JPH0620974A - Vapor phase growing method - Google Patents

Vapor phase growing method

Info

Publication number
JPH0620974A
JPH0620974A JP20067192A JP20067192A JPH0620974A JP H0620974 A JPH0620974 A JP H0620974A JP 20067192 A JP20067192 A JP 20067192A JP 20067192 A JP20067192 A JP 20067192A JP H0620974 A JPH0620974 A JP H0620974A
Authority
JP
Japan
Prior art keywords
gas
material gas
doping
vapor phase
si2h6
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20067192A
Other languages
Japanese (ja)
Inventor
Taku Matsumoto
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20067192A priority Critical patent/JPH0620974A/en
Publication of JPH0620974A publication Critical patent/JPH0620974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance uniformity within the surface in doping by a method wherein a mixture ratio of doping material gas composed of Si2H6 and SiH4 is adjusted so that a dissolving speed in its growing temperature may coincide with that of III group material gas. CONSTITUTION:Carrier, gas is used as H2 and trimethylindium, triethylgallium, phosphine, SiH4, and Si2H6 are used as material gas, and they are respectively introduced from a material introducing inlet 1, and high frequency coils 5 are electrically connected, and a reaction pipe 2 is heated, so that an N type InGaP layer lattice-coordinating a GaAs substrate 4 may grow. Here, a gas concentration ratio of SiH4 to Si2H6 is decided so as to coincide with a dissolving speed in a growing temperature of III group material gas. As a result, uniformity within the surface in carrier concentration becomes 2% or less on a 3-inch substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、III−V族化合物半
導体結晶の気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for III-V compound semiconductor crystals.

【0002】[0002]

【従来の技術】光デバイスや高速デバイスの作製に用い
られる有機金属気相成長方法(MOVPE法)は、良好
な特性を有する結晶が大面積にわたって成長が可能とさ
れ、その活発な研究開発が進められてきた。
2. Description of the Related Art In the metal-organic vapor phase epitaxy method (MOVPE method) used for manufacturing optical devices and high-speed devices, crystals having good characteristics can be grown over a large area, and active research and development is proceeding. Has been.

【0003】近年、反応管内のキャリアガスの流れにつ
いてシミュレーションにより解析が進められ(ジャーナ
ル・オブ・クリスタルグロース(Journal of
Crystal Growth)誌、第100巻、5
45頁参照)、減圧成長に限らず、常圧成長においても
良好な結晶特性が得られるようになってきている(ジャ
ーナル・オブ・アプライド・フィジックス(Journ
al of Applied Physics)誌、第
67巻、第12号、7578頁参照)。
In recent years, the analysis of the carrier gas flow in the reaction tube has been advanced by simulation (Journal of Crystal Growth (Journal of Crystal Growth)).
Crystal Growth), Volume 100, 5
(See page 45), good crystal characteristics have come to be obtained not only under reduced pressure growth but also under normal pressure growth (Journal of Applied Physics (Journ).
al of Applied Physics, Vol. 67, No. 12, p. 7578).

【0004】[0004]

【発明が解決しようとする課題】図1に示す一般的な横
型反応管を用いてSiをn型ドーパントとするIII−
V族化合物半導体の気相成長を行う場合、結晶成長温度
におけるドーパントガスの分解速度がIII族原料ガス
の分解速度と大幅に異なるために結晶基板面内でドーピ
ング濃度の均一性を低下させるという問題がある。
The general lateral reaction tube shown in FIG. 1 is used to use Si as an n-type dopant III-
When vapor-phase growth of a group V compound semiconductor is performed, the decomposition rate of the dopant gas at the crystal growth temperature is significantly different from the decomposition rate of the group III source gas, and thus the uniformity of the doping concentration is reduced in the plane of the crystal substrate. There is.

【0005】本発明の目的は、この問題点を解決し、ド
ーピングの面内均一性に優れたIII−V族化合物半導
体の気相成長方法を提供することにある。
An object of the present invention is to solve this problem and to provide a vapor phase growth method of a III-V group compound semiconductor excellent in in-plane uniformity of doping.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明による気相成長方法においては、Siをn型
ドーパントとするIII−V族化合物半導体結晶を成長
する際に、ドーピング原料ガスとしてSi26とSiH
4の混合ガスを用い、その混合比を調節し、ドーピング
原料ガスの成長温度における分解速度をIII族原料ガ
スの分解速度と一致させるものである。
In order to achieve the above object, in the vapor phase growth method according to the present invention, when a III-V group compound semiconductor crystal containing Si as an n-type dopant is grown, a doping source gas is used. Si 2 H 6 and SiH
By using the mixed gas of 4 and adjusting the mixing ratio, the decomposition rate at the growth temperature of the doping source gas is made to match the decomposition rate of the group III source gas.

【0007】[0007]

【作用】図1に示す横型反応管を用いてSiをn型ドー
パントとするIII−V族化合物半導体の気相成長を行
うに際し、Siの原料ガスとしてSiH4を用いる場合
には、基板面内の上流側でドーピング濃度が低下する。
これはSiH4ガスの分解速度が結晶成長温度におい
て、成長速度を決定するIII族原料ガスよりも分解速
度が遅いためであると考えられる。
[Action] The Si using a horizontal reaction tube shown in FIG. 1 when performing a group III-V compound semiconductor vapor phase growth of an n-type dopant, when using SiH 4 as a raw material gas of Si, the substrate plane The doping concentration decreases on the upstream side of.
It is considered that this is because the decomposition rate of the SiH 4 gas at the crystal growth temperature is slower than that of the group III source gas that determines the growth rate.

【0008】一方、Siの原料ガスとしてSi26を用
いる場合には、基板面内の下流側でドーピング濃度が低
下する。これはSi26ガスの分解速度が結晶成長温度
において、成長速度を決定するIII族原料ガスよりも
分解速度が速いために原料ガス枯渇して濃度が低下する
ことによるものと考えられる。
On the other hand, when Si 2 H 6 is used as the Si source gas, the doping concentration decreases on the downstream side of the substrate surface. It is considered that this is because the decomposition rate of the Si 2 H 6 gas at the crystal growth temperature is higher than that of the group III source gas that determines the growth rate, so that the source gas is depleted and the concentration decreases.

【0009】そこで本発明では、原料分解速度の速いS
26ガスと原料分解速度の遅いSiH4ガスとを混合
し、その混合比を調整して成長速度を決定するIII族
原料ガスの成長温度における原料分解速度と合わせるこ
とにより、基板面内のドーピング濃度均一性を向上させ
るものである。
Therefore, in the present invention, S which has a high raw material decomposition rate
The i 2 H 6 gas and the SiH 4 gas having a slow starting material decomposition rate are mixed, and the mixing ratio is adjusted to match the starting material decomposition rate at the growth temperature of the group III source gas to determine the growth rate. To improve the uniformity of the doping concentration.

【0010】[0010]

【実施例】以下に本発明の実施例を図1によって説明す
る。図1に本発明による気相成長方法に用いた装置の構
成図を示す。図1において、原料導入口1を一端に有
し、周上に高周波コイル5が設置された石英製反応管2
の中央部壁にカーボンサセプター3が置かれており、そ
の上に3インチのGaAs基板4が取り付けられてい
る。
Embodiment An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a block diagram of an apparatus used in the vapor phase growth method according to the present invention. In FIG. 1, a quartz reaction tube 2 having a raw material inlet 1 at one end and having a high frequency coil 5 installed on the circumference thereof.
A carbon susceptor 3 is placed on the central wall of the, and a 3-inch GaAs substrate 4 is mounted thereon.

【0011】原料導入口1より、キャリアガスをH2
し、トリメロチルインジウム(TMI),トリエチルガ
リウム(TEG),ホスフィン(PH3),シラン(S
iH4),ジシラン(Si26)を原料ガスとしてそれ
ぞれ導入し、高周波コイル5へ通電し、反応管2を加熱
してGaAs基板4に格子整合するn型InGaP層を
成長させる。
From the raw material inlet 1, the carrier gas is set to H 2 and trimelotylindium (TMI), triethylgallium (TEG), phosphine (PH 3 ), silane (S) are used.
iH 4 ) and disilane (Si 2 H 6 ) are introduced as source gases, respectively, and the high frequency coil 5 is energized to heat the reaction tube 2 to grow an n-type InGaP layer lattice-matched to the GaAs substrate 4.

【0012】ここで、SiH4とSi26との原料ガス
濃度比は、III族原料ガスの成長温度における分解速
度と一致するように決定した。反応管圧力を760To
rrとし、キャリアガス流量を各々10SLMとしてn
型InGaP層を成長した。その結果、3インチ基板上
でキャリア濃度の面内均一性は、2%以下に達成され
た。
Here, the source gas concentration ratio of SiH 4 and Si 2 H 6 was determined so as to match the decomposition rate at the growth temperature of the group III source gas. Reaction tube pressure 760To
rr and the carrier gas flow rate is 10 SLM each and n
A type InGaP layer was grown. As a result, in-plane uniformity of carrier concentration on the 3-inch substrate was achieved to 2% or less.

【0013】一方、SiH4ガスのみをドーピング原料
ガスとして同様な成長を行った結果、3インチ基板上で
下流側のキャリア濃度が高く、面内均一性は、10%程
度であった。また、Si26ガスのみをドーピング原料
ガスとして同様な成長を行った結果、3インチ基板上で
上流側のキャリア濃度が高く、面内均一性は15%程度
であった。
On the other hand, as a result of performing similar growth using only SiH 4 gas as a doping material gas, the carrier concentration on the downstream side was high on the 3-inch substrate, and the in-plane uniformity was about 10%. Moreover, as a result of performing similar growth using only Si 2 H 6 gas as a doping source gas, the carrier concentration on the upstream side was high on the 3-inch substrate, and the in-plane uniformity was about 15%.

【0014】[0014]

【発明の効果】以上説明したように、本発明を用いれ
ば、Siをn型ドーパントとするIII−V族化合物半
導体結晶を成長する気相成長方法においてドーピング原
料ガスとしてSi26とSiH4との混合ガスを用いる
ことによりキャリア濃度の面内均一性の高い結晶成長が
可能となる効果がある。
As described above, according to the present invention, Si 2 H 6 and SiH 4 are used as doping source gases in a vapor phase growth method for growing a III-V group compound semiconductor crystal using Si as an n-type dopant. The use of a mixed gas of and has an effect of enabling crystal growth with high in-plane uniformity of carrier concentration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による気相成長方法の実施例の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a vapor phase growth method according to the present invention.

【符号の説明】[Explanation of symbols]

1 原料導入口 2 石英製反応管 3 カーボンサセプター 4 GaAs基板 5 高周波コイル 1 Raw material inlet 2 Quartz reaction tube 3 Carbon susceptor 4 GaAs substrate 5 High frequency coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Siをn型ドーパントとするIII−V
族化合物半導体結晶を成長する気相成長方法において、
ドーピング原料ガスにSi26とSiH4との混合ガス
を用い、その混合比を調節してドーピング原料ガスの成
長温度における分解速度をIII族原料ガスの分解速度
と一致させることを特徴とする気相成長方法。
1. III-V using Si as an n-type dopant
In a vapor phase growth method for growing a group compound semiconductor crystal,
It is characterized in that a mixed gas of Si 2 H 6 and SiH 4 is used as a doping raw material gas, and the mixing ratio is adjusted so that the decomposition rate at the growth temperature of the doping raw material gas matches the decomposition rate of the group III raw material gas. Vapor growth method.
JP20067192A 1992-07-03 1992-07-03 Vapor phase growing method Pending JPH0620974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20067192A JPH0620974A (en) 1992-07-03 1992-07-03 Vapor phase growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20067192A JPH0620974A (en) 1992-07-03 1992-07-03 Vapor phase growing method

Publications (1)

Publication Number Publication Date
JPH0620974A true JPH0620974A (en) 1994-01-28

Family

ID=16428304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20067192A Pending JPH0620974A (en) 1992-07-03 1992-07-03 Vapor phase growing method

Country Status (1)

Country Link
JP (1) JPH0620974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100224707B1 (en) * 1995-12-23 1999-10-15 윤종용 Method for manufacturing of semiconductor device capacitor
EP2060879A1 (en) 2007-11-19 2009-05-20 Hitachi Ltd. Air flow measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100224707B1 (en) * 1995-12-23 1999-10-15 윤종용 Method for manufacturing of semiconductor device capacitor
EP2060879A1 (en) 2007-11-19 2009-05-20 Hitachi Ltd. Air flow measuring instrument

Similar Documents

Publication Publication Date Title
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH0620974A (en) Vapor phase growing method
JPH08316151A (en) Manufacture of semiconductor
JP2827736B2 (en) Vapor growth method
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JP2847198B2 (en) Compound semiconductor vapor phase growth method
JP2768023B2 (en) Vapor growth method
JPH03171634A (en) Epitaxial wafer with formation layer of electrode for fet
JPH0547668A (en) Crystal growth method for compound semiconductor
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH01109715A (en) Vapor phase epitaxy method
JP2712910B2 (en) Vapor growth method
JPH05175145A (en) Crystal growth method
JP2715759B2 (en) Compound semiconductor vapor phase growth method
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JP2784384B2 (en) Vapor growth method
JPH06132227A (en) Vapor growth method
JP2001335399A (en) Vapor growth method
JP2982333B2 (en) Vapor growth method
JPS59170000A (en) Device for crystal growth
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JP2687862B2 (en) Method of forming compound semiconductor thin film
JPH04254491A (en) Vapor growth method
JPH03232221A (en) Vapor growth method for compound semiconductor
JPH02122521A (en) Manufacture of compound semiconductor crystal layer