JPS61242012A - Vapor-phase growth device - Google Patents

Vapor-phase growth device

Info

Publication number
JPS61242012A
JPS61242012A JP8374085A JP8374085A JPS61242012A JP S61242012 A JPS61242012 A JP S61242012A JP 8374085 A JP8374085 A JP 8374085A JP 8374085 A JP8374085 A JP 8374085A JP S61242012 A JPS61242012 A JP S61242012A
Authority
JP
Japan
Prior art keywords
gas
growth
substrate
furnace
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8374085A
Other languages
Japanese (ja)
Inventor
Motoji Morizaki
森崎 元司
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8374085A priority Critical patent/JPS61242012A/en
Publication of JPS61242012A publication Critical patent/JPS61242012A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To obtain the film of uniform thickness ranging over a wide area using a small-sized growing furnace by a method wherein a plurality of gas introducing portse are provided vertically crossing the direction of gas stream in a growth furnace in parallel with the surface of a substrate. CONSTITUTION:A substrate 11 is placed on the supporting stand 12 made of carbon. The crystal growth raw gas of the same constitution crosses a gas stream, and it is fed to a growth furnace 15 from the gas introducing pipes 14 having gas introducing ports 13 which are arranged in parallel with the surface of the substrate. When GaAs is going to be grown by performing an MOCVD, the hydrogen which is used as carrier gas is fed into the container 24 containing the triethyl gallium 23 which is kept warm in a constant temperature vessel 22 after the flow rate of said hydrogen is controlled by a mass-flow controller 21, and a bubbling is performed. Subsequently, the hydrogen gas containing triethyl gallium passed through the gas introducing pipe 14 and fed into the growth furnace 15 from the gas introducing ports 13. After a growth reaction is performed, the gas is exhausted to an exhaust system 29.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は広範囲にわたって均一な膜厚をもつ半導体結晶
成長層を得ることができる気相成長装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth apparatus capable of obtaining a semiconductor crystal growth layer having a uniform thickness over a wide range.

従来の技術 半導体装置を製作する上で必要な半導体結晶のエピタキ
シャル成長技術として、原料ガスの熱分解を利用した気
相成長法がある。たとえばモノシフ y (S IH4
)を用いたシリコン(Si)の気相成長法や、有機金属
(アルキル化物)を用いて化合物半導体結晶を成長する
有機金属気相成長法(MOCVD法)などである。これ
らの気相成長装置においては一般に基板を成長温度に加
熱し、原料ガスを基板表面上で熱分解させて結晶を成長
させる。
2. Description of the Related Art As an epitaxial growth technique for semiconductor crystals necessary for manufacturing semiconductor devices, there is a vapor phase growth method that utilizes thermal decomposition of raw material gas. For example, Monosif y (S IH4
), and metal organic chemical vapor deposition (MOCVD), which grows compound semiconductor crystals using organic metals (alkylated compounds). In these vapor phase growth apparatuses, the substrate is generally heated to a growth temperature, and the raw material gas is thermally decomposed on the substrate surface to grow crystals.

このような気相成長の場合、成長炉内の原料ガスの流れ
方が、結晶成長速度に大きく影響を与える。そのため原
料ガスの導入機構をいろいろ工夫し、均一な膜厚を得る
ことが試みられている。例えば第5図に示すように、原
料ガスのガス導入口の水平方向の幅を、基板の幅に対し
て十分広くすることにより均一な膜厚を得ていた(た左
えば、特開昭58−111313号公報)。すなわち、
成長炉6内に基板1を支持台2の上に載置する。
In the case of such vapor phase growth, the flow of raw material gas in the growth furnace greatly influences the crystal growth rate. Therefore, attempts have been made to obtain a uniform film thickness by devising various mechanisms for introducing the raw material gas. For example, as shown in Fig. 5, a uniform film thickness was obtained by making the horizontal width of the gas inlet for the source gas sufficiently wide relative to the width of the substrate (for example, in JP-A-58 -111313). That is,
A substrate 1 is placed on a support 2 in a growth furnace 6.

炉内に原料ガスを導入する導入管4は水平方向に延びて
おり、反対側に排気管41が設けられている。ガス導入
管4の先端部は水平方向に広がった幅広部42として形
成されている。幅広部の先端面には原料ガス導入口3が
水平方向に配置されており、その形状は水平方向に薄く
スリット状に形成した1つの開口よりなる。このため、
導入口3から出た原料ガスは基板表面上を均一に拡散し
て、均一な膜が形成できた。
An introduction pipe 4 for introducing raw material gas into the furnace extends horizontally, and an exhaust pipe 41 is provided on the opposite side. The distal end of the gas introduction pipe 4 is formed as a wide part 42 that spreads in the horizontal direction. A raw material gas inlet 3 is arranged horizontally on the distal end surface of the wide portion, and its shape consists of one opening formed in the shape of a thin slit in the horizontal direction. For this reason,
The raw material gas coming out of the inlet 3 was uniformly diffused over the substrate surface, and a uniform film was formed.

発明が解決しようとする問題点 しかし、このような形状の導入口をもつ気相成長装置で
は、基板の幅より十分広い幅を持つ導入口のガス導入管
が必要となシ、したがって成長炉の大きさも大きくなら
ざるを得ない。なぜならば、ガスが管内を流れる場合ガ
スの流速は管壁に近づくにつれて遅くなるためである。
Problems to be Solved by the Invention However, in a vapor phase growth apparatus having an inlet having such a shape, it is necessary to have a gas introduction pipe at the inlet that is sufficiently wider than the width of the substrate. The size also has to increase. This is because when gas flows inside a pipe, the flow rate of the gas decreases as it approaches the pipe wall.

したがってガス導入口の幅が基板の幅と同程度であると
、ガス導入口の両端部ではガスの流出速度が中央部より
遅いため、基板表面上を流れる原料ガスも基板の両端部
が遅くなる。したがって基板の両端部の結晶成長速度が
遅くなり膜厚が薄くなってしまう。
Therefore, if the width of the gas inlet is about the same as the width of the substrate, the outflow speed of the gas at both ends of the gas inlet will be slower than in the center, so the raw material gas flowing on the substrate surface will also be slower at both ends of the substrate. . Therefore, the crystal growth rate at both ends of the substrate becomes slow and the film thickness becomes thin.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、成長炉の
ガス流方向に垂直に横切り、かつ基板表面と平行に並べ
た複数個のガス導入口を備え、前記ガス導入口のすべて
から同一構成の結晶成長用原料ガスが同一方向に流れ出
て基板表面上を均一な流速でもって流れることを特徴と
する気相成長装置を提供するものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems includes a plurality of gas inlets arranged perpendicularly to the gas flow direction of the growth furnace and parallel to the substrate surface; The present invention provides a vapor phase growth apparatus characterized in that raw material gas for crystal growth having the same configuration flows out from all of the gas inlets in the same direction and flows at a uniform flow velocity over the substrate surface.

作  用 管内のガスの流れは、管壁近くで遅く、中央部で速い。For production The flow of gas in the tube is slow near the tube wall and fast in the center.

したがって1個のガス導入口から出るガスの流れも、導
入口周辺部で遅く、中心部で速くなる。ところがガス導
入口が複数個、ガスの流れを横切って横一列に並べるこ
とによシ、ガスの流れの遅い部分と速い部分とが交互に
なるため、導入ガスの全体の流れとしては、ならされて
均一となる。
Therefore, the flow of gas exiting from one gas inlet is slow at the periphery of the inlet and faster at the center. However, by arranging multiple gas inlet ports in a horizontal line across the gas flow, the slow and fast gas flow areas alternate, so the overall flow of the introduced gas is smoothed out. It becomes uniform.

したがって、ガス導入口から出てくるガスの流速が一定
である部分が、前に述べた薄いスリット型の1つのガス
導入口の場合より広範囲になる。このため、基板表面を
流れるガスの流速の一定である幅1が広がるため、均一
な膜厚が得られる幅が広くなる。
Therefore, the area where the flow rate of gas coming out of the gas inlet is constant is wider than in the case of the single thin slit gas inlet described above. For this reason, the width 1, where the flow rate of the gas flowing over the substrate surface is constant, is widened, so that the width in which a uniform film thickness can be obtained is widened.

したがってこのことは、前述のスリット状の導入口と同
じ幅で、複数個の導入口をガスの流れを横切って並べる
と、基板の幅が従来より大きくすることが可能であり、
逆に基板の幅が同じであるならば、前述のスリット状の
導入口をもつ成長炉より、複数個の導入口を並べた場合
の成長炉の方が小型で済む。
Therefore, this means that if a plurality of inlets are arranged across the gas flow with the same width as the slit-shaped inlet described above, the width of the substrate can be made larger than before.
On the other hand, if the width of the substrate is the same, a growth furnace with a plurality of inlets arranged side by side will be smaller than a growth furnace with the aforementioned slit-shaped inlet.

実施例 以下、本発明の一実施例を第1図〜第4図に基づいて説
明する。第1図に示すように基板11をカーボン製の支
持台12の上に載置する。同一構成の結晶成長用原料ガ
スは7本を図のようにガス流を垂直に横切り、かつ基板
表面に平行になるように、それぞれのガス導入口13を
並べたガス導入管14から成長炉16へ供給される。そ
れぞれのガス導入口13の口径は5鵡、並べたガス導入
口13の全体の幅は47鵬、成長炉15の内径は601
CIである。なお本実施例では複数個のガス導入口を接
して並べたが、各導入口から同一構成の結晶成長用ガス
が流出し、流出するガスの流れが同様の流れであればガ
ス導入管の形状、数、ガス導入口の間隔にはこだわらな
い。例えば、第2図に示すように複数個のガス導入口1
3が仕切り板61によって仕切られた構造を有するスリ
ット状のガス導入管4を用いてもよい。第1図のような
構造の成長炉をもつMOCVD装置でGaAsを成長し
た。このMOCVD装置のガス系統概略図を第3図に示
す。GaAaをMOCVD法で成長する場合、Ga の
原料としてはGa のアルキル化物であるトリエチルガ
リウム(TEG(C2H5)3Ga)を用い、As の
原料としては水素化物であるアルシン(AsH3)を用
いた。キャリアガスである水素(H2)をマスフローコ
ントローラー21で50’がinに流量制御した後、恒
温槽22で3℃に保温されたトリエチルガリウム23の
入った容器24に供給し、バブリングを行なう。その後
、トリエチルガリウムを含んだ水素ガスは、ガス導入管
14を通り第1図で示したように並ぶガス導入口3から
成長炉5に供給される。一方、アルシンは水素で6優に
希釈された高圧ボンベ25からマスフローコントローラ
ー26で200 ”/−、ユに流量制御されて、ガス導
入管27で成長炉15へ供給された。GaAs+基板1
1は高周波コイル28で高周波加熱されたカーボン製の
支持台2に載置され、成長温度700℃になっている。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 4. As shown in FIG. 1, a substrate 11 is placed on a support base 12 made of carbon. Seven raw material gases for crystal growth having the same configuration are connected to the growth furnace 16 from a gas inlet pipe 14 in which respective gas inlets 13 are arranged so as to cross the gas flow perpendicularly and parallel to the substrate surface as shown in the figure. supplied to The diameter of each gas inlet 13 is 5 mm, the total width of the lined gas inlets 13 is 47 mm, and the inner diameter of the growth furnace 15 is 60 mm.
It is CI. In this example, a plurality of gas inlet ports were arranged adjacent to each other, but if crystal growth gas of the same configuration flows out from each inlet port, and the flow of the outflowing gas is similar, the shape of the gas inlet pipe may be changed. , the number, and the spacing of the gas inlets. For example, as shown in FIG.
A slit-shaped gas introduction pipe 4 having a structure in which the gas introduction pipe 3 is partitioned by a partition plate 61 may be used. GaAs was grown using an MOCVD apparatus having a growth furnace structured as shown in FIG. A schematic diagram of the gas system of this MOCVD apparatus is shown in FIG. When growing GaAa by the MOCVD method, triethylgallium (TEG(C2H5)3Ga), which is an alkylated product of Ga, was used as the raw material for Ga, and arsine (AsH3), which is a hydride, was used as the raw material for As. After controlling the flow rate of hydrogen (H2) as a carrier gas to 50' in by a mass flow controller 21, it is supplied to a container 24 containing triethyl gallium 23 kept at 3° C. in a constant temperature bath 22, and bubbling is performed. Thereafter, the hydrogen gas containing triethyl gallium passes through the gas introduction pipe 14 and is supplied to the growth furnace 5 from the gas introduction ports 3 lined up as shown in FIG. On the other hand, arsine was supplied to the growth furnace 15 through a gas introduction pipe 27 from a high-pressure cylinder 25 diluted with hydrogen, with the flow rate controlled to 200"/- by a mass flow controller 26.
1 is placed on a support base 2 made of carbon which is heated with high frequency by a high frequency coil 28, and the growth temperature is 700°C.

したがって供給された原料ガスは熱分解反応でもって基
板11表面上にGaAsがエピタキシャル成長した。成
長反応後のガスは排気系29へ排気される。
Therefore, the supplied source gas caused epitaxial growth of GaAs on the surface of the substrate 11 through a thermal decomposition reaction. The gas after the growth reaction is exhausted to the exhaust system 29.

このMOCVD装置で成長したGaAsの成長速度の基
板の横方向の分布を第4図の(b)に示す。成長層の膜
厚の均一部分は、35111の幅で得られた。
The distribution of the growth rate of GaAs grown in this MOCVD apparatus in the lateral direction of the substrate is shown in FIG. 4(b). A portion with a uniform thickness of the grown layer was obtained with a width of 35111 mm.

なお、並べたガス導入口の全体の幅は47101である
。比較として従来のスリット状の1つのガス導入口(幅
47鵡)をもつガス導入管を用いてGaAsの成長を試
みた。この場合のGaAs+の成長速度の基板の横方向
の分布を(a)に示す。成長層の膜厚の均一部分は25
鱈であった。したがって複数個のガス導入口を並べた方
が膜厚の均一部が幅広く得られることがわかる。なお、
本実施例では、M。
Note that the total width of the arranged gas inlet ports is 47101 mm. For comparison, an attempt was made to grow GaAs using a conventional gas inlet pipe having a single slit-shaped gas inlet (width 47 mm). The distribution of the growth rate of GaAs+ in the lateral direction of the substrate in this case is shown in (a). The uniform thickness of the growth layer is 25
It was cod. Therefore, it can be seen that by arranging a plurality of gas inlets, a wider area of uniform film thickness can be obtained. In addition,
In this example, M.

CVD装置で説明したが、原料ガスの熱分解反応を利用
した気相成長装置であれば、他の気相成長方法でも構わ
ない。
Although the description has been made using a CVD apparatus, other vapor phase growth methods may be used as long as the vapor phase growth apparatus utilizes a thermal decomposition reaction of a source gas.

発明の効果 以上述べてきたように、本発明によれば、従来に比べ比
較的小型の成長炉で広範囲にわたって均一な膜厚をもつ
結晶成長が可能となり、今後、気相成長において極めて
有用である。
Effects of the Invention As described above, according to the present invention, it is possible to grow crystals with a uniform film thickness over a wide range in a relatively small growth furnace compared to conventional ones, and this invention will be extremely useful in vapor phase growth in the future. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における気相成長装置の成長
炉部の構造を示す斜視図、第2図は本発明の他の実施例
の気相成長装部のガス導入管の構造を示す斜視図、第3
図は本発明の一実施例の気相成長装置のガス系統を示す
図、第4図は従来の気相成長装置および本発明の一実施
例の気相成長装置によってそれぞれ成長した結晶の成長
速度の基板横方向の分布を比較して説明するための図、
第5図は従来の気相成長装置の成長炉の構造を示す図で
ある。 11・・・・・・基板、13・・・・・・ガス導入口、
15・・・・・・成長炉。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名罐 
               へ第4図
FIG. 1 is a perspective view showing the structure of a growth furnace section of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 shows the structure of a gas introduction pipe of a vapor phase growth apparatus section according to another embodiment of the present invention. Perspective view shown, 3rd
The figure shows the gas system of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. A diagram to compare and explain the distribution of the substrate in the lateral direction,
FIG. 5 is a diagram showing the structure of a growth furnace of a conventional vapor phase growth apparatus. 11...Substrate, 13...Gas inlet,
15...Growth reactor. Name of agent: Patent attorney Toshio Nakao and one other person
Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)成長炉のガス流方向を、垂直に横切りかつ基板の
表面と平行に並べた複数個のガス導入口を備え、前記ガ
ス導入口のすべてから同一構成の結晶成長用原料ガスが
同一方向に流れ出て基板表面上をほぼ均一な流速でもっ
て流れることを特徴とする気相成長装置。
(1) A plurality of gas inlet ports are arranged perpendicularly across the gas flow direction of the growth furnace and parallel to the surface of the substrate, and raw material gas for crystal growth of the same configuration is directed from all of the gas inlet ports in the same direction. A vapor phase growth apparatus characterized in that the flow flows out over the substrate surface at a substantially uniform velocity.
(2)複数個のガス導入口が、1つ以上の仕切り板によ
って仕切られた構造を有するスリット状のガス導入管を
備えたことを特徴とする特許請求の範囲第1項記載の気
相成長装置。
(2) Vapor phase growth according to claim 1, characterized in that the plurality of gas introduction ports are provided with a slit-shaped gas introduction pipe having a structure partitioned by one or more partition plates. Device.
(3)結晶成長用原料ガスが有機金属を含む原料ガスで
あることを特徴とする特許請求の範囲第1項記載の気相
成長装置。
(3) The vapor phase growth apparatus according to claim 1, wherein the raw material gas for crystal growth is a raw material gas containing an organic metal.
JP8374085A 1985-04-19 1985-04-19 Vapor-phase growth device Pending JPS61242012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8374085A JPS61242012A (en) 1985-04-19 1985-04-19 Vapor-phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8374085A JPS61242012A (en) 1985-04-19 1985-04-19 Vapor-phase growth device

Publications (1)

Publication Number Publication Date
JPS61242012A true JPS61242012A (en) 1986-10-28

Family

ID=13810917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8374085A Pending JPS61242012A (en) 1985-04-19 1985-04-19 Vapor-phase growth device

Country Status (1)

Country Link
JP (1) JPS61242012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241343A (en) * 1986-04-11 1987-10-22 Fujitsu Ltd Vapor phase epitaxial growth device
JPH02291111A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241343A (en) * 1986-04-11 1987-10-22 Fujitsu Ltd Vapor phase epitaxial growth device
JPH02291111A (en) * 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor

Similar Documents

Publication Publication Date Title
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
JPS61242012A (en) Vapor-phase growth device
JPH0230119A (en) Vapor growth device
US20010021593A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition process
JPS62263629A (en) Vapor growth device
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPS5973496A (en) Vapor-phase growth apparatus
JPH05226263A (en) Vapor phase silicon epitaxial growth device
JPS61174624A (en) Semiconductor growing apparatus
JPH0682626B2 (en) Vapor phase growth equipment
JPH01157519A (en) Vapor growth apparatus
JPH04163912A (en) Vapor growth equipment
JPS58176196A (en) Apparatus for growing crystal from compound
JPS5940905B2 (en) Vapor phase growth equipment
JPS637620A (en) Apparatus for vaporizing volatile material
JPS6153197A (en) Crystal growth device
JPS62119919A (en) Device for crystal growth of compound semiconductor
JPS6134932A (en) Vapor growing process
JPS6122621A (en) Vapor-phase growing method
JPS6369794A (en) Vapor phase epitaxy device
JPS6266621A (en) Vapor growth apparatus
JPS59207899A (en) Gaseous phase reactor
JPS63292620A (en) Apparatus for depositing single atom layer thin film