predetermined susceptor temperature and a crystal is grown by a thermal decomposition reaction of the raw material, the raw material having a low decomposition temperature is easily thermally decomposed upstream of the substrate, so that the amount of deposition is increased upstream. On the other hand, a raw material having a high decomposition temperature has a longer decomposition time and is more thermally decomposed downstream of the substrate, so that the amount of deposition increases downstream. In order to prevent the nonuniformity of the crystal growth composition, it is necessary to determine the order of introducing the raw materials so that the distance of the raw material having a low decomposition temperature to the substrate is increased and the decomposition speed is reduced. Therefore, according to the first aspect of the present invention, the difference in the decomposition rate is reduced by sequentially introducing the raw materials having a high decomposition temperature from the raw material introduction port near the susceptor, and uniform growth of the crystal growth composition, film thickness, impurity concentration, and the like can be achieved. A possible method has been obtained.

【0009】更に、原料の分解速度の差を小さくするた
め、熱伝導率の違うキャリアガスを用い原料の分解速度
を調整することができる。そこで、請求項2の本発明で
は、分解温度の高い原料を熱伝導率の高いキャリアガス
で導入することにより原料の温度を上げ分解を促進し、
一方、分解温度の低い原料を熱伝導率の低いキャリアガ
スで導入して原料の温度を下げ分解を抑制することによ
り、成長組成や膜厚、不純物濃度等の均一成長が可能と
なる方法が得られた。
Further, in order to reduce the difference between the decomposition rates of the raw materials, the decomposition rates of the raw materials can be adjusted by using carrier gases having different thermal conductivities. Therefore, in the present invention of claim 2, by introducing a raw material having a high decomposition temperature with a carrier gas having a high thermal conductivity, the temperature of the raw material is raised to promote decomposition,
On the other hand, by introducing a raw material having a low decomposition temperature with a carrier gas having a low thermal conductivity and lowering the temperature of the raw material to suppress the decomposition, a method that enables uniform growth of the growth composition, film thickness, impurity concentration, and the like is obtained. Was done.

【0010】[0010]

【実施例】以下、本発明の実施例を図により説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0011】(実施例1)図1は、本発明による気相成
長方法において用いた装置を示す構成図である。実施例
においては、III−V族化合物半導体の常圧成長の例
を用いて説明する。
(Embodiment 1) FIG. 1 is a configuration diagram showing an apparatus used in a vapor phase growth method according to the present invention. The embodiment will be described using an example of normal pressure growth of a group III-V compound semiconductor.

【0012】図において、石英製反応管8の中央下部管
壁にカーボンサセプター5が置かれており、その上に2
インチのインジウム・燐(InP)基板6が取り付けら
れている。InP基板6は高周波コイル7により600
℃に加熱される。原料導入口は上下4段に分かれており
カーボンサセプター5に近い側から原料導入口1、原料
導入口2、原料導入口3、原料導入口4とする。キャリ
アガスを水素(H2)としたトリエチルガリウム(TE
G)、トリメタルインジウム(TMI)、アルシン(A
sH3)、ホスフィン(PH3)を原料としてInPに格
子整合するインジウム・ガリウム・砒素・燐(InGa
AsP)を成長させる。
In the figure, a carbon susceptor 5 is placed on a central lower tube wall of a quartz reaction tube 8, and a carbon susceptor 5 is placed thereon.
An inch indium phosphide (InP) substrate 6 is mounted. The InP substrate 6 is 600
Heat to ° C. The raw material inlet is divided into four upper and lower stages, and the raw material inlet 1, the raw material inlet 2, the raw material inlet 3, and the raw material inlet 4 are arranged from the side closer to the carbon susceptor 5. Triethyl gallium (TE) using hydrogen (H 2 ) as a carrier gas
G), trimetal indium (TMI), arsine (A
sH 3), phosphine (PH 3) and indium gallium arsenide phosphide lattice-matched to InP as a raw material (InGa
Grow AsP).

【0013】一般的なIII−V族化合物半導体の成長
条件において成長速度はIII族原料の供給律則になる
ためカーボンサセプター5の近くからV族原料を導入す
る。H2中のV族原料についてはAsH3の分解温度がP
3よりも低い。一方、H2中のIII族原料については
TEGの分解温度がTMIよりも低い。そこで、PH3
を原料導入口1から、AsH3を原料導入口2から、T
MIを原料導入口3から、TEGを原料導入口4からそ
れぞれ導入し、反応管圧力760Torr、キャリアガ
スの流量を各々5SLMとしてInGaAsPを成長し
たところ、成長膜厚の面内分布は±5%以下、フォトル
ミネッセンス(PL)波長の面内分布は±10nmで成
長膜厚及び組成が均一であることが分かった。
Under general III-V compound semiconductor growth conditions, the growth rate is governed by the supply rule of the group III raw material, so that the group V raw material is introduced near the carbon susceptor 5. As for the group V raw material in H 2 , the decomposition temperature of AsH 3 is P
Lower than the H 3. On the other hand, the decomposition temperature of TEG is lower than that of TMI for the group III raw material in H 2 . So PH 3
From the material inlet 1 and AsH 3 from the material inlet 2
MI was introduced from the raw material inlet 3 and TEG was introduced from the raw material inlet 4, and InGaAsP was grown at a reaction tube pressure of 760 Torr and a carrier gas flow rate of 5 SLM. The in-plane distribution of the grown film thickness was ± 5% or less. It was found that the in-plane distribution of the photoluminescence (PL) wavelength was ± 10 nm and the grown film thickness and composition were uniform.

【0014】一方、原料導入口1からAsH3を、原料
導入口2からPH3を、原料導入口3からTEGを、原
料導入口4からTMIをそれぞれ導入し、同じ薄膜を成
長したところ、成長膜厚の面内分布は±8%以下、PL
波長の面内分布は±20nmであった。
On the other hand, AsH 3 was introduced from the material inlet 1, PH 3 was introduced from the material inlet 2, TEG was introduced from the material inlet 3, and TMI was introduced from the material inlet 4, and the same thin film was grown. In-plane distribution of film thickness is ± 8% or less, PL
The in-plane distribution of the wavelength was ± 20 nm.

【0015】(実施例2) 図2は、本発明の別の気相
成長方法において用いた装置を示す構成図である。図に
おいて、石英製反応管8の中央下部管壁にカーボンサセ
プター5が置かれており、その上に2インチのインジウ
ム・燐(InP)基板6が取り付けられている。InP
基板6は高周波コイル7により600℃に加熱される。
原料導入口は上下4段に分かれておりカーボンサセプタ
ー5に近い側から原料導入口1、原料導入口2、原料導
入口3、原料導入口4とする。トリエチルガリウム(T
EG)、トリメタルインジウム(TMI)、アルシン
(AsH3)、ホスフィン(PH3)を原料としてInP
に格子整合するインジウム・ガリウム・砒素・燐(In
GaAsP)を成長する。
Embodiment 2 FIG. 2 is a configuration diagram showing an apparatus used in another vapor phase growth method of the present invention. In the figure, a carbon susceptor 5 is placed on a central lower tube wall of a quartz reaction tube 8, and a 2-inch indium-phosphorus (InP) substrate 6 is mounted thereon. InP
The substrate 6 is heated to 600 ° C. by the high frequency coil 7.
The raw material inlet is divided into four upper and lower stages, and the raw material inlet 1, the raw material inlet 2, the raw material inlet 3, and the raw material inlet 4 are arranged from the side closer to the carbon susceptor 5. Triethyl gallium (T
EG), trimetal indium (TMI), arsine (AsH 3 ), phosphine (PH 3 )
, Gallium, arsenic, phosphorus (In
GaAsP) is grown.

【0016】一般的なIII−V族化合物半導体の成長
条件において成長速度はIII族原料の供給律則になる
ためカーボンサセプター5の近くからV族原料を導入す
る。H2中のV族原料についてはAsH3の分解温度がP
3よりも低い。一方、H2中のIII族原料については
TEGの分解温度がTMIよりも低い。H2は窒素
(N2)より約7倍熱伝導率が大きいためキャリアガス
をH2からN2にすると、キャリアガスの温度が下がり分
解速度が遅くなる。そこで、キャリアガスをH2とした
PH3を原料導入口1から、キャリアガスをN2としたA
sH3を原料導入口2から、キャリアガスをH2としたT
MIを原料導入口3から、キャリアガスをN2としたT
EGを原料導入口4からそれぞれ導入し、反応管圧力7
60Torr、キャリアガスの流量を各々5SLMとし
てInGaAsPを成長したところ、成長膜厚の面内分
布は±5%以下、PL波長の面内分布は±5nmで成長
膜厚及び組成が均一であることが分かった。
Under general growth conditions for a group III-V compound semiconductor, the growth rate is governed by the supply rule of the group III material, so that a group V material is introduced near the carbon susceptor 5. As for the group V raw material in H 2 , the decomposition temperature of AsH 3 is P
Lower than the H 3. On the other hand, the decomposition temperature of TEG is lower than that of TMI for the group III raw material in H 2 . Since H 2 has a thermal conductivity approximately seven times greater than that of nitrogen (N 2 ), when the carrier gas is changed from H 2 to N 2 , the temperature of the carrier gas decreases and the decomposition rate decreases. Therefore, the carrier gas from the raw material inlet 1 a PH 3 that the H 2, A of the carrier gas was N 2
sH 3 from the material inlet 2 and T as carrier gas H 2
MI from the material inlet 3 and T as carrier gas N 2
EG was introduced from the raw material introduction port 4 respectively, and the reaction tube pressure 7
When InGaAsP was grown at 60 Torr with a carrier gas flow rate of 5 SLM, the in-plane distribution of the grown film thickness was ± 5% or less and the in-plane distribution of the PL wavelength was ± 5 nm, and the grown film thickness and composition were uniform. Do you get it.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
横型反応管で上下に区切られた複数の原料導入口から分
解温度の異なる2種類以上の原料をガス状物質で結晶基
板上に供給する気相成長方法において、サセプターに近
い原料導入口から順に分解温度の高い原料を導入する方
法により及び分解温度の高い原料を熱伝導率の高いキャ
リアガスで分解温度の低い原料を熱伝導率低いキャリア
ガスで導入する方法により、結晶膜厚および組成が均一
な結晶成長ができる効果がある。
As described above, according to the present invention,
In a vapor phase growth method in which two or more kinds of raw materials having different decomposition temperatures are supplied as gaseous substances onto a crystal substrate from a plurality of raw material inlets vertically separated by a horizontal reaction tube, the raw material is sequentially decomposed from a raw material inlet close to a susceptor. The method of introducing a raw material having a high temperature and a method of introducing a raw material having a high decomposition temperature with a carrier gas having a high thermal conductivity and a method of introducing a raw material having a low decomposition temperature with a carrier gas having a low thermal conductivity have uniform crystal film thickness and composition. This has the effect of allowing crystal growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による結晶成長方法の実施例1の構成を
示す図である。
FIG. 1 is a diagram showing a configuration of a first embodiment of a crystal growth method according to the present invention.

【図2】本発明による結晶成長方法の実施例2の構成を
示す図である。
FIG. 2 is a diagram showing a configuration of a second embodiment of the crystal growth method according to the present invention.

【図3】従来の反応管形状を示す図である。FIG. 3 is a diagram showing a conventional reaction tube shape.

【符号の説明】[Explanation of symbols]

1 原料導入口 2 原料導入口 3 原料導入口 4 原料導入口 5 カーボンサセプター 6 InP基板 7 高周波コイル 8 石英製反応管 9 半導体結晶基板 REFERENCE SIGNS LIST 1 raw material inlet 2 raw material inlet 3 raw material inlet 4 raw material inlet 5 carbon susceptor 6 InP substrate 7 high frequency coil 8 quartz reaction tube 9 semiconductor crystal substrate

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 横型反応管で上下に区切られた複数の原
料導入口から分解温度の異なる2種類以上の原料をガス
状物質で結晶基板上に供給する気相成長方法において、
サセプターに近い原料導入口から順に分解温度の高い
料を導入することを特徴とする気相成長方法。
1. A vapor-phase growth method for supplying two or more kinds of raw materials having different decomposition temperatures from a plurality of raw material inlets vertically separated by a horizontal reaction tube onto a crystal substrate as a gaseous substance,
A vapor phase growth method characterized by introducing raw materials having a higher decomposition temperature in order from a raw material inlet close to a susceptor.
【請求項2】 分解温度の高い原料を熱伝導率の高いキ
ャリアガスで導入し、分解温度の低い原料を熱伝導率の
低いキャリアガスで導入することを特徴とする請求項1
に記載の気相成長方法。
2. The method according to claim 1, wherein a raw material having a high decomposition temperature is introduced with a carrier gas having a high thermal conductivity, and a raw material having a low decomposition temperature is introduced with a carrier gas having a low thermal conductivity.
3. The vapor phase growth method according to 1.
JP3032108A 1991-01-31 1991-01-31 Vapor growth method Expired - Fee Related JP2982332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032108A JP2982332B2 (en) 1991-01-31 1991-01-31 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032108A JP2982332B2 (en) 1991-01-31 1991-01-31 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH04254491A JPH04254491A (en) 1992-09-09
JP2982332B2 true JP2982332B2 (en) 1999-11-22

Family

ID=12349702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032108A Expired - Fee Related JP2982332B2 (en) 1991-01-31 1991-01-31 Vapor growth method

Country Status (1)

Country Link
JP (1) JP2982332B2 (en)

Also Published As

Publication number Publication date
JPH04254491A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
JP3239622B2 (en) Method of forming semiconductor thin film
Tokunaga et al. Growth condition dependence of Mg-doped GaN film grown by horizontal atmospheric MOCVD system with three layered laminar flow gas injection
JP2982332B2 (en) Vapor growth method
JP2768023B2 (en) Vapor growth method
JP2712910B2 (en) Vapor growth method
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP2827736B2 (en) Vapor growth method
JPH0817160B2 (en) Vapor growth method
JP2687862B2 (en) Method of forming compound semiconductor thin film
EP0477374B1 (en) Process for growing semiconductor crystal
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPH01261818A (en) Method of vapor growth of high-resistance algaas mixed crystal
JP2646966B2 (en) Method for growing thin film of III-V compound semiconductor
JPH06132227A (en) Vapor growth method
JPH01206618A (en) Organic metal vapor growth method
JP2982333B2 (en) Vapor growth method
JPH10242062A (en) Method of growing semiconductor thin film
JPH0748478B2 (en) Vapor phase growth equipment
JPH04254492A (en) Vapor growth method
JPS62270493A (en) Vapor growth of iii-v compound semiconductor
JPH0722344A (en) Vapor growth method
JPH03145718A (en) Vapor epitaxial growth method
JPH03232221A (en) Vapor growth method for compound semiconductor
JPS647487B2 (en)
JPH0483332A (en) Growth method of compound semiconductor crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees