JP2784384B2 - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JP2784384B2
JP2784384B2 JP5273747A JP27374793A JP2784384B2 JP 2784384 B2 JP2784384 B2 JP 2784384B2 JP 5273747 A JP5273747 A JP 5273747A JP 27374793 A JP27374793 A JP 27374793A JP 2784384 B2 JP2784384 B2 JP 2784384B2
Authority
JP
Japan
Prior art keywords
gas
line
flow rate
dummy
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5273747A
Other languages
Japanese (ja)
Other versions
JPH07133193A (en
Inventor
学 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5273747A priority Critical patent/JP2784384B2/en
Publication of JPH07133193A publication Critical patent/JPH07133193A/en
Application granted granted Critical
Publication of JP2784384B2 publication Critical patent/JP2784384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気相成長さらには有機
金属化学気相成長法(MOCVD)やハイドライド気相
成長法やクロライド気相成長法などに関し、例えば化合
物半導体基板上への薄膜形成に適用して有用な技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to vapor phase growth, metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy, chloride vapor phase epitaxy, etc., for example, the formation of thin films on compound semiconductor substrates. Related to useful technology.

【0002】[0002]

【従来の技術】一般に、化合物半導体単結晶よりなる基
板上に、エピタキシャル成長膜を形成する方法として、
有機金属化学気相成長法やハイドライド気相成長法やク
ロライド気相成長法などが公知である。図1には、これ
らの成長方法に用いられる装置の一例として、一般的な
有機金属化学気相成長装置の構成が概略的に示されてい
る。その構成を例えばIII−V族化合物半導体薄膜を形成
する場合を例として挙げて説明する。同図において、符
合1で示したものはIII族元素の原料ガス供給源となるI
II族の有機金属化合物のバブラー、符号2はV族元素の
原料ガス供給源となるV族の水素化物ガスボンベ、符号
3は結晶成長室(図示省略)内にガスを導入するガス導
入ライン、符号4は結晶成長室内にガスを導入すること
なく排気するベントライン、符号5はIII族元素の原料
ガスに対応して設けられてなるIII族用ダミーライン、
符号6はV族元素の原料ガスに対応して設けられてなるV
族用ダミーライン、符号7a,7b,7c,7dは夫々
切替バルブである。
2. Description of the Related Art Generally, as a method of forming an epitaxial growth film on a substrate made of a compound semiconductor single crystal,
Metal organic chemical vapor deposition, hydride vapor deposition, chloride vapor deposition and the like are known. FIG. 1 schematically shows a configuration of a general metal-organic chemical vapor deposition apparatus as an example of an apparatus used for these growth methods. The structure will be described by taking, as an example, the case of forming a group III-V compound semiconductor thin film. In the figure, the reference numeral 1 designates a source gas supply source of a group III element.
A bubbler of a group II organometallic compound, reference numeral 2 denotes a group V hydride gas cylinder serving as a source gas supply source of a group V element, reference numeral 3 denotes a gas introduction line for introducing a gas into a crystal growth chamber (not shown), reference numeral 4 is a vent line for exhausting gas without introducing gas into the crystal growth chamber, 5 is a group III dummy line provided corresponding to a group III element source gas,
Reference numeral 6 denotes a V provided corresponding to the source gas of the group V element.
Numerals 7a, 7b, 7c, 7d for the tribe dummy line are switching valves, respectively.

【0003】従来、上記構成の成長装置を用いて、結晶
成長室内に設置した基板上に薄膜を形成する場合には、
各原料ガス及びキャリアガス(ここでは、例えばH2
ス)を以下のように流していた。即ち、薄膜形成中は、
ガス導入ライン3及びベントライン4にキャリアガスを
流すとともに、各ダミーライン5,6にもキャリアガス
を流していた。この際、III族用ダミーライン5に流す
キャリアガスの流量及びV族用ダミーライン6に流すキ
ャリアガスの流量は、夫々、ガス導入ライン3内を流れ
るIII族原料ガスの流量及びガス導入ライン3内を流れ
るV族原料ガスの流量に等しくしていた。
Conventionally, when a thin film is formed on a substrate installed in a crystal growth chamber by using the growth apparatus having the above structure,
Each source gas and carrier gas (here, for example, H 2 gas) were flowed as follows. That is, during the formation of the thin film,
The carrier gas was supplied to the gas introduction line 3 and the vent line 4 and the carrier gas was supplied to each of the dummy lines 5 and 6. At this time, the flow rate of the carrier gas flowing through the group III dummy line 5 and the flow rate of the carrier gas flowing through the group V dummy line 6 are respectively the flow rate of the group III source gas flowing through the gas introduction line 3 and the flow rate of the gas introduction line 3. It was equal to the flow rate of the group V source gas flowing inside.

【0004】そして、切替バルブ7a,7bを同時に切
り替えることによって、III族用原料ガス供給源1から
供給されるIII族原料ガスとIII族用ダミーライン5から
供給されるキャリアガスとを、ガス導入ライン3とベン
トライン4の何れか一方ずつに流していた。また、V族
原料ガスについても同様に、切替バルブ7c,7dを同
時に切り替えることによって、V族用原料ガス供給源2
から供給されるV族原料ガスとV族用ダミーライン6から
供給されるキャリアガスとを、ガス導入ライン3とベン
トライン4の何れか一方ずつに流していた。
By switching the switching valves 7a and 7b at the same time, the group III source gas supplied from the group III source gas supply source 1 and the carrier gas supplied from the group III dummy line 5 are introduced. It was flowing through either line 3 or vent line 4. Similarly, for the group V source gas, by simultaneously switching the switching valves 7c and 7d, the group V source gas supply source 2
And the carrier gas supplied from the V-group dummy line 6 are supplied to one of the gas introduction line 3 and the vent line 4.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
たガス供給方法には、次のような問題のあることが本発
明者によって明らかとされた。即ち、切替バルブ7a,
7b,7c,7dを操作して、ガス導入ライン3内を流
れるガス種を切り替えた時、つまりIII族原料ガスとそ
の代わりとなるダミーのキャリアガス(ダミーライン5
内を流れるガス)との切替え、或はV族原料ガスとその
代わりとなるダミーのキャリアガス(ダミーライン6内
を流れるガス)との切替えの時に、ガス導入ライン3内
の圧力に変動が生じ、さらには結晶成長室内のガスの流
れに乱れが生じるというものである。
However, it has been found by the present inventors that the above-described gas supply method has the following problems. That is, the switching valve 7a,
7b, 7c, and 7d are operated to change the gas type flowing through the gas introduction line 3, that is, the group III source gas and a dummy carrier gas (dummy line 5
At the time of switching between the gas flowing through the inside of the gas supply line or the switching between the group V source gas and the dummy carrier gas (the gas flowing through the dummy line 6) instead of the group V source gas, the pressure in the gas introduction line 3 fluctuates. In addition, the gas flow in the crystal growth chamber is disturbed.

【0006】本発明は、上記問題点を解決するためにな
されたもので、その目的とするところは、原料ガスの切
換時におけるガス導入ライン及び結晶成長室内の圧力変
動を最小に抑え、以て界面急峻性の高い高品質の結晶形
成を可能ならしめる気相成長方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to minimize pressure fluctuations in a gas introduction line and a crystal growth chamber when a source gas is switched. An object of the present invention is to provide a vapor phase growth method capable of forming a high-quality crystal having high interface steepness.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者がガス導入ライン3内に導入するガス種の
切替え時に生じるガス導入ライン3内の圧力変動の発生
原因の解明を試みた結果、原料ガスとキャリアガスとで
は例えば粘性などの諸特性が異なるため、上述したよう
に各ダミーライン5,6に流すダミーのキャリアガスの
流量を、対応する各原料ガスの流量に等しくしても、そ
のダミーのキャリアガスがガス導入ライン3内を流れる
時の圧力は、ガス導入ライン3内における各原料ガスの
圧力よりも低くなってしまうことがわかった。
In order to achieve the above object, the present inventor has attempted to clarify the cause of the pressure fluctuation in the gas introduction line 3 which occurs when the type of gas introduced into the gas introduction line 3 is switched. As a result, since the raw material gas and the carrier gas have different properties such as viscosity, for example, the flow rate of the dummy carrier gas flowing through each of the dummy lines 5 and 6 is made equal to the flow rate of each corresponding raw material gas as described above. However, it has been found that the pressure when the dummy carrier gas flows in the gas introduction line 3 is lower than the pressure of each source gas in the gas introduction line 3.

【0008】本発明は、上記知見に基づきなされたもの
で、結晶成長室内にガスを導入するガス導入ラインと、
前記結晶成長室内にガスを導入することなく排気するベ
ントラインと、前記ガス導入ライン及び前記ベントライ
ンの何れにも切替えにより通気可能な複数の原料ガス供
給源と、各原料ガス供給源に対応して設けられ、且つ前
記ガス導入ライン及び前記ベントラインの何れにも切替
えにより通気可能な複数のダミーラインとを具備してな
る気相成長装置を用いて、上記結晶成長室内に設置して
なる基板上に結晶を気相成長させるにあたり、上記各ダ
ミーライン内を流れる各キャリアガスの同ダミーライン
内における圧力と、そのダミーラインに対応する原料ガ
スの上記ガス導入ライン内における圧力とが等しくなる
ような流量でもって、上記各ダミーライン内にキャリア
ガスを流しながら、そのダミーライン内を流れるキャリ
アガスを切替えにより上記ベントライン及び上記ガス導
入ラインの何れか一方に流すとともに、そのダミーライ
ンに対応する原料ガスを切替えにより同ベントライン及
び同ガス導入ラインの他方に流し、それら各キャリアガ
ス及びそれに対応する各原料ガスの通気経路の切替えを
同時に行うようにすることを提案する。
[0008] The present invention has been made based on the above findings, and has a gas introduction line for introducing a gas into a crystal growth chamber;
A vent line that exhausts gas without introducing gas into the crystal growth chamber, a plurality of source gas supply sources that can be switched to any of the gas introduction line and the vent line, and a plurality of source gas supply sources. A substrate installed in the crystal growth chamber by using a vapor phase growth apparatus provided with a plurality of dummy lines that are provided and that can be switched to and ventilated to both the gas introduction line and the vent line. In vapor-growing a crystal thereon, the pressure of each carrier gas flowing in each of the dummy lines in the same dummy line is equal to the pressure of the source gas corresponding to the dummy line in the gas introduction line. At a high flow rate, the carrier gas flowing through each dummy line is switched while flowing the carrier gas through each dummy line. And the source gas corresponding to the dummy line is switched to the other of the vent line and the gas introduction line, and the carrier gas and each of the corresponding carrier gases are switched. It is proposed to switch the ventilation path of the source gas at the same time.

【0009】[0009]

【作用】上記した手段によれば、各ダミーライン内にお
ける各キャリアガスの圧力が、ガス導入ライン内を流れ
る対応する原料ガスの圧力に等しくなるような流量でも
って、各ダミーライン内にキャリアガスを流すようにし
たため、ガス導入ライン内に流れるガス種を切り替えて
も、ガス導入ライン内の圧力は略一定に保たれる。従っ
て、ガス種切替え時におけるガス導入ライン内の圧力変
動が減少し、結晶成長室内のガス流に生じ得る乱れが全
く起こらないか、又は極力小さくなり、高品質の結晶が
均一性よく基板上に形成される。
According to the means described above, the carrier gas in each dummy line has a flow rate such that the pressure of each carrier gas in each dummy line is equal to the pressure of the corresponding source gas flowing in the gas introduction line. The pressure in the gas introduction line is maintained substantially constant even when the type of gas flowing in the gas introduction line is switched. Therefore, the pressure fluctuation in the gas introduction line at the time of switching the gas type is reduced, and the turbulence that can occur in the gas flow in the crystal growth chamber does not occur at all, or becomes as small as possible, and the high-quality crystal is uniformly deposited on the substrate. It is formed.

【0010】[0010]

【実施例】以下に、実施例及び従来例を挙げて本発明の
特徴とするところを明らかとする。なお、実施例及び従
来例においては、図1に示した成長装置を用い、InP
基板上にGaInAsP4元系混晶膜をエピタキシャル
成長させた。なお、III族用原料ガス供給源1としてT
MI,TEGを用い、V族用原料ガス供給源2としてP
3,AsH3を用い、キャリアガスとしてH2ガスを用
いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the present invention will be clarified below with reference to embodiments and conventional examples. In the embodiment and the conventional example, the growth apparatus shown in FIG.
A GaInAsP quaternary mixed crystal film was epitaxially grown on the substrate. It should be noted that T is used as a group III source gas supply source 1.
MI, TEG, and P as source gas supply source 2 for group V
H 3 and AsH 3 were used, and H 2 gas was used as a carrier gas.

【0011】(実施例)図2に、ガス導入ライン3内に
濃度50%のPH3ガスを流した場合のPH3ガスの圧力
と流量との関係、及びダミーライン6内にH2ガスを流
した場合のH2ガスの圧力と流量との関係を表すグラフ
が示されている。同図より、濃度50%のPH3ガスを
流した時と同じライン圧力を保つためには、H2ガスは
PH3ガスの約2倍の流量を要することがわかる。
(Embodiment) FIG. 2 shows the relationship between the pressure and the flow rate of a PH 3 gas when a 50% concentration PH 3 gas flows in a gas introduction line 3, and the flow of H 2 gas in a dummy line 6. A graph showing the relationship between the pressure and the flow rate of the H 2 gas when flowing is shown. From the figure, it can be seen that the H 2 gas requires about twice the flow rate of the PH 3 gas to maintain the same line pressure as when the PH 3 gas with a concentration of 50% is passed.

【0012】図3には、ガス導入ライン3内に濃度10
%のAsH3ガスを流した場合のAsH3ガスの圧力と流
量との関係、及びダミーライン6内にH2ガスを流した
場合のH2ガスの圧力と流量との関係を表すグラフが示
されている。同図より、濃度10%のAsH3ガスを流
した時と同じライン圧力を保つためには、H2ガスはA
sH3ガスの約1.7倍の流量を要することがわかる。
なお、図4より、AsH3ガスの濃度が低い(2%)場
合には、H2ガスの流量とAsH3ガスの流量とは同じで
よいことがわかる。
FIG. 3 shows that a gas having a concentration of 10
% Of AsH 3 AsH 3 gas relationship between the pressure and the flow rate in passing a gas, and a graph representing the relationship between the pressure and the flow rate of H 2 gas in passing the H 2 gas into the dummy line 6 shows Have been. As shown in the figure, in order to maintain the same line pressure as when the AsH 3 gas having a concentration of 10% was flown, the H 2 gas was A
It can be seen that the flow rate is about 1.7 times the flow rate of the sH 3 gas.
FIG. 4 shows that when the concentration of the AsH 3 gas is low (2%), the flow rate of the H 2 gas and the flow rate of the AsH 3 gas may be the same.

【0013】図5には、ガス導入ライン3内にTMIガ
スを流した場合のTMIガスの圧力と流量との関係、及
びダミーライン6内にH2ガスを流した場合のH2ガスの
圧力と流量との関係を示すグラフが示されている。同図
より、III族原料である有機金属は、原料ガス中の有機
金属の濃度が低いため、H2ガスの流量と有機金属ガス
の流量とは同じでよいことがわかる。
[0013] FIG. 5 shows the relationship between pressure and flow rate of the TMI gas in passing the TMI gas into the gas introduction line 3, and the pressure of H 2 gas in passing the H 2 gas into the dummy lines 6 The graph which shows the relationship between and flow rate is shown. From the figure, it can be seen that the flow rate of the H 2 gas and the flow rate of the organic metal gas may be the same since the organic metal which is a group III raw material has a low concentration of the organic metal in the raw material gas.

【0014】上述した各グラフ等より、各原料ガスの流
量及びそれに対応して各ダミーライン5,6に流すキャ
リアガスの流量を、以下のようにした。即ち、TEGガ
スの流量を100sccmとし、それに対応してダミーライ
ン5に流すH2ガスの流量を100sccmとした。TMI
ガスの流量を600sccmとし、それに対応してダミーラ
イン5に流すH2ガスの流量を600sccmとした。As
3ガスの流量を400sccmとし、それに対応してダミ
ーライン6に流すH2ガスの流量を680sccmとした。
PH3ガスの流量を600sccmとし、それに対応してダ
ミーライン5に流すH2ガスの流量を1200sccmとし
た。
From the above-described graphs and the like, the flow rates of the respective source gases and the flow rates of the carrier gases flowing through the respective dummy lines 5 and 6 corresponding thereto are set as follows. That is, the flow rate of the TEG gas was set to 100 sccm, and the flow rate of the H 2 gas flowing through the dummy line 5 was set to 100 sccm correspondingly. TMI
The flow rate of the gas was set to 600 sccm, and the flow rate of the H 2 gas flowing through the dummy line 5 was set to 600 sccm correspondingly. As
The flow rate of H 3 gas was set at 400 sccm, and the flow rate of H 2 gas flowing through the dummy line 6 was set at 680 sccm correspondingly.
The flow rate of the PH 3 gas was set to 600 sccm, and the flow rate of the H 2 gas flowing through the dummy line 5 was set to 1200 sccm correspondingly.

【0015】上記各流量のガスを流して、従来と同様に
して結晶成長を行った結果、ガス導入ライン3及びベン
トライン4への通気の切替えを行った瞬間のガス導入ラ
イン3内の圧力の変動は3Torr以下であった。得られた
結晶は、GaInAsP混晶であり、InP基板との格
子整合性に優れていた(|Δa/a|<5×10-4、a
はInPの格子定数であり、ΔaはGaInAsPとI
nPとの格子定数の差である)。また、得られた結晶
の、基板内のフォトルミネッセンススペクトルのピーク
波長λの分布(|λ|<5nm)の均一性も優れており、
高品質の結晶が均一性よく基板上に形成されたことがわ
かる。
As a result of flowing the gas at each flow rate and performing crystal growth in the same manner as in the prior art, the pressure in the gas introduction line 3 at the moment when the ventilation to the gas introduction line 3 and the vent line 4 is switched is changed. The variation was less than 3 Torr. The obtained crystal was a GaInAsP mixed crystal and had excellent lattice matching with the InP substrate (| Δa / a | <5 × 10 −4 , a
Is the lattice constant of InP, and Δa is GaInAsP and I
the difference in lattice constant from nP). Also, the uniformity of the distribution (| λ | <5 nm) of the peak wavelength λ of the photoluminescence spectrum in the substrate of the obtained crystal is excellent,
It can be seen that high quality crystals were formed on the substrate with good uniformity.

【0016】(従来例)各原料ガスの流量とそれに対応
して各ダミーライン5,6に流すキャリアガスの流量と
を同じにした。なお、TEGガスの流量を100sccmと
し、TMIガスの流量を600sccmとし、AsH3ガス
の流量を400sccmとし、PH3ガスの流量を600scc
mとした。その他の条件は、上記実施例と同じであっ
た。この場合、ガス導入ライン3及びベントライン4へ
の通気の切替えを行った瞬間のガス導入ライン3内の圧
力の変動は10乃至15Torrであり、良好なGaInA
sP混晶を得難かった。
(Conventional example) The flow rate of each source gas and the flow rate of the carrier gas flowing through each of the dummy lines 5 and 6 are made equal to each other. The flow rate of the TEG gas was 100 sccm, the flow rate of the TMI gas was 600 sccm, the flow rate of the AsH 3 gas was 400 sccm, and the flow rate of the PH 3 gas was 600 sccm.
m. Other conditions were the same as in the above example. In this case, the fluctuation of the pressure in the gas introduction line 3 at the moment when the ventilation to the gas introduction line 3 and the vent line 4 is switched is 10 to 15 Torr.
It was difficult to obtain an sP mixed crystal.

【0017】なお、上記実施例においては、本発明をII
I−V族化合物半導体混晶膜の形成に適用した場合につい
て説明したが、混晶膜の形成に限らないのはいうまでも
ないし、II−VI族化合物半導体膜を形成する場合にも本
発明を適用可能であるのは勿論である。また、有機金属
気相成長法に限らず、ハイドライド気相成長法やクロラ
イド気相成長法にも本発明を適用可能であるのは勿論で
あり、さらに他の各種CVD装置を用いた気相成長法に
も応用可能である。
It should be noted that, in the above embodiment, the present invention
The case where the present invention is applied to the formation of an IV group compound semiconductor mixed crystal film has been described, but it goes without saying that the present invention is not limited to the formation of a mixed crystal film, and the present invention is also applicable to the case where a II-VI group compound semiconductor film is formed. Is applicable. In addition, the present invention can be applied not only to the metalorganic vapor phase epitaxy but also to the hydride vapor phase epitaxy and the chloride vapor phase epitaxy, and furthermore, the vapor phase epitaxy using various other CVD apparatuses can be used. It is also applicable to law.

【0018】[0018]

【発明の効果】本発明に係る気相成長方法によれば、各
ダミーライン内における各キャリアガスの圧力が、ガス
導入ライン内を流れる対応する原料ガスの圧力に等しく
なるような流量でもって、各ダミーライン内にキャリア
ガスを流すようにしたため、ガス導入ライン内に流れる
ガス種の切替え時におけるガス導入ライン内の圧力変動
が低減され、それにより結晶成長室内のガス流に乱れは
殆ど生じず、界面急峻性の高い高品質の結晶が均一性よ
く基板上に形成されるという利点がある。また、混晶組
成の化合物半導体薄膜を気相成長させる場合にも、その
混晶組成の制御性に優れ、所望の組成の混晶膜を再現性
よく得ることができるという効果も期待される。さら
に、多重量井戸型レーザー構造の結晶を作製する際に
は、より厳しい圧力制御が必要とされるので、そのよう
な結晶を作製する際にも本発明の効果は極めて大であ
る。
According to the vapor phase growth method of the present invention, the flow rate of each carrier gas in each dummy line is equal to the pressure of the corresponding source gas flowing in the gas introduction line. Since the carrier gas is caused to flow in each dummy line, the pressure fluctuation in the gas introduction line at the time of switching the type of gas flowing in the gas introduction line is reduced, so that the gas flow in the crystal growth chamber is hardly disturbed. In addition, there is an advantage that a high-quality crystal with high interface steepness is formed on the substrate with good uniformity. In addition, even when a compound semiconductor thin film having a mixed crystal composition is grown in a vapor phase, an effect that the mixed crystal composition is excellent in controllability and a mixed crystal film having a desired composition can be obtained with good reproducibility is expected. Further, when producing a crystal having a multi-well laser structure, stricter pressure control is required. Therefore, the effect of the present invention is extremely large even when producing such a crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機金属化学気相成長装置の一般的な構成を示
す概略図である。
FIG. 1 is a schematic diagram showing a general configuration of a metal organic chemical vapor deposition apparatus.

【図2】50%濃度のPH3ガスの圧力と流量との関
係、及びH2ガスの圧力と流量との関係を表す特性図で
ある。
FIG. 2 is a characteristic diagram showing a relationship between a pressure and a flow rate of a 50% concentration PH 3 gas and a relationship between a pressure and a flow rate of a H 2 gas.

【図3】10%濃度のAsH3ガスの圧力と流量との関
係、及びH2ガスの圧力と流量との関係を表す特性図で
ある。
FIG. 3 is a characteristic diagram showing a relationship between a pressure and a flow rate of a 10% concentration AsH 3 gas and a relationship between a pressure and a flow rate of an H 2 gas.

【図4】2%濃度のAsH3ガスの圧力と流量との関
係、及びH2ガスの圧力と流量との関係を表す特性図で
ある。
FIG. 4 is a characteristic diagram showing a relationship between a pressure and a flow rate of a 2% concentration AsH 3 gas and a relationship between a pressure and a flow rate of an H 2 gas.

【図5】TMIガスの圧力と流量との関係、及びH2
スの圧力と流量との関係を表す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a pressure and a flow rate of a TMI gas and a relationship between a pressure and a flow rate of an H 2 gas.

【符号の説明】[Explanation of symbols]

1 III族用原料ガス供給源 2 V族用原料ガス供給源 3 ガス導入ライン 4 ベントライン 5 III族用ダミーライン 6 V族用ダミーライン 1 Group III source gas supply source 2 Group V source gas supply source 3 Gas introduction line 4 Vent line 5 Group III dummy line 6 Group V dummy line

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 25/14 C30B 28/00 - 35/00 H01L 21/205 H01L 21/31 H01L 21/365──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 25/14 C30B 28/00-35/00 H01L 21/205 H01L 21/31 H01L 21/365

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶成長室内にガスを導入するガス導入ラ
インと、前記結晶成長室内にガスを導入することなく排
気するベントラインと、前記ガス導入ライン及び前記ベ
ントラインの何れにも切替えによって通気可能となる複
数の原料ガス供給源と、各原料ガス供給源に対応して設
けられ、且つ前記ガス導入ライン及び前記ベントライン
の何れにも切替えによって通気可能となる複数のダミー
ラインとを具備してなる気相成長装置を用いて、上記結
晶成長室内に設置される基板上に結晶を成長させる気相
成長方法において、 原料ガスとは平均分子量の異なるHガスがキャリアガ
スとして流される各ダミーライン内における圧力と、そ
のダミーラインに対応する原料ガスの上記ガス導入ライ
ン内における圧力とが等しくなるように原料ガスの濃度
あるいは粘性等の諸特性に合わせて設定される流量でも
って、上記各ダミーライン内にHガスを流しながら、
そのダミーライン内を流れるHガスの切替えにより、
上記ベントライン及び上記ガス導入ラインの何れか一方
に流すとともに、そのダミーラインに対応する原料ガス
を切替えにより同ベントライン及び同ガス導入ラインの
他方に流し、それら各キャリアガスとしてのHガス及
びそれに対応する各原料ガスの通気経路の切替えを同時
に行うようにすることを特徴とする気相成長方法。
1. A gas introduction line for introducing a gas into a crystal growth chamber, a vent line for exhausting a gas without introducing a gas into the crystal growth chamber, and ventilation to both the gas introduction line and the vent line by switching. A plurality of source gas supply sources that can be provided, and a plurality of dummy lines that are provided corresponding to the respective source gas supply sources and that can be ventilated by switching to any of the gas introduction line and the vent line. In a vapor phase growth method for growing a crystal on a substrate provided in the crystal growth chamber by using a vapor phase growth apparatus comprising: a plurality of dummy gases each having an H 2 gas having a different average molecular weight from a source gas flowing as a carrier gas; So that the pressure in the line and the pressure in the gas introduction line of the source gas corresponding to the dummy line become equal. With a flow rate which is set in accordance with the various properties such as degrees or viscosity, while introducing H 2 gas to each of dummy lines within
By switching the H 2 gas flowing in the dummy line,
While flowing into one of the vent line and the gas introduction line, the source gas corresponding to the dummy line is switched to flow to the other of the same vent line and the same gas introduction line, and H 2 gas and carrier gas thereof are used as the respective carrier gases. A vapor phase growth method characterized in that the ventilation paths of the respective source gases corresponding thereto are simultaneously switched.
【請求項2】上記ダミーラインに対応する原料ガスの上
記ガス導入ライン内における圧力とが等しくなるように
原料ガスの濃度あるいは粘性等の諸特性に合わせて設定
されるHガスの流量は、原料ガスが濃度50%のPH
ガスである場合には、そのPHガスの流量の約2倍
に設定されることを特徴とする請求項1記載の気相成長
方法。
2. The flow rate of the H 2 gas set according to various characteristics such as the concentration or viscosity of the source gas so that the pressure of the source gas corresponding to the dummy line in the gas introduction line becomes equal to Raw material gas with a concentration of 50% PH
3 in the case of gas, vapor deposition method according to claim 1, characterized in that it is set to about twice the flow rate of the PH 3 gas.
【請求項3】上記ダミーラインに対応する原料ガスの上
記ガス導入ライン内における圧力とが等しくなるように
原料ガスの濃度あるいは粘性等の諸特性に合わせて設定
されるHガスの流量は、原料ガスが濃度10%のAs
ガスである場合には、そのAsHガスの流量の約
1.7倍に設定されることを特徴とする請求項1記載の
気相成長方法。
3. The flow rate of the H 2 gas set according to various characteristics such as the concentration or viscosity of the source gas so that the pressure of the source gas corresponding to the dummy line in the gas introduction line becomes equal to Raw material gas is 10% concentration As
2. The vapor phase growth method according to claim 1, wherein when the gas is H 3 gas, the flow rate is set to about 1.7 times the flow rate of the AsH 3 gas.
【請求項4】上記ダミーラインに対応する原料ガスの上
記ガス導入ライン内における圧力とが等しくなるように
原料ガスの濃度あるいは粘性等の諸特性に合わせて設定
されるHガスの流量は、原料ガスが濃度2%のAsH
ガスである場合には、そのAsHガスの流量と同量
に設定されることを特徴とする請求項1記載の気相成長
方法。
Flow rate of 4. H 2 gas is set in accordance with the characteristics of the density or viscosity etc. of the raw material gas so that the pressure equalizes in the dummy line to the gas inlet in the line of the raw material gas to be supported, AsH with a raw material gas concentration of 2%
2. The vapor phase growth method according to claim 1, wherein when the amount of the gas is three , the flow rate of the AsH 3 gas is set to the same amount.
【請求項5】上記ダミーラインに対応する原料ガスの上
記ガス導入ライン内における圧力とが等しくなるように
原料ガスの濃度あるいは粘性等の諸特性に合わせて設定
されるHガスの流量は、原料ガスがTMIガス等の有
機金属ガスである場合には、その有機金属ガスの流量と
同量に設定されることを特徴とする請求項1記載の気相
成長方法。
5. A flow rate of the H 2 gas set according to various characteristics such as a concentration or a viscosity of the source gas so that a pressure of the source gas corresponding to the dummy line in the gas introduction line becomes equal. 2. The vapor phase growth method according to claim 1, wherein when the source gas is an organic metal gas such as a TMI gas, the flow rate is set to be equal to the flow rate of the organic metal gas.
JP5273747A 1993-11-01 1993-11-01 Vapor growth method Expired - Fee Related JP2784384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5273747A JP2784384B2 (en) 1993-11-01 1993-11-01 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273747A JP2784384B2 (en) 1993-11-01 1993-11-01 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH07133193A JPH07133193A (en) 1995-05-23
JP2784384B2 true JP2784384B2 (en) 1998-08-06

Family

ID=17532015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273747A Expired - Fee Related JP2784384B2 (en) 1993-11-01 1993-11-01 Vapor growth method

Country Status (1)

Country Link
JP (1) JP2784384B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044699B2 (en) * 1991-04-24 2000-05-22 住友電気工業株式会社 Vapor phase growth apparatus and vapor phase growth method

Also Published As

Publication number Publication date
JPH07133193A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US4861417A (en) Method of growing group III-V compound semiconductor epitaxial layer
JPH09315899A (en) Compound semiconductor vapor growth method
WO2001022482A9 (en) Method of producing relaxed silicon germanium layers
JPH08316151A (en) Manufacture of semiconductor
JP2784384B2 (en) Vapor growth method
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JPH09213641A (en) Method for forming hetero interface by organic metal vapor phase growth
JPH05335241A (en) Compound semiconductor and manufacture thereof
JP2736655B2 (en) Compound semiconductor crystal growth method
JP3044699B2 (en) Vapor phase growth apparatus and vapor phase growth method
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JP3406504B2 (en) Semiconductor manufacturing method
JPH0547668A (en) Crystal growth method for compound semiconductor
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JP2687862B2 (en) Method of forming compound semiconductor thin film
JPH04260696A (en) Production of crystal of compound semiconductor
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JPH0697076A (en) Vapor growth method of thin film
JP2953955B2 (en) Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor
JPH0620974A (en) Vapor phase growing method
JPH0645264A (en) Vapor growing method
JP3116415B2 (en) Semiconductor wafer and method of manufacturing the same
JPH08264459A (en) Method and system for chemical beam deposition
JPH0748478B2 (en) Vapor phase growth equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees