JPH04338636A - Semiconductor vapor growth device - Google Patents

Semiconductor vapor growth device

Info

Publication number
JPH04338636A
JPH04338636A JP14648391A JP14648391A JPH04338636A JP H04338636 A JPH04338636 A JP H04338636A JP 14648391 A JP14648391 A JP 14648391A JP 14648391 A JP14648391 A JP 14648391A JP H04338636 A JPH04338636 A JP H04338636A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
susceptor
semiconductor vapor
gas introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14648391A
Other languages
Japanese (ja)
Inventor
Nozomi Matsuo
松尾 望
Takeshi Aisei
武 愛清
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14648391A priority Critical patent/JPH04338636A/en
Publication of JPH04338636A publication Critical patent/JPH04338636A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible easily to allow material gas to spread out uniformly in a reaction tube without being affected by the design and manufacturing accuracy of the wall of the reaction tube, an assembly accuracy of a gas lead-in pipe, or other factors in a semiconductor vapor growth device and to form a high-quality crystal film which is uniform in thickness and quality that has a sharp crystal composition at a hetero junction by shortening a runway of the material gas in the reaction tube and improving the gas substituting speed. CONSTITUTION:This device has a reaction tube 1, a susceptor 2 which is located in the reaction tube that holds a substrate on which crystals will be formed 3, a heater which heats the susceptor 2, and a gas lead-in part 6 which supplies material gas to the reaction tube 1. The material gas flows nearly parallel to the surface of the substrate 3 being held on the susceptor 2. In such a semiconductor vapor growth device, at least two pieces of gas lead-in pipes are installed at the gas lead-in part and the gas flow of these gas lead in pipes is controlled independently.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、より均質な結晶膜を基
板上に成長しうるようにした半導体気相成長装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor vapor phase growth apparatus capable of growing a more homogeneous crystalline film on a substrate.

【0002】0002

【従来の技術】従来の半導体気相成長装置の1例を図5
に示す。同図は原料としてTMGa(トリメチルガリウ
ム)、TMAl(トリメチルアルミニウム)、AsH3
 (アルシン)及びキャリアガスとして水素を用いるM
OCVD(有機金属化学気相成長)法の1例を示す横断
面図で、1は石英又はステンレス製の反応管、2は被成
長基板を保持するカーボン製のサセプタ、3は被成長基
板であるGaAs基板、4は反応管中に原料ガスの供給
を行うガス導入管である。カーボンサセプタ2は高周波
誘導体加熱、抵抗加熱、赤外線ランプ加熱等の方式によ
り500〜800℃の高温に加熱される。一般に気相成
長法では矢印で示される原料ガスの流れを均一に広げ、
基板3上に均質な結晶膜を成長させることが必要となる
。 特に量産装置においては図4に示すように複数枚の基板
を並べ同時に成長を行う技術が重要となるため、反応炉
の大型化に伴いガス流の均一化はますます重要なポイン
トとなる。また上記の原料ガスの混合比は成長されるG
ax Al1−x Asの組成比や結晶の品質を左右す
るため非常に重要であることはもちろんである。
[Prior Art] Figure 5 shows an example of a conventional semiconductor vapor phase growth apparatus.
Shown below. The figure shows raw materials such as TMGa (trimethyl gallium), TMAl (trimethyl aluminum), and AsH3.
(arsine) and M using hydrogen as carrier gas
This is a cross-sectional view showing an example of an OCVD (organic metal chemical vapor deposition) method, in which 1 is a reaction tube made of quartz or stainless steel, 2 is a carbon susceptor that holds a substrate to be grown, and 3 is the substrate to be grown. GaAs substrate, 4 is a gas introduction tube for supplying raw material gas into the reaction tube. The carbon susceptor 2 is heated to a high temperature of 500 to 800° C. by high frequency induction heating, resistance heating, infrared lamp heating, or the like. Generally, in the vapor phase growth method, the flow of raw material gas shown by the arrow is spread uniformly,
It is necessary to grow a homogeneous crystal film on the substrate 3. Particularly in mass production equipment, as shown in Figure 4, the technique of arranging and simultaneously growing multiple substrates is important, and as reactors become larger, uniformity of gas flow becomes an increasingly important point. In addition, the mixing ratio of the raw material gases mentioned above is
It goes without saying that it is very important because it influences the composition ratio of ax Al1-x As and the quality of the crystal.

【0003】図5は水平におかれたGaAs基板3に対
し原料ガス流を概略平行に流すいわゆる横型反応炉の例
を示すものであるが、この横型反応炉で原料ガスを均一
に広げるためには、反応管のガス導入管4からサセプタ
2に至る反応管壁を比較的小さな角度θで徐々に広げる
ことが必要となり、反応管壁の形状設計が極めて重要と
なる。
FIG. 5 shows an example of a so-called horizontal reactor in which a flow of raw material gas is made to flow approximately parallel to a horizontally placed GaAs substrate 3. In order to spread the raw material gas uniformly in this horizontal reactor, In this case, it is necessary to gradually widen the reaction tube wall from the gas introduction tube 4 of the reaction tube to the susceptor 2 at a relatively small angle θ, and the shape design of the reaction tube wall becomes extremely important.

【0004】0004

【発明が解決しようとする課題】上記図5に示す反応炉
構造ではガスの広がりの均一性が反応管壁の設計や作製
精度、及びガス導入管4の組立て時の位置精度等に極め
て敏感であり、反応炉の洗浄に伴う再組立てや部品交換
後に結晶膜の均一性が再現性よく得られないという問題
があった。
[Problems to be Solved by the Invention] In the reactor structure shown in FIG. 5 above, the uniformity of gas spread is extremely sensitive to the design and manufacturing accuracy of the reaction tube wall, the positional accuracy of the gas introduction tube 4 during assembly, etc. However, there was a problem in that the uniformity of the crystal film could not be obtained with good reproducibility after reassembly or parts replacement accompanying cleaning of the reactor.

【0005】また、上記の理由により反応管壁の広がり
角θを例えば20°以下と、小さくする必要があるが、
このためガス導入管4からサセプタ2上のGaAs基板
3に至る距離Lが長くなり、またこれに伴いガス導入管
4からGaAs基板3に至るガス助走路の体積も増加す
るため例えばGaAs/GaAlAs等のヘテロ接合膜
を成長する場合には、ガスの置換速度が遅く、ヘテロ接
合界面で結晶組成の急峻な切りかえが行われず、所望の
結晶特性を得ることができないという難点があった。こ
の問題を解決するため広がり角θを大きくした装置が提
案されており、これは図6に示される。同図において広
がり角θ´をθより大きくし助走距離LをL’に小さく
している。なお同図において図4と同符号は同じものを
示す(以下同様であり、各図において同符号は同じもの
を示す。)。しかし図6の場合では、矢印で示されるガ
ス流は助走路の途中にガス流の渦wを生じ、このため、
反応管壁に大量の反応生成物5が付着し、またガス流の
渦のため、ガスの置換速度も十分に改善されないことか
ら所望の品質の均一結晶膜を得ることができなかった。
Furthermore, for the above reasons, it is necessary to reduce the spread angle θ of the reaction tube wall to, for example, 20° or less.
For this reason, the distance L from the gas introduction pipe 4 to the GaAs substrate 3 on the susceptor 2 becomes longer, and the volume of the gas run-up path from the gas introduction pipe 4 to the GaAs substrate 3 also increases. When growing a heterojunction film, the gas replacement rate is slow, and the crystal composition does not change sharply at the heterojunction interface, making it impossible to obtain desired crystal characteristics. In order to solve this problem, an apparatus in which the divergence angle θ is increased has been proposed, and this is shown in FIG. In the figure, the spread angle θ' is made larger than θ, and the run-up distance L is made smaller than L'. Note that in this figure, the same symbols as in FIG. 4 indicate the same things (the same applies hereinafter, and the same symbols indicate the same things in each figure). However, in the case of Fig. 6, the gas flow indicated by the arrow causes a gas flow vortex w in the middle of the run-up path, and therefore,
A large amount of reaction product 5 adhered to the walls of the reaction tube, and the gas replacement rate was not sufficiently improved due to the vortices of the gas flow, making it impossible to obtain a uniform crystalline film of desired quality.

【0006】したがって本発明の目的は上記の問題点を
解決することにあり、原料ガス流の均一な広がりを反応
管壁の設計や作製精度、ガス導入管の組立て精度等の影
響を受けずに容易に実現可能とし、また原料ガスの助走
路を短縮してガスの置換速度を改善、面内に渡り均一、
均質でかつヘテロ接合部の結晶組成が急峻な高品質結晶
膜の作製を可能とした半導体気相成長装置を提供するこ
とにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, and to spread the raw material gas flow uniformly without being affected by the design and manufacturing accuracy of the reaction tube wall, the assembly accuracy of the gas introduction tube, etc. It is easily realized, and the run-up path of the raw material gas is shortened to improve the gas replacement speed, uniformity over the surface,
It is an object of the present invention to provide a semiconductor vapor phase growth apparatus that is capable of producing a high-quality crystal film that is homogeneous and has a steep crystal composition at a heterojunction.

【0007】[0007]

【課題を解決するための手段】本発明は(1)反応管と
この反応管中に設置され、被成長基板を保持するサセプ
タ、このサセプタを加熱する加熱手段及び前記反応管中
に原料ガスを供給するガス導入部を有し、かつ原料ガス
が前記サセプタ上に保持される基板の表面に対して概略
平行に流れる半導体気相成長装置において、蒸気ガス導
入部は少なくとも2本のガス導入管を有してなり、かつ
、前記ガス導入管の各導入管を互いに独立流量制御しう
るようにしたことを特徴とする半導体気相成長装置、及
び(2)前記反応管中の前記ガス導入管と前記サセプタ
の中間に分散手段として多孔質又は網状の障壁板を設け
たことを特徴とする請求項1記載の半導体気相成長装置
、を提供するものである。
[Means for Solving the Problems] The present invention provides (1) a reaction tube, a susceptor installed in the reaction tube and holding a substrate to be grown, a heating means for heating the susceptor, and a source gas supplied into the reaction tube. In a semiconductor vapor phase growth apparatus having a gas introduction section for supplying gas and in which source gas flows approximately parallel to the surface of the substrate held on the susceptor, the vapor gas introduction section includes at least two gas introduction pipes. and (2) a semiconductor vapor phase growth apparatus characterized in that each of the gas introduction tubes can be independently controlled in flow rate, and (2) the gas introduction tube in the reaction tube; 2. A semiconductor vapor phase growth apparatus according to claim 1, further comprising a porous or net-like barrier plate provided as a dispersion means in the middle of said susceptor.

【0008】[0008]

【実施例】次に本発明を図示の実施例に従ってさらに詳
細に説明する。図1は本発明の半導体気相成長装置の1
実施例を示すものである。図1の(I)は横断面図、(
II)は縦断面図である。図4、5と同符号は同じもの
を示す。図中6は本発明においてガス導入部であり、A
、B、C、Dの4つの導入管及びそれぞれに対応する4
つの流量調整器vからなる。前記4つの導入管には、H
2中に原料としてTMGa、TMAl、AsH3 が所
定の濃度で含まれる原料ガスが分岐されて供給されるた
めそれぞれの導入管から流量調整器を通して反応管中に
供給されるガス中の原料ガスをそれぞれ独立に調整でき
る。そこで、例えばA〜Dの流量調整器vを調整し、流
量をすべて5SLMとし、総流量を20SLMにした場
合、ガス流に直角方向の膜厚分布はサセプタの中央部(
反応管の内央部)から周辺部(反応管の内壁近傍)に向
けて減少傾向を呈する。これは反応管側壁に近いガス流
の流速が側壁の影響で中央部に比べて遅くなるためと考
えられる。しかし、総流量を20SLMに固定し、A、
Dのガス流量の比率をB、Cよりも増加させることによ
り解消され、膜厚の均一性が向上する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained in more detail according to the illustrated embodiments. FIG. 1 shows one of the semiconductor vapor phase growth apparatuses of the present invention.
This shows an example. (I) in Figure 1 is a cross-sectional view, (
II) is a longitudinal sectional view. The same reference numerals as in FIGS. 4 and 5 indicate the same things. In the figure, 6 is the gas introduction part in the present invention, and A
, B, C, and D and their corresponding 4 inlet pipes.
It consists of two flow regulators v. The four introduction pipes have H
Since the raw material gas containing TMGa, TMAl, and AsH3 as raw materials at predetermined concentrations in 2 is branched and supplied, the raw material gases in the gases supplied into the reaction tube from each introduction pipe through a flow rate regulator are Can be adjusted independently. Therefore, for example, if the flow rate regulators A to D are adjusted to make the flow rates all 5SLM and the total flow rate 20SLM, the film thickness distribution in the direction perpendicular to the gas flow will be at the center of the susceptor (
It exhibits a decreasing tendency from the inner center of the reaction tube to the periphery (near the inner wall of the reaction tube). This is thought to be because the flow velocity of the gas flow near the side wall of the reaction tube is slower than that at the center due to the influence of the side wall. However, if the total flow rate is fixed at 20SLM, A,
This problem can be solved by increasing the ratio of gas flow rate of D compared to B and C, and the uniformity of the film thickness can be improved.

【0009】また本装置を用いて作製したGaAs/G
aAlAs積層膜のヘテロ界面の組成急峻性はTEM(
透過電子顕微鏡)観察により2原子層以下と極めて良好
であることが確認された。これはガス導入管からサセプ
タに至るガスの助走距離L”を短くし、これによりこの
部分の体積も大幅に小さくされ、かつ、上記A〜Dの流
量比を調整することにより渦の発生の少ない均一なガス
流が実現されたためである。
[0009] Also, GaAs/G produced using this device
The compositional steepness of the heterointerface of the aAlAs stacked film was determined by TEM (
It was confirmed by observation using a transmission electron microscope that the thickness was 2 atomic layers or less, which was extremely good. This shortens the run-up distance L'' of the gas from the gas introduction pipe to the susceptor, thereby significantly reducing the volume of this part, and by adjusting the flow rate ratio of A to D above, less vortex is generated. This is because a uniform gas flow was achieved.

【0010】図2は本発明の他の実施例を示すものであ
る。上記図1のガス導入部6とサセプタ2の中間に多孔
質又は網状の障壁を設置したものである。これにより各
ガス導入管から放出されるガス流の局所集中を防止し、
ガス流中の渦の発生をさらに低減できる。7はガス導入
部6とサセプタ3の中間の反応管中に設置されたステン
レス網である。
FIG. 2 shows another embodiment of the invention. A porous or net-like barrier is installed between the gas introduction section 6 and the susceptor 2 shown in FIG. 1 above. This prevents local concentration of the gas flow released from each gas introduction pipe,
The generation of vortices in the gas flow can be further reduced. 7 is a stainless steel mesh installed in the reaction tube between the gas introduction part 6 and the susceptor 3.

【0011】図3はさらに他例の実施例であり、図中9
は石英製の内管のガス導入管とサセプタの中間に設けら
れた石英製の多孔板である。同図に示すように、石英製
内管に傾斜部を設けることにより、ガス流に沿った膜厚
の均一性も図2の場合よりも一層向上され、これに整流
用の多孔板を付加し、かつ流量調整バルブの流量比の調
整を行うことにより、一度に多数枚の基板3に対して均
一で、かつヘテロ界面の急峻性に優れる良質な結晶膜を
形成することが可能である。なお1aはパージ水素ガス
導入口、8aは傾斜部を示す。同図に示すように、基板
の位置が変わっても膜厚は一定である。
FIG. 3 shows yet another embodiment, in which 9
is a perforated plate made of quartz provided between the gas inlet pipe of the inner tube made of quartz and the susceptor. As shown in the figure, by providing an inclined part in the quartz inner tube, the uniformity of the film thickness along the gas flow is further improved than in the case of Figure 2, and by adding a perforated plate for flow rectification. By adjusting the flow rate ratio of the flow rate adjustment valve, it is possible to form uniform, high-quality crystal films with excellent heterointerface steepness on a large number of substrates 3 at once. Note that 1a indicates a purge hydrogen gas inlet, and 8a indicates an inclined portion. As shown in the figure, the film thickness remains constant even if the position of the substrate changes.

【0012】なお、図3にも示すように配列される導入
管の数は図1、図2のように4本と限る必要はなく、反
応炉の大きさ、処理枚数や要求される均一性等に応じ適
宜に設定される。また図4の他の実施例に示すように導
入管を2つ以上の集合10、11に分け、各集合に対し
、ガス濃度成分の異なるガスを供給し、各集合ごとに各
々の導入管に対してガス濃度の等しい原料ガスを各々流
量調整して供給してもよい。さらに図3の水素パージガ
ス導入管のように、必要に応じて上記の配列された導入
管の他に独立したガス導入管を設けても本発明の効果は
何ら影響を受けるものではない。
[0012] As shown in Fig. 3, the number of inlet pipes arranged is not limited to four as shown in Figs. 1 and 2; It is set as appropriate depending on the situation. In addition, as shown in another embodiment of FIG. 4, the introduction pipe is divided into two or more groups 10 and 11, and each group is supplied with a gas having a different gas concentration component. On the other hand, raw material gases having the same gas concentration may be supplied after adjusting their flow rates. Further, the effects of the present invention will not be affected in any way even if an independent gas introduction pipe is provided in addition to the above-mentioned arranged introduction pipes as necessary, like the hydrogen purge gas introduction pipe shown in FIG.

【0013】さらに、本発明においてウエハの回転を行
うことにより、結晶膜への均一性がさらに向上させるこ
とができる。また、上記実施例ではGaAs/GaAl
As結晶膜の作製工程を例に説明したが、本発明は用い
る原料や作製する結晶の組成に制限を加えるものではな
く、例えば、原料にTMIn(トリメチルインジウム)
、TMGa、AsH3 、PH3 (ホスフィン)を用
い、InP/InGaAsP系の結晶膜を作製する場合
にも、本発明の適用により結晶膜の均一化やヘテロ界面
の急峻性に対し、十分な効果が発揮される。さらに、本
発明の効果をさらに向上するために用いられる多孔質又
は網状の障壁板は実施例で用いられたステンレス材や石
英材である必要な必ずしもなく、モリブデンやカーボン
をはじめとするその他の材質でもよく、またその形状も
前記のものに制限されない。
Furthermore, by rotating the wafer in the present invention, the uniformity of the crystal film can be further improved. Further, in the above embodiment, GaAs/GaAl
Although the process for producing an As crystal film has been described as an example, the present invention does not place any restrictions on the raw materials used or the composition of the crystals to be produced.
, TMGa, AsH3, and PH3 (phosphine) to produce an InP/InGaAsP-based crystal film, the application of the present invention is sufficiently effective in making the crystal film uniform and reducing the steepness of the hetero interface. be done. Furthermore, the porous or net-like barrier plate used to further improve the effects of the present invention is not necessarily made of stainless steel or quartz material used in the embodiments, but may be made of other materials such as molybdenum or carbon. However, the shape is not limited to the above.

【0014】本発明の装置を用いて行う気相成長方法は
上の例で示したMOCVDに限られることなく、クロラ
イドVPE法やハライドVPE法等、広く気相成長全般
に渡り本発明の適用が可能であることは言うまでもない
。また実施例では基板を全て水平に配置したが、基板を
垂直に立てこれに原料ガスを概略平行に流すいわゆるチ
ムニー型反応炉にも本発明は適用可能である。要は、基
板に対し原料ガスを概略平行に流す反応炉において、特
にガス流に直角方向の均一性を向上する上で本発明は極
めて有効である。
The vapor phase growth method performed using the apparatus of the present invention is not limited to the MOCVD shown in the above example, but the present invention can be applied to a wide variety of vapor phase growth methods such as chloride VPE method and halide VPE method. It goes without saying that it is possible. Further, in the embodiment, all the substrates are arranged horizontally, but the present invention is also applicable to a so-called chimney-type reactor in which the substrates are set vertically and the raw material gas is flowed approximately parallel thereto. In short, the present invention is extremely effective in improving uniformity, particularly in the direction perpendicular to the gas flow, in a reactor in which raw material gas flows approximately parallel to the substrate.

【0015】[0015]

【作用】以上、本発明の装置において複数のガス導入管
(A、B、C、D)の流量を個々に調整することにより
、サセプタ上での各基板に対する原料ガス流を均一化す
る。これにより均一で、かつヘテロ界面の急峻性に優れ
る良好な結晶膜が得られる。また本発明の半導体気相成
長装置を用いると従来問題とされた反応管壁の設計や作
製精度ガス導入管の組立て精度等による悪影響も大幅に
低減される。すなわち、発明の装置を用いる半導体気相
成長方法によれば、ガス流均一性の粗調整及び微調整が
上記A〜Dの流量調整により容易に行われるからである
。したがって反応管の形状設計においても自由度が拡大
し、また作製、組立て時の寸法精度も従来程は必要なく
なり作製費用の低減や組立て時間の短縮にもつながる。
As described above, in the apparatus of the present invention, by individually adjusting the flow rates of the plurality of gas introduction pipes (A, B, C, D), the raw material gas flow to each substrate on the susceptor is made uniform. As a result, a good crystal film which is uniform and has excellent hetero-interface steepness can be obtained. Furthermore, when the semiconductor vapor phase growth apparatus of the present invention is used, the adverse effects caused by conventional problems such as the design of the reaction tube wall, the manufacturing accuracy, the assembly accuracy of the gas introduction tube, etc. can be significantly reduced. That is, according to the semiconductor vapor phase growth method using the apparatus of the invention, rough adjustment and fine adjustment of gas flow uniformity can be easily performed by adjusting the flow rates A to D described above. Therefore, the degree of freedom in designing the shape of the reaction tube is expanded, and dimensional accuracy during manufacturing and assembly is not required as much as in the past, leading to reductions in manufacturing costs and assembly time.

【0016】[0016]

【発明の効果】以上、本発明によれば、反応炉中でのガ
ス流の均一性をガス置換速度に悪影響を及ぼすことなく
、再現性よく実現することが可能で、また反応管設計の
自由度が向上し、反応管、導入管の寸法精度や組立て精
度の問題が軽減されて、コスト削減や作業時間の短縮に
もつながり、特に複数枚の基板を同時に処理する場合に
おいて均一性の高い高品質の結晶膜を低コストで作製で
きることから工業的に実施する装置としてその効果は極
めて大きい。
[Effects of the Invention] As described above, according to the present invention, it is possible to achieve uniformity of gas flow in the reactor with good reproducibility without adversely affecting the gas replacement rate, and it is possible to achieve freedom in the design of the reaction tube. It also reduces problems with the dimensional accuracy and assembly accuracy of reaction tubes and inlet tubes, leading to cost reductions and shortening of work time.Especially when processing multiple substrates at the same time, it is possible to achieve high uniformity. Since it is possible to produce high-quality crystal films at low cost, it is extremely effective as an industrially implemented device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の半導体気相成長装置の1実施例を示し
、(I)は横断面図、(II)は縦断面図である。
FIG. 1 shows one embodiment of a semiconductor vapor phase growth apparatus of the present invention, in which (I) is a cross-sectional view and (II) is a vertical cross-sectional view.

【図2】本発明の半導体気相成長装置の他の実施例を示
し、(I)は横断面図、(II)は縦断面図である。
FIG. 2 shows another embodiment of the semiconductor vapor phase growth apparatus of the present invention, in which (I) is a cross-sectional view and (II) is a vertical cross-sectional view.

【図3】本発明の半導体気相成長装置のさらに他の実施
例を示し、(I)は横断面図、(II)は縦断面図であ
る。
FIG. 3 shows still another embodiment of the semiconductor vapor phase growth apparatus of the present invention, in which (I) is a cross-sectional view and (II) is a vertical cross-sectional view.

【図4】本発明の半導体気相成長装置のさらに別の実施
例を示し、(I)は横断面図、(II)は縦断面図であ
る。
FIG. 4 shows yet another embodiment of the semiconductor vapor phase growth apparatus of the present invention, in which (I) is a cross-sectional view and (II) is a vertical cross-sectional view.

【図5】従来の半導体気相成長装置の1例を示す横断面
図である。
FIG. 5 is a cross-sectional view showing an example of a conventional semiconductor vapor phase growth apparatus.

【図6】従来の半導体気相成長装置の他例を示す横断面
図である。
FIG. 6 is a cross-sectional view showing another example of a conventional semiconductor vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1  反応管 2  サセプタ 3  基板 6  ガス導入部 A、B、C、D  ガス導入管 7  ステンレス網 8  内管 9  多孔板 v  流量調整器 1 Reaction tube 2 Susceptor 3 Board 6 Gas introduction part A, B, C, D Gas introduction pipe 7 Stainless steel mesh 8 Inner pipe 9 Perforated plate v Flow rate regulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  反応管、この反応管中に設置され被成
長基板を保持するサセプタ、このサセプタを加熱する加
熱手段及び前記反応管中に原料ガスを供給するガス導入
部を有し、かつ原料ガスが前記サセプタ上に保持される
基板の表面に対して概略平行に流れる半導体気相成長装
置において、上記ガス導入部は2本以上のガス導入管を
有してなり、かつ、前記ガス導入管の各導入管を互いに
独立に流量制御しうるようにしたことを特徴とする半導
体気相成長装置。
1. A reaction tube, a susceptor installed in the reaction tube to hold a substrate to be grown, a heating means for heating the susceptor, and a gas introduction part for supplying a raw material gas into the reaction tube, In a semiconductor vapor phase growth apparatus in which gas flows approximately parallel to the surface of the substrate held on the susceptor, the gas introduction section has two or more gas introduction pipes, and the gas introduction pipe A semiconductor vapor phase growth apparatus characterized in that the flow rate of each introduction pipe can be controlled independently of each other.
【請求項2】  前記反応管中の前記ガス導入管と前記
サセプタの中間に分散手段を設けたことを特徴とする請
求項1記載の半導体気相成長装置。
2. The semiconductor vapor phase growth apparatus according to claim 1, further comprising dispersion means provided between the gas introduction tube and the susceptor in the reaction tube.
JP14648391A 1991-05-15 1991-05-15 Semiconductor vapor growth device Pending JPH04338636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14648391A JPH04338636A (en) 1991-05-15 1991-05-15 Semiconductor vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14648391A JPH04338636A (en) 1991-05-15 1991-05-15 Semiconductor vapor growth device

Publications (1)

Publication Number Publication Date
JPH04338636A true JPH04338636A (en) 1992-11-25

Family

ID=15408662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14648391A Pending JPH04338636A (en) 1991-05-15 1991-05-15 Semiconductor vapor growth device

Country Status (1)

Country Link
JP (1) JPH04338636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910191B1 (en) * 2006-07-05 2009-07-30 스미토모덴키고교가부시키가이샤 Metal organic chemical vapor deposition equipment
JP2010067775A (en) * 2008-09-10 2010-03-25 Sumitomo Electric Ind Ltd Vapor phase growth method and vapor phase growth device
JP2010080824A (en) * 2008-09-29 2010-04-08 Sumco Corp Method of manufacturing epitaxial wafer
CN105603389A (en) * 2014-11-13 2016-05-25 东京毅力科创株式会社 Substrate processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910191B1 (en) * 2006-07-05 2009-07-30 스미토모덴키고교가부시키가이샤 Metal organic chemical vapor deposition equipment
EP1882757B1 (en) * 2006-07-05 2013-10-02 Sumitomo Electric Industries, Ltd. Metal organic chemical vapor deposition equipment
US8906162B2 (en) 2006-07-05 2014-12-09 Sumitomo Electric Industries, Ltd. Metal organic chemical vapor deposition equipment
JP2010067775A (en) * 2008-09-10 2010-03-25 Sumitomo Electric Ind Ltd Vapor phase growth method and vapor phase growth device
JP2010080824A (en) * 2008-09-29 2010-04-08 Sumco Corp Method of manufacturing epitaxial wafer
CN105603389A (en) * 2014-11-13 2016-05-25 东京毅力科创株式会社 Substrate processing apparatus
JP2016094642A (en) * 2014-11-13 2016-05-26 東京エレクトロン株式会社 Substrate processing device

Similar Documents

Publication Publication Date Title
EP1432844B1 (en) Apparatus for inverted cvd
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
US6190457B1 (en) CVD system and CVD process
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH04338636A (en) Semiconductor vapor growth device
JPH03263818A (en) Metal organic vapor growth apparatus
JPH0296324A (en) Manufacture of semiconductor device and vapor growth device used for it
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JP3035953B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JP2791444B2 (en) Vapor phase epitaxial growth method
JPH0547674A (en) Apparatus and method for vapor growth
JPH0547668A (en) Crystal growth method for compound semiconductor
JP2002261021A (en) Apparatus and method for vapor-phase growth
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JP3252644B2 (en) Vapor phase growth method and apparatus
JPH03232221A (en) Vapor growth method for compound semiconductor
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPH10256166A (en) Device and method for vapor growth
JPH02166723A (en) Growth of compound semiconductor
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPH0195517A (en) Apparatus and method for manufacturing compound semiconductor
JPH01244612A (en) Method and apparatus for vapor growth of gallium arsenide
JPH0559080B2 (en)
JPH04261016A (en) Vapor phase growing device and method thereof
JPH01222438A (en) Vapor growth device