JPS6122621A - Vapor-phase growing method - Google Patents

Vapor-phase growing method

Info

Publication number
JPS6122621A
JPS6122621A JP14297784A JP14297784A JPS6122621A JP S6122621 A JPS6122621 A JP S6122621A JP 14297784 A JP14297784 A JP 14297784A JP 14297784 A JP14297784 A JP 14297784A JP S6122621 A JPS6122621 A JP S6122621A
Authority
JP
Japan
Prior art keywords
substrate
flow
gas
semiconductor substrate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14297784A
Other languages
Japanese (ja)
Inventor
Takashi Iwasaki
孝 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14297784A priority Critical patent/JPS6122621A/en
Publication of JPS6122621A publication Critical patent/JPS6122621A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To stabilize the flow of reactive gas on the surface of a substrate as well as to make uniform the thickness and quality of film by a method wherein a semiconductor substrate is placed in a reaction chamber, and a smoothing plate is provided in the forward direction of the semiconductor substrate. CONSTITUTION:A reaction chamber 1 is made of quartz and the like, and it is placed horizontally. A substrate holder 3 is provided in the reaction chamber 1. A mounting plate 4 is provided at the tip of the substrate holder 3. A semiconductor substrate 2 is obliquely placed on the mounting plate 4. A rectifying plate 6 is provided in the lower forward direction of the semiconductor substrate 2. The smoothing plat 6 has a wing type cross-section. A reaction gas stream 5 flows into the reaction chamber 1 from one side of the chamber. The gas stream 5 passing above the smoothing plate 6 flows in parallel with the surface of the substrate 2. The gas stream 5 passing below the smoothing plate 6 approaches the substrate 2. As a result, the gas stream 5 becomes the stream of a laminar flow. The gas stream is stabilized, and the thickness and the quality of the film is made uniform.

Description

【発明の詳細な説明】 (ア)技術分野 この発明は、半導体成長、加工のだめの気相成長法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Technical Field The present invention relates to semiconductor growth and improvement of a vapor phase growth method without processing.

半導体ウェハの上に、エピタキシャル層を形成するには
、気相エビクキシー、液相エピタキシー、分子線エピタ
キシーなどが用いられる。
To form an epitaxial layer on a semiconductor wafer, vapor phase epitaxy, liquid phase epitaxy, molecular beam epitaxy, etc. are used.

気相エピタキシーは、半導体エビクキシー技術の中では
長い歴史をもち、シリコンフェノ・に関しては、広く実
用的に用いられている。
Vapor phase epitaxy has a long history among semiconductor epitaxy technologies and is widely used practically for silicon phenol.

シリコンクエバの上に、シリコンとドーパントをエピタ
キシャル成長させるには、例えば窒素をキャリヤガスと
して、5iC4とH2ガスを、反応容器の中へ送りこみ
、シリコンフェノ・の上部を通過させる。シリコンクエ
バは加熱してあり、この上に、還元されたシリコンとド
ーパントをエピタキシャル成長17てゆく。
To epitaxially grow silicon and dopants on a silicon phenol, 5iC4 and H2 gases, such as nitrogen as a carrier gas, are pumped into the reaction vessel and passed over the top of the silicon phenol. The silicon cube is heated, and reduced silicon and dopants are epitaxially grown 17 thereon.

シリコンクエバは、カーボン々どのサセプタの上に載置
されておシ、サセプタが高周波コイルによって加熱され
る。
The silicon cube is placed on a susceptor made of carbon or the like, and the susceptor is heated by a high frequency coil.

にaAsクエハに対しても、同じような気相エピタキシ
ー技術が確立されている。
Similar vapor phase epitaxy technology has been established for aAs wafers.

半導体ウェハの上に、各種のデバイスを作製するには、
エピタキシーの他に、例えば熱酸化などのプロセスが実
行される。
To fabricate various devices on semiconductor wafers,
In addition to epitaxy, processes such as, for example, thermal oxidation are carried out.

熱酸化は、シリコンの酸化被膜を作るプロセスである。Thermal oxidation is a process that creates an oxide layer on silicon.

シリコンクエバを、多数、容t%に入れ、電気炉の中に
置いて、加熱し、この容器内へ、02N2とを通し、加
熱したシリコンの表面に酸素を供給するこ七により、シ
リコンを表面から酸化してゆく。
A large number of silicon cubes are placed in a volume t%, placed in an electric furnace and heated, and 02N2 is passed into the container to supply oxygen to the heated silicon surface, thereby removing silicon from the surface. It oxidizes.

また、シリコンクエバの上に、siNの絶縁膜、5iQ
2の絶縁膜を形成する場合は、化学的気相析出法(CV
D法)が用いられる。
In addition, on the silicon cube, an siN insulating film, 5iQ
When forming the insulating film 2, chemical vapor deposition method (CV
D method) is used.

SiN膜を作るには、加熱したシリコンクエバの上へ、
SiH4、NH8、N2よりなるガス流を流し、シリコ
ンの表面にSiNの膜を析出させる。
To make a SiN film, place it on top of a heated silicon cube.
A gas flow consisting of SiH4, NH8, and N2 is passed to deposit a SiN film on the silicon surface.

5i02膜を作るには、加熱したシリコンクエバの上へ
、SiH4,02、N2よりなるガスを流し、シリコン
の表面に5i02の膜を析出させる。
To form the 5i02 film, a gas consisting of SiH4,02 and N2 is flowed onto the heated silicon cube to deposit a 5i02 film on the surface of the silicon.

さらにCVD法は、シリコンクエバに、P型又はn型不
純物を拡散し、p−n接合を作るためにも用いられる。
Furthermore, the CVD method is also used to diffuse P-type or n-type impurities into the silicon cube to create a p-n junction.

キャリヤガスとして窒素ガスを用い、B2H6、NHl
lとともに、ガス流として、シリコンクエバの上へ通す
。すると、シリコンクエバの上にBNの膜が生じ、この
膜からBがシリコンクエバの中へ拡散してゆき、p型頭
域を形成する。
Using nitrogen gas as a carrier gas, B2H6, NHl
1 and passed as a gas stream over the silicon cueva. Then, a BN film is formed on the silicon cube, and B diffuses into the silicon cube from this film to form a p-type head region.

このように、半導体ウェハの上に、気相エビクキシー(
yapor phase Epitaxy、 VPE)
、熱酸化、絶縁膜のCVD法による形成、不純物拡散な
どが、気相反応を利用して行われる。
In this way, vapor-phase eclipse (
yapor phase epitaxy, VPE)
, thermal oxidation, formation of an insulating film by the CVD method, impurity diffusion, etc. are performed using gas phase reactions.

本発明では、これらのプロセスを捷とめて、気相成長方
法と呼ぶことにする。
In the present invention, these processes will be combined and referred to as a vapor phase growth method.

この内、気相エビクキシーVPEだけは、単結晶の成長
であるから、気相成長の名前に最も適している。
Among these, only vapor phase Equixy VPE is the most suitable name for vapor phase growth because it is the growth of a single crystal.

しかし、本発明が問題とする従来技術の問題点は、VP
E以外に、気相反応を利用して、クエかの上になんらか
の加工をする場合に常に現われる。
However, the problem with the prior art that the present invention addresses is that the VP
In addition to E, it always appears when some kind of processing is performed on Kuehka using a gas phase reaction.

そこで、siN、 5iQ2膜のCVD法による形成、
不純物のCVD法による拡散、酸化々ども、気相成長方
法のカテゴリーに含めて考える。
Therefore, formation of siN, 5iQ2 film by CVD method,
Diffusion of impurities by CVD method, oxidation, etc. will be included in the category of vapor phase growth method.

(イ)従来技術とその問題点 気相成長方法の構成は、 (1)  半導体クエかがサセプタの」二に載せられて
、反応容器の中に収容されている。
(a) Prior art and its problems The structure of the vapor phase growth method is as follows: (1) A semiconductor cube is placed on a susceptor and housed in a reaction vessel.

(2)反応容器の周囲には、高周波加熱コイル又は、抵
抗加熱ヒータがあって、サセプタ、ウェハを加熱する。
(2) There is a high frequency heating coil or a resistance heater around the reaction vessel to heat the susceptor and wafer.

(3)反応容器は横向きに置かれており、この中を反応
ガスが略水平方向に流れてゆく。
(3) The reaction vessel is placed horizontally, and the reaction gas flows through it in a substantially horizontal direction.

(4)反応ガスは、窒素などの不活性なキャリヤガスと
、シリコン、GaASなどのウェハと化学反応を起す成
分ガスとの混合物である。
(4) The reactive gas is a mixture of an inert carrier gas such as nitrogen and a component gas that chemically reacts with the wafer such as silicon or GaAS.

(5)  ガスは少なくとも2種類以上のものが同時に
流れる。それぞれのガス流量は測定、監視されている。
(5) At least two types of gas flow simultaneously. Each gas flow rate is measured and monitored.

また、反応容器の中を流れるガスの総量は、ガス供給側
の流量調整弁または反応容器の反対側に設けられた排気
調整、弁によって自在に調節できる。
Further, the total amount of gas flowing through the reaction container can be freely adjusted by a flow rate adjustment valve on the gas supply side or an exhaust adjustment valve provided on the opposite side of the reaction container.

反応ガスのそれぞれは調整弁があるので、独立に流量を
調節できる。
Each of the reaction gases has a regulating valve, so the flow rate can be adjusted independently.

ウェハの温度は、ヒータ又は高周波コイルの電力を調節
して、任意に制御できる。
The temperature of the wafer can be arbitrarily controlled by adjusting the power of the heater or the high-frequency coil.

反応容器が横型であるのは、同時に数多くのウェハを並
べて圃くことができるからである。
The reason why the reaction container is horizontal is because it allows many wafers to be grown side by side at the same time.

ウェハは、水平に、又は、僅かに流れに対して斜めにな
るように支持される。
The wafer is supported either horizontally or slightly oblique to the flow.

水平に支持する場合は、クエか面と、ガス流が平行にな
る。このようにする場合も多い。しかし、流量が十分で
ない場合、反応ガスがウェハに先に当る上流側で膜が厚
く、下流側で膜が薄くなることがある。流れに沿った方
向に於て、膜厚が不均一になる。また、膜質も一様で々
い。
If supported horizontally, the gas flow will be parallel to the square surface. This is often the case. However, if the flow rate is not sufficient, the film may be thicker on the upstream side where the reactive gas hits the wafer first, and thinner on the downstream side. The film thickness becomes non-uniform in the direction along the flow. Also, the film quality is very uniform.

そこで、ウェハ面をやや前方が下るように傾ける、とい
う事も行われる。
Therefore, the wafer surface is sometimes tilted so that the front side is slightly downward.

第2図は前傾した配置のウェハの例を示す断面図である
FIG. 2 is a cross-sectional view showing an example of a wafer in a forward-inclined arrangement.

反応容器1の中に半導体基板(ウェハ)2を、基板ホル
ダ3によって支持している。基板ホルダ3の前端には、
やや前傾した台板4が取付けてあり、この上に半導体基
板2が置いである。
A semiconductor substrate (wafer) 2 is supported in a reaction vessel 1 by a substrate holder 3. At the front end of the board holder 3,
A base plate 4 that is slightly tilted forward is attached, and a semiconductor substrate 2 is placed on this base plate 4.

反応ガス流5は、反応容器1の中をほぼ水平に流れる。Reactant gas stream 5 flows approximately horizontally within reaction vessel 1 .

流れは、前傾する基板2に当って、通過してゆく。The flow hits and passes the forward-tilting substrate 2.

基板2と、反応ガスの一部は化学反応を起こす。A chemical reaction occurs between the substrate 2 and a portion of the reaction gas.

この図は、1枚のクエハだけを示すが、実際には、多く
のクエハが一部の反応容器1の中に収容されて、化学反
応を受ける。
This figure shows only one quefer, but in reality, many quefers are accommodated in some reaction vessels 1 and undergo a chemical reaction.

この例で、台板4、半導体基板2が前傾しているから、
基板2の後部もガスが当り、ここで反応する。こうして
、前後の膜厚がほぼ等しいものができるように工夫され
ている。
In this example, since the base plate 4 and the semiconductor substrate 2 are tilted forward,
The rear part of the substrate 2 is also hit by the gas and reacts there. In this way, the front and back layers are designed to have approximately the same thickness.

しかしながら、実際には、基板2の後端部、及び前端部
でガス流が乱れる。ガス流がもともと層流であったとし
ても、台板4、基板2の存在によって、著しく乱れてし
まう。
However, in reality, the gas flow is turbulent at the rear end and front end of the substrate 2. Even if the gas flow is originally a laminar flow, the presence of the base plate 4 and the substrate 2 causes it to be significantly disturbed.

流が乱れるので、基板の上に生じた膜の膜厚は不均一で
、しかも膜質が異なる、という欠点がある。
Since the flow is turbulent, the thickness of the film formed on the substrate is non-uniform, and the quality of the film is different.

(つ)本発明の方法 本発明は、反応ガス流が基板の近傍で乱れるのを防ぎ、
気相成長膜の膜厚及び膜質を一様にする事を目的とする
(1) Method of the present invention The present invention prevents the reaction gas flow from being disturbed in the vicinity of the substrate;
The purpose is to make the thickness and quality of the vapor-grown film uniform.

第1図は本発明の気相成長方法を説明するための断面図
である。
FIG. 1 is a sectional view for explaining the vapor phase growth method of the present invention.

反応容器1は、石英管などの容器であって、水平にして
使う。半導体基板2は、基板ホルダ3の先端の台板4の
」二に、斜めに置かれている。
The reaction container 1 is a container such as a quartz tube, and is used horizontally. The semiconductor substrate 2 is placed obliquely on the second side of the base plate 4 at the tip of the substrate holder 3.

反応ガス流5が、反応容器1の中を、一方の端から入り
、他の端へと通ってゆく。反応ガスは、目的により、さ
まざまであるが、化学反応をする成分と、これを運搬す
るためのキャリヤガスとよりなる。
A reactant gas stream 5 enters the reaction vessel 1 at one end and passes through the other end. The reaction gas varies depending on the purpose, but it consists of a component that undergoes a chemical reaction and a carrier gas for transporting the component.

以上の構成は、従来のものと異ならない。The above configuration is no different from the conventional one.

本発明に於ては、基板2の下部の前方に整流板6を新し
く設けている。
In the present invention, a new rectifying plate 6 is provided in front of the lower part of the substrate 2.

整流板6は、反応ガス流5が、基板ホルダ3の 。The current plate 6 allows the reaction gas flow 5 to flow through the substrate holder 3 .

前端の台板4に当って乱れるのを防止するものである。This prevents it from being disturbed by hitting the base plate 4 at the front end.

整流板6は、飛行機の翼形の断面をしている。The current plate 6 has a cross section shaped like an airplane airfoil.

整流板6の上を通るガス流は、整流板6によって、流れ
の向きを上方に変換し、基板2の面とほぼ平行になる。
The flow direction of the gas flow passing above the rectifier plate 6 is changed upward by the rectifier plate 6, and becomes substantially parallel to the surface of the substrate 2.

整流板6の下を通るガス流は、翼形断面の整流板下面に
沿って進み、斜め上方向きの流れとなって、基板2に接
近する。
The gas flow passing under the current plate 6 advances along the lower surface of the current plate with an airfoil-shaped cross section, and approaches the substrate 2 as a diagonally upward flow.

斜め上方の流れであるから、基板2に対し、平行に近い
流れになっている。従って、流れが基板2に接する時、
流れの方向が基板の向きに等しくなり、層流の流れとな
る。
Since the flow is obliquely upward, the flow is almost parallel to the substrate 2. Therefore, when the flow contacts the substrate 2,
The direction of the flow is equal to the orientation of the substrate, resulting in a laminar flow.

台板4の下端に当る反応ガス流は衝突によって撹乱され
るが、これらは、台板4の下方を廻るから、乱流になっ
ても、基板2の上での気相成長には悪影響を及ぼさ々い
The reaction gas flow hitting the lower end of the base plate 4 is disturbed by the collision, but since these gases circulate below the base plate 4, even if the flow becomes turbulent, it will have an adverse effect on the vapor phase growth on the substrate 2. It affects me a lot.

結局、整流板5と台板4の中間の領域Aを通る、反応ガ
ス流が安定する。これは基板2の直前であるから、領M
Aでガス流が安定している、ということは重要彦事であ
る。
As a result, the flow of the reactant gas passing through the region A between the baffle plate 5 and the base plate 4 becomes stable. Since this is just before board 2, area M
It is important that the gas flow is stable at A.

さらに、整流板5け、回転可能であシ、しかも、上下、
横方向に動きうるようになっている。これによって、反
応ガスの種類や圧力、流量により最適の整流板5の角度
、位置を設定できる。
In addition, there are 5 rectifying plates, which are rotatable and can be moved up and down.
It is able to move laterally. This makes it possible to set the optimum angle and position of the rectifying plate 5 depending on the type, pressure, and flow rate of the reaction gas.

(1)効 果 (1)気相成長法により、半導体クエハの上に結晶成長
、絶縁膜形成などを行う場合、本発明に従うと、反応ガ
ス流の基板面での流れが安定する。
(1) Effects (1) When performing crystal growth, insulating film formation, etc. on a semiconductor wafer by vapor phase growth, according to the present invention, the flow of the reactant gas on the substrate surface is stabilized.

膜厚、膜質が均一に成長する、という利点がある。It has the advantage of growing uniformly in film thickness and quality.

(2)整流板を微細調整することにより、ガス流を容易
に変化させることができる。つまり、制御可能々変数が
増えて、条件出しがより容易に々る。
(2) Gas flow can be easily changed by finely adjusting the current plate. In other words, the number of variables that can be controlled increases, making it easier to set conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の気相成長方法の構成を説明するための
断面図。 第2図は従来の気相成長装置の一例で、反応ガス中に基
板が前傾して置かれている状態を示す断面図。 1・−・−反応容器 2   ・半導体基板 3  ・ 基板ホルダ 4   ・・台   板 5  −・・反応ガス流 6・・ ・整流板
FIG. 1 is a sectional view for explaining the structure of the vapor phase growth method of the present invention. FIG. 2 is a cross-sectional view of an example of a conventional vapor phase growth apparatus, showing a state in which a substrate is placed tilted forward in a reaction gas. 1.--Reaction container 2 ・Semiconductor substrate 3 ・Substrate holder 4 ..Base Plate 5 ---Reaction gas flow 6... ・Rectifier plate

Claims (2)

【特許請求の範囲】[Claims] (1)反応容器1の中に基板ホルダ3によつて半導体基
板2を支持し、反応容器1を加熱し、反応ガス流5を流
すことにより半導体基板2の上に所望の被膜を形成する
気相成長方法に於て、反応ガス流5の流れに関し半導体
基板2の前方に、回転、上下、水平方向に変位可能な整
流板6を設けた事を特徴とする気相成長方法。
(1) A semiconductor substrate 2 is supported by a substrate holder 3 in a reaction vessel 1, and a desired film is formed on the semiconductor substrate 2 by heating the reaction vessel 1 and flowing a reaction gas flow 5. A vapor phase growth method characterized in that a rectifying plate 6 that can be rotated, vertically and horizontally displaced is provided in front of the semiconductor substrate 2 with respect to the flow of the reactant gas flow 5.
(2)整流板6が翼型断面を有する特許請求の範囲第(
1)項記載の気相成長方法。
(2) The current plate 6 has an airfoil-shaped cross section.
1) The vapor phase growth method described in section 1).
JP14297784A 1984-07-10 1984-07-10 Vapor-phase growing method Pending JPS6122621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14297784A JPS6122621A (en) 1984-07-10 1984-07-10 Vapor-phase growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14297784A JPS6122621A (en) 1984-07-10 1984-07-10 Vapor-phase growing method

Publications (1)

Publication Number Publication Date
JPS6122621A true JPS6122621A (en) 1986-01-31

Family

ID=15328054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14297784A Pending JPS6122621A (en) 1984-07-10 1984-07-10 Vapor-phase growing method

Country Status (1)

Country Link
JP (1) JPS6122621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247587A3 (en) * 2001-04-06 2003-12-03 RWE Solar GmbH Process and apparatus for treating and/or coating a surface of an object
US20130269611A1 (en) * 2011-04-11 2013-10-17 United Technologies Corporation Guided non-line of sight coating
JP2015145317A (en) * 2014-01-31 2015-08-13 ヤマハ株式会社 Device for producing carbon nanotube
CN106987899A (en) * 2016-10-31 2017-07-28 姜全忠 Use Material growth device, growing method and the detection means of gas phase transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247587A3 (en) * 2001-04-06 2003-12-03 RWE Solar GmbH Process and apparatus for treating and/or coating a surface of an object
US20130269611A1 (en) * 2011-04-11 2013-10-17 United Technologies Corporation Guided non-line of sight coating
JP2015145317A (en) * 2014-01-31 2015-08-13 ヤマハ株式会社 Device for producing carbon nanotube
CN106987899A (en) * 2016-10-31 2017-07-28 姜全忠 Use Material growth device, growing method and the detection means of gas phase transmission
CN106987899B (en) * 2016-10-31 2021-08-31 姜全忠 Material growth apparatus using vapor transport, growth method, and detection apparatus

Similar Documents

Publication Publication Date Title
US5487358A (en) Apparatus for growing silicon epitaxial layer
EP1432844B1 (en) Apparatus for inverted cvd
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
EP0502209A1 (en) Method and apparatus for growing compound semiconductor crystals
JPH04233723A (en) Variable distribution gas flow reaction chamber
JPS6122621A (en) Vapor-phase growing method
US20040250773A1 (en) Semiconductor film formation device
JP3198956B2 (en) GaN thin film vapor deposition method and thin film vapor deposition apparatus
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPH04132213A (en) Vapor phase growth apparatus of semiconductor thin film
JPH11102871A (en) Manufacture of semiconductor single-crystal thin film
JPH0682619B2 (en) Semiconductor growth equipment
JP2002261021A (en) Apparatus and method for vapor-phase growth
JP2845105B2 (en) Thin film vapor deposition equipment
JPS612318A (en) Semiconductor growing device
JPH04338636A (en) Semiconductor vapor growth device
JPH0235814Y2 (en)
JP2715759B2 (en) Compound semiconductor vapor phase growth method
JPS62150711A (en) Vapor phase growth
JPH05190454A (en) Vapor phase epitaxial growth device
JPS6266621A (en) Vapor growth apparatus
JPS62291021A (en) Vapor growth device
JPH01244612A (en) Method and apparatus for vapor growth of gallium arsenide
JPS6381813A (en) Vapor growth method
JPH05182915A (en) Vapor growing apparatus