JPS6266621A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS6266621A
JPS6266621A JP20684785A JP20684785A JPS6266621A JP S6266621 A JPS6266621 A JP S6266621A JP 20684785 A JP20684785 A JP 20684785A JP 20684785 A JP20684785 A JP 20684785A JP S6266621 A JPS6266621 A JP S6266621A
Authority
JP
Japan
Prior art keywords
gas
substrate
vapor phase
flow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20684785A
Other languages
Japanese (ja)
Inventor
Toshiya Yokogawa
俊哉 横川
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20684785A priority Critical patent/JPS6266621A/en
Publication of JPS6266621A publication Critical patent/JPS6266621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress turbulent flow produced by collision of raw gas to the inner wall of a reactor by feeding nonreaction gas which does not relate to vapor-phase growing reaction between a substrate heating base and the inner wall of the reactor. CONSTITUTION:Raw gas is supplied from a raw material supplying gas tube 2 of a reactor 1 to arrive at a substrate 3. Nonreaction gas is supplied from a gas guide tube 7, and fed between a substrate heating base 3 and the inner wall of the reactor 1. Reaction gas flow which tends to collide with the inner wall of the reactor 1 becomes like a gas flow 9 by nonreaction gas flow 8 to holder the laminar flow state of the reaction gas flow on the substrate 1. According to this vapor-phase growing apparatus, since a turbulent flow produced by the influence of heating the substrate can be suppressed to hold the raw gas flow on the substrate in a laminar flow state, a crystal of high quality can be obtained uniformly over a large area.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高品質で均一な半導体結晶成長膜を形成する
気相成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor phase growth apparatus for forming a high quality and uniform semiconductor crystal growth film.

従来の技術 近年、半導体デバイスの分野では、複雑な構造をもつ素
子の研究開発が活発に行なわれている。
BACKGROUND OF THE INVENTION In recent years, in the field of semiconductor devices, research and development of elements with complex structures has been actively conducted.

このような現状に対して、非常に薄い成長層が精密に制
御でき、大面積で均一な成長が可能な気相成長法が注目
を集めている。特にMOCVD法は、有機金属を用いた
有機金属熱分解法のことで、基板を成長温度に加熱し、
有機金属及び水素化物等の原料ガスを基板表面上で熱分
解することにより結晶薄膜をエピタキシャル成長させる
ものである。
In response to this current situation, vapor phase growth is attracting attention because it allows for precise control of extremely thin growth layers and uniform growth over a large area. In particular, the MOCVD method is an organometallic thermal decomposition method using an organometallic material, in which the substrate is heated to the growth temperature.
A crystalline thin film is grown epitaxially by thermally decomposing raw material gases such as organic metals and hydrides on the surface of a substrate.

従来、気相成長炉には横型及び縦型炉がある。Conventionally, vapor phase growth reactors include horizontal and vertical reactors.

第4図と第6図は従来のMOCVD法による気相成長装
置の横型及び縦型反応管付近の概略断面を示す。反応管
1の原料供給用ガス管2より原料ガスを供給し、基板3
に原料ガスを到達させる。4は原料ガス流を示す。基板
加熱台Sの熱により原料ガスが基板3上で加熱分解され
ることで、基板3上に結晶薄膜がエピタキシャル成長す
る。残留ガスは排気管eより排気される。成長は、原料
ガスの流量及び基板温度に依存するが、例えば、GaA
gを成長させる際、TMG(トリメチルガリウム)= 
10 CC/min、 AsHa (アルシン)=16
CC/m1n9H2ガス=217m i n 、基板温
度=78δ°Cで、GaAs基板上に良好なGaAg 
エピタキシャル薄膜が形成される。
FIGS. 4 and 6 show schematic cross-sections of the vicinity of horizontal and vertical reaction tubes of a conventional MOCVD vapor phase growth apparatus. A raw material gas is supplied from the raw material supply gas pipe 2 of the reaction tube 1, and the substrate 3 is
Let the raw material gas reach. 4 indicates the raw material gas flow. The raw material gas is thermally decomposed on the substrate 3 by the heat of the substrate heating table S, so that a crystal thin film is epitaxially grown on the substrate 3. The residual gas is exhausted from the exhaust pipe e. Growth depends on the flow rate of source gas and substrate temperature, but for example, GaA
When growing g, TMG (trimethyl gallium) =
10 CC/min, AsHa (arsine) = 16
CC/m1n9H2 gas = 217min, substrate temperature = 78δ°C, good GaAg on GaAs substrate
An epitaxial thin film is formed.

GaAs系デバイスにはGaAsに続いてA11−xG
a。
GaAs-based devices include A11-xG following GaAs.
a.

As(0≦X≦1)も成長する場合もあるが4、例えば
A10.3Ga0.7Asの成長条件は、TMG=10
αし’mi n 。
Although As (0≦X≦1) may also grow,4 for example, the growth conditions for A10.3Ga0.7As are TMG=10
αshi'min.

TMA()リメチルアルミニウム)=10αし’m i
 n 。
TMA()rimethylaluminum)=10αshi'm i
n.

AsH3=15αし’m i n 、 H2ガス=21
/min、基板温蜜=78o″Cである。
AsH3=15αmin, H2 gas=21
/min, substrate temperature = 78o''C.

発明が解決しようとする問題点 一般に育成される結晶の良否は成長時の原料ガス流の状
態に深くかかわっている。つまり原料ガス流が均一な層
流状態でなければ、大面積にわたり均一で良質な結晶薄
膜がエピタキシャル成長できない。しかし上記のような
方法では、第4及び6図中に示す原料ガス流4のように
、熱対流の影響で原料ガス流が内壁に衝突して、渦流を
発生する。この渦流によって基板付近の原料ガス流が乱
され、均一な層流状態が保てなかった。また、原料ガス
流が熱対流の影響を受けないように原料ガスの流速を増
すと、基板加熱台に対する原料ガスの衝突が激しくなり
、基板上に増々乱流が生じてしまう。本発明は、かかる
問題を解決し、層流状態を形成するものである。
Problems to be Solved by the Invention In general, the quality of a grown crystal is closely related to the flow conditions of the raw material gas during growth. In other words, unless the source gas flow is in a uniform laminar flow state, a uniform, high-quality crystalline thin film cannot be epitaxially grown over a large area. However, in the above method, the raw material gas flow collides with the inner wall due to the influence of thermal convection, generating a vortex, as in the raw material gas flow 4 shown in FIGS. 4 and 6. This eddy flow disturbed the raw material gas flow near the substrate, making it impossible to maintain a uniform laminar flow state. Furthermore, if the flow velocity of the raw material gas is increased so that the raw material gas flow is not affected by thermal convection, the collision of the raw material gas against the substrate heating stage becomes more intense, and turbulence is increasingly generated on the substrate. The present invention solves this problem and creates a laminar flow state.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、半導体基
板上に気相成長させる気相成長装置であって、基板が配
置される反応管に原料ガスを導入するための第1のガス
導入管を設けると共に、上記気相成長反応に関与しない
非反応ガスを基板加熱台と反応管の内壁との間に流すた
めの第2のガス導入管を設けるようにしたものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is a vapor phase growth apparatus for vapor phase growth on a semiconductor substrate, in which a source gas is introduced into a reaction tube in which the substrate is placed. A first gas introduction pipe is provided for the reaction, and a second gas introduction pipe is provided for flowing a non-reactive gas not involved in the vapor phase growth reaction between the substrate heating table and the inner wall of the reaction tube. This is what I did.

作   用 この技術的手段による作用は次のとおりである。For production The effects of this technical means are as follows.

基板加熱台と反応管内壁との間に気相成長反応に関与し
ない非反応ガスを流すと、熱対流の影響で反応管内壁に
衝突しようとする原料ガスがその非反応ガス流により基
板加熱台よりガス流の下流側に押し流されるため、内壁
への衝突によって生じる乱流を抑えることができ、従っ
てその乱流が基板上で原料ガスの層流状態を乱すという
問題が解決される。
When a non-reactive gas that does not participate in the vapor growth reaction is passed between the substrate heating table and the inner wall of the reaction tube, the raw material gas that is about to collide with the inner wall of the reaction tube due to the influence of thermal convection is caused by the non-reactive gas flow to cause the substrate heating table to flow. Since it is pushed farther downstream in the gas flow, it is possible to suppress the turbulent flow caused by collision with the inner wall, thereby solving the problem that the turbulent flow disturbs the laminar flow state of the source gas on the substrate.

実施例 以下、本発明の一実施例を第1図〜第3図にもとづいて
説明する。第1図〜第3図において、第4図、第6図と
同一構成部分には同一番号を付して詳細な説明を省略す
る。基板加熱台6に基板3が載置しである。基板加熱法
は高周波加熱、赤外線加熱、抵抗加熱等があるが本実施
例では昇温速度が速い高周波加熱を用いる。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 3. In FIGS. 1 to 3, the same components as those in FIGS. 4 and 6 are given the same numbers, and detailed explanations will be omitted. A substrate 3 is placed on a substrate heating table 6. Substrate heating methods include high-frequency heating, infrared heating, resistance heating, and the like, but in this embodiment, high-frequency heating, which has a fast temperature increase rate, is used.

今、工n1−エGa工A s yPl−アの結晶成長を
例にとって説明する。
Now, explanation will be given by taking as an example the crystal growth of Engineering n1-E Ga Engineering As yPl-A.

成長条件は装置にもかなり依存するが、例えば基板温度
670°C、TEI ()リエチルインジウム)の町の
流量(36℃) = 350CCv/min 、TEG
(トリエチルガリウム)のH2の流量(0″C)=80
 cc/m i n 、 AsH3= 100CC/m
 i n 、 PH3=170/m i n 、反応ガ
ス導入管4を流れるH2  の総流量61/min、 
 減圧150Torr下でInPに整合した(1Δa/
al<lX10  )In1−、GaxAsyPl。
The growth conditions depend considerably on the equipment, but for example, the substrate temperature is 670°C, the TEI (ethyl indium) flow rate (36°C) = 350 CCv/min, and the TEG
(Triethylgallium) H2 flow rate (0″C) = 80
cc/min, AsH3= 100CC/m
i n , PH3=170/min, total flow rate of H2 flowing through the reaction gas introduction pipe 4 61/min,
Matched to InP under reduced pressure of 150 Torr (1Δa/
al<lX10) In1-, GaxAsyPl.

(X〜0.27 、 y−0,67) 4元混晶が得ら
れる。一方、非反応ガスには水素ガスを用い、流量10
1/minでガス導入管7より供給する。内壁に衝突し
ようとする反応ガス流は、非反応ガス流8によりガス流
の下流側に押し流されるため、反応ガス流は図中9のよ
うになり、基板1上において反応ガス流の層流状態が保
たれる。
(X~0.27, y-0,67) A quaternary mixed crystal is obtained. On the other hand, hydrogen gas was used as the non-reactive gas, and the flow rate was 10
The gas is supplied from the gas introduction pipe 7 at a rate of 1/min. The reactant gas flow that is about to collide with the inner wall is pushed downstream by the non-reactant gas flow 8, so the reactant gas flow becomes as shown in 9 in the figure, and the reactant gas flow is in a laminar flow state on the substrate 1. is maintained.

この方法で、I n 1−xGa xAs yP 1.
、、y (xりa 27 *y−0,57)の成長を3
5回のrunを行なっても、組成及び膜厚の面内バラツ
キは極めて少なかった〇組成及び膜厚(成長時間:1H
)の面内ノ(ラツキばそれぞれ1漠毎にx=0.27±
0.02 、 y=0.57±0.02及び1μm±0
.02と極めて均一で表面もホロジーの良好な4元混晶
が再現性よく得られた。
In this way, I n 1-xGa xAs yP 1.
,, the growth of y (xria 27 *y-0,57) is 3
Even after 5 runs, the in-plane variations in composition and film thickness were extremely small. Composition and film thickness (growth time: 1H)
) within the plane (for each radius, x = 0.27±
0.02, y=0.57±0.02 and 1μm±0
.. 02, a quaternary mixed crystal with extremely uniform surface morphology and good surface morphology was obtained with good reproducibility.

第2図は、上記の構造の反応管1をもつ有機金属気相成
長装置を示す概略構成図である0制御用マスフロー21
により流量を調整して、気相成長用ガスの高圧ポンベ2
2及び有機金属バブラー23から原料ガスを反応管1に
供給する。非反応ガス及び1原料ガスを形成するための
キャリアガスは水素ガスの高圧ボンベ27から供給する
。高周波電源25及び高周波コイル24を用いて、基板
加熱台5を加熱し、基板3の温度を成長温度に保ちなが
ら成長を行なう。
FIG. 2 is a schematic configuration diagram showing a metal organic vapor phase growth apparatus having a reaction tube 1 having the above structure.
Adjust the flow rate with
Raw material gas is supplied to the reaction tube 1 from the organic metal bubbler 2 and the organometallic bubbler 23. A carrier gas for forming the non-reactive gas and one source gas is supplied from a high-pressure cylinder 27 of hydrogen gas. The substrate heating table 5 is heated using the high frequency power source 25 and the high frequency coil 24, and growth is performed while maintaining the temperature of the substrate 3 at the growth temperature.

尚、非反応ガス導入管7は、基板加熱台2の形状によっ
て最適化する必要がある。例えば、第1図に示すように
、基板加熱台6の上流側の原料ガス流に対して基板3が
斜めに載置されている場合は、基板3表面と反応管1内
壁の間をその内壁に沿って流れるように、第1図(1G
の正面図に示すような扁平横長の開口部をもつ非反応ガ
ス導入管7を用いる。また、上記の原料ガス流に対して
基板3が垂直に載置されている場合は、例えば、第3図
(a)の上面図に示すような扁平横長の開口部をもつ非
反応ガス導入管7を用いる。
Note that the non-reactive gas introduction pipe 7 needs to be optimized depending on the shape of the substrate heating table 2. For example, as shown in FIG. 1, when the substrate 3 is placed obliquely with respect to the raw material gas flow on the upstream side of the substrate heating table 6, the inner wall of the substrate 3 is placed between the surface of the substrate 3 and the inner wall of the reaction tube 1. Figure 1 (1G
A non-reactive gas introduction pipe 7 having a flat and horizontally long opening as shown in the front view is used. In addition, when the substrate 3 is placed perpendicularly to the above raw material gas flow, for example, a non-reactive gas introduction pipe having a flat horizontally long opening as shown in the top view of FIG. 7 is used.

以上の説明において有機金属気相成長装置を示したが通
常の気相成長装置にも本発明を適用することが可能であ
る。また非反応ガスとキャリアガスとを同一のもので示
したが、本限りとせず、結晶成長反応に関与しないガス
、例えば窒素等の異なるガスでも良い。
In the above explanation, a metal organic vapor phase growth apparatus has been described, but the present invention can also be applied to a normal vapor phase growth apparatus. Further, although the non-reactive gas and the carrier gas are shown to be the same, the present invention is not limited to this, and a different gas such as nitrogen, etc., which does not participate in the crystal growth reaction may be used.

発明の効果 以上述べてきたように、本発明によれば、気相成長装置
の問題点の一つであった基板加熱の影響で生じる乱流を
抑えることができ、基板上の原料ガス流を層流状態に保
つことが可能となるため、大面積にわたり均一で高品質
な結晶が得られる。
Effects of the Invention As described above, according to the present invention, it is possible to suppress turbulence caused by the influence of substrate heating, which was one of the problems in vapor phase growth equipment, and to improve the flow of raw material gas on the substrate. Since it is possible to maintain a laminar flow state, uniform and high quality crystals can be obtained over a large area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における気相成長装置の反応
管部の断面図、第2図は本実施例の気相成長装置のガス
系統図、第3図は本発明の他の実施例における気相成長
装置の反応管部の断面図、第4図及び第5図は従来の気
相成長装置の反応管部の断面図である。 1・・・・・・反応管、2・・・・・・原料ガス導入管
、3・・・・・・基板、6・・・・・・基板加熱台、6
・・・・・・排気管、7・・・・・・非反応ガス導入管
、8・・・・・・非反応ガス流。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
3 図 3−一幕秋 4−一λデ料ブスシ1(− C−平気1 第5図
FIG. 1 is a sectional view of a reaction tube section of a vapor phase growth apparatus according to an embodiment of the present invention, FIG. 2 is a gas system diagram of the vapor phase growth apparatus of this embodiment, and FIG. 3 is a diagram showing another embodiment of the present invention. 4 and 5 are cross-sectional views of the reaction tube section of the conventional vapor phase growth apparatus. 1... Reaction tube, 2... Raw material gas introduction tube, 3... Substrate, 6... Substrate heating table, 6
. . . Exhaust pipe, 7 . . . Non-reactive gas introduction pipe, 8 . . . Non-reactive gas flow. Name of agent: Patent attorney Toshio Nakao and 1 other person
3 Figure 3-Act Autumn 4-1λDe charge Busushi 1 (-C-Heiki 1 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板上に薄膜を気相成長させる気相成長装
置であって前記基板が配置される反応管と、前記基板の
一主面上に原料ガスを供給する第1のガス導入管と、気
相成長反応に関与しない非反応ガスを前記基板を加熱す
る基板加熱台と前記反応管の内壁との間に流すための第
2のガス導入管を具備してなる気相成長装置。
(1) A vapor phase growth apparatus for vapor phase growing a thin film on a semiconductor substrate, which includes a reaction tube in which the substrate is placed, and a first gas introduction tube that supplies source gas onto one main surface of the substrate. A vapor phase growth apparatus comprising a second gas introduction pipe for flowing a non-reactive gas that does not participate in the vapor growth reaction between a substrate heating table that heats the substrate and an inner wall of the reaction tube.
(2)反応管が横型であり、第2のガス導入管の端部が
基板加熱台よりガス流の上流側で、前記基板加熱台より
上方内壁近傍に配置されてなる特許請求の範囲第1項記
載の気相成長装置。
(2) The reaction tube is horizontal, and the end of the second gas introduction tube is disposed upstream of the substrate heating table in the gas flow and near the inner wall above the substrate heating table. Vapor phase growth apparatus described in Section 1.
(3)反応管が縦型であり、第2のガス導入管の端部が
前記基板加熱台よりガス流の上流側で、前記反応管内壁
近傍に複数配置されてなる特許請求の範囲第1項記載の
気相成長装置。
(3) The reaction tube is vertical, and a plurality of second gas introduction tubes are arranged near the inner wall of the reaction tube on the upstream side of the gas flow from the substrate heating table. Vapor phase growth apparatus described in Section 1.
(4)結晶成長用原料ガスが有機金属を含む原料ガスで
ある特許請求の範囲第1項記載の気相成長装置。
(4) The vapor phase growth apparatus according to claim 1, wherein the raw material gas for crystal growth is a raw material gas containing an organic metal.
(5)非反応ガスが、水素、窒素、または希ガスである
特許請求の範囲第1項記載の気相成長装置。
(5) The vapor phase growth apparatus according to claim 1, wherein the non-reactive gas is hydrogen, nitrogen, or a rare gas.
JP20684785A 1985-09-19 1985-09-19 Vapor growth apparatus Pending JPS6266621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20684785A JPS6266621A (en) 1985-09-19 1985-09-19 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20684785A JPS6266621A (en) 1985-09-19 1985-09-19 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS6266621A true JPS6266621A (en) 1987-03-26

Family

ID=16530038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20684785A Pending JPS6266621A (en) 1985-09-19 1985-09-19 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS6266621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202829A (en) * 1987-12-22 1989-08-15 Philips Gloeilampenfab:Nv Manufature of electronic device and reaction vessel used for it
JPH02222134A (en) * 1989-02-23 1990-09-04 Nobuo Mikoshiba Thin film forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202829A (en) * 1987-12-22 1989-08-15 Philips Gloeilampenfab:Nv Manufature of electronic device and reaction vessel used for it
JPH02222134A (en) * 1989-02-23 1990-09-04 Nobuo Mikoshiba Thin film forming apparatus

Similar Documents

Publication Publication Date Title
EP0502209A1 (en) Method and apparatus for growing compound semiconductor crystals
JP2002316892A (en) Vapor phase epitaxial growth system
JP2001181097A (en) Vapor growth apparatus of nitride
JPS6266621A (en) Vapor growth apparatus
JPH1017400A (en) Method for magnesium-doped nitride type iii-v group compound semiconductor crystal
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JPS5973496A (en) Vapor-phase growth apparatus
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
JPS6266622A (en) Vapor growth apparatus
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPS6266623A (en) Vapor growth apparatus
JPS6122621A (en) Vapor-phase growing method
JPH06244110A (en) Vapor growth equipment
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH06132227A (en) Vapor growth method
JPH0265125A (en) Reaction pipe of mocvd crystal growth device
JPS6273621A (en) Vapor growth device
JPS61242012A (en) Vapor-phase growth device
JPS6353160B2 (en)
JPS62189728A (en) Apparatus for vapor growth
JPS60215595A (en) Method for vapor-phase growth
JPS62291022A (en) Vapor growth device
JPS63271918A (en) Vapor growth equipment
JPS62105417A (en) Vapor growth equipment
JPS61284915A (en) Thin film vapor growth apparatus