JPH0296324A - Manufacture of semiconductor device and vapor growth device used for it - Google Patents

Manufacture of semiconductor device and vapor growth device used for it

Info

Publication number
JPH0296324A
JPH0296324A JP63248311A JP24831188A JPH0296324A JP H0296324 A JPH0296324 A JP H0296324A JP 63248311 A JP63248311 A JP 63248311A JP 24831188 A JP24831188 A JP 24831188A JP H0296324 A JPH0296324 A JP H0296324A
Authority
JP
Japan
Prior art keywords
growth
gas
substrate
carrier gas
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63248311A
Other languages
Japanese (ja)
Inventor
Susumu Yamazaki
進 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63248311A priority Critical patent/JPH0296324A/en
Priority to US07/271,278 priority patent/US4980204A/en
Priority to DE88402977T priority patent/DE3884763T2/en
Priority to EP88402977A priority patent/EP0318395B1/en
Priority to KR1019880015627A priority patent/KR920010690B1/en
Publication of JPH0296324A publication Critical patent/JPH0296324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a semiconductor crystal with a uniform film thickness distribution to grow by controlling the density and flow rate distribution of a growth material gas on the surface of a substrate externally and individually. CONSTITUTION:A substrate 12 is rotated about an axis 16 which is vertical to the surface within a vapor growth container and a carrier gas and a growth material gas supplied from a gas supply source 1 is made to flow to N flow paths 4 and 5 (N>=2) where flow controlling means are provided halfway through each, thus enabling the flow in each flow path 4 and 5 to be regulated. Then, the carrier gas and the regulated growth material gas merge for each pair of flow paths 4 and 5 and the merged N pairs of carrier gas and growth material gas are sprayed to the surface in the substantially vertical direction through separate N flow paths 61 to 64 arranged on a straight line crossing a rotary axis 16 of the substrate 1 at right angles. Namely, the flow of the carrier gas and the growth material gas to be supplied is controlled externally. It allows the film thickness distribution on the surface of the substrate 1 to be controlled, thus forming a semiconductor crystal in uniform film thickness on the large-area substrate 1 with improved reproduction properties.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、とくに、有機金属気相成長(M
OVPE;Metal Organic Vapor 
Phase Epitaxy)法およびそのための装置
に関し 基板上における成長原料ガスの濃度および流速分布に起
因する膜厚分布の不均一性を低減可能な製造方法および
装置を提供することを目的とし。
[Detailed Description of the Invention] [Summary] A method for manufacturing a semiconductor device, particularly a metal organic vapor phase epitaxy (M
OVPE;Metal Organic Vapor
An object of the present invention is to provide a manufacturing method and apparatus that can reduce the non-uniformity of film thickness distribution caused by the concentration and flow velocity distribution of a growth source gas on a substrate.

半導体結晶が生成される一表面を有する基板を。A substrate with one surface on which semiconductor crystals are produced.

気相成長容器内において、該表面に垂直な軸を中心にし
て回転し、ガス供給源から供給されるキャリヤガスおよ
び成長原料ガスのそれぞれを、各々の途中に流量調節手
段が設けられたN個(N22)のしたのち、流量調節さ
れた該キャリヤガスと該成長原料ガスを一対の該流路ご
とに合流し5合流されたN対の該キャリヤガスと成長原
料ガスを、該基板の回転軸と直角に交差する一直線上に
配列された別のN個の流路を通じて且つ該表面に対して
実質的に垂直方向から吹き付けられるようにして。
Inside the vapor phase growth container, the carrier gas and growth source gas supplied from the gas supply source are rotated around an axis perpendicular to the surface of the container, and N tubes are provided with flow rate adjustment means in the middle of each tube. After (N22), the carrier gas and the growth raw material gas, whose flow rates have been adjusted, are combined in each pair of channels, and the N pairs of the combined carrier gas and growth raw material gas are transferred to the rotation axis of the substrate. through another N channels arranged in a straight line intersecting at right angles to the surface and from a direction substantially perpendicular to the surface.

該気相成長容器内に導入することから構成される。It consists of introducing into the vapor phase growth container.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法、とくに、有機金属気
相成長(MOVPE; Metal Organic 
VaporPhase Epitaxy)法およびその
ための装置に関する。
The present invention relates to a method for manufacturing a semiconductor device, particularly a method for manufacturing a semiconductor device using metal organic vapor phase epitaxy (MOVPE).
The present invention relates to a VaporPhase Epitaxy method and an apparatus therefor.

〔従来の技術) 例えば、1μm帯の光素子用の材料となるInPやIn
GaAs、あるいは、高速電子素子用の材料となるGa
Asや^IGaAsP等の単結晶膜を形成する方法とし
て、有機金属気相成長(MOVPE)法の研究開発が盛
んに行われている。MOVPE法は、基板を設置した反
応容器内部に原料物質としてインジウム(In)。
[Prior art] For example, InP and In, which are materials for optical devices in the 1 μm band,
GaAs, or Ga, which is a material for high-speed electronic devices
As a method for forming single-crystal films of As, IGaAsP, and the like, research and development on metal organic vapor phase epitaxy (MOVPE) are being actively conducted. In the MOVPE method, indium (In) is used as a raw material inside a reaction vessel in which a substrate is installed.

ガリウム(Ga)、アルミニウム(Al)等の気体状の
有機化合物と、燐(P)、砒素(As)等の、一般には
水素化物とを導入して反応させることにより、基板上に
所望の化合物半導体結晶を成長させるものであって1得
られる結晶膜の均一性が良好であり、また8急峻なヘテ
ロ界面を比較的容易に形成可能である利点を有する。し
かしながら、実用規模の大きさを有する基板に5組成、
膜厚あるいは結晶性について均一な化合物半導体膜を再
現性よ(形成することは未だ困難な状況にある。
By introducing and reacting a gaseous organic compound such as gallium (Ga) or aluminum (Al) with a hydride such as phosphorus (P) or arsenic (As), a desired compound can be formed on the substrate. This method is used to grow semiconductor crystals, and has the following advantages: 1. The resulting crystal film has good uniformity, and 8. steep heterointerfaces can be formed relatively easily. However, five compositions can be applied to a substrate with a practical scale.
It is still difficult to reproducibly form compound semiconductor films with uniform thickness or crystallinity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のMOVPE法においては、供給された原料ガスが
結晶成長とともに消費される結果1反応容器内における
その輸送径路の下流にゆくにしたがって濃度(または分
圧)が低くなり結晶成長速度が低下するため、生成され
る半導体結晶膜の膜厚分布に不均一性を生じる。また、
結晶成長速度に対しては、上記のような原料ガスの濃度
の他に、基板表面における原料ガスの流速が影響する。
In the above MOVPE method, as a result of the supplied raw material gas being consumed as the crystal grows, the concentration (or partial pressure) decreases and the crystal growth rate decreases as it goes downstream along the transport path within the reaction vessel. , non-uniformity occurs in the film thickness distribution of the produced semiconductor crystal film. Also,
In addition to the concentration of the source gas as described above, the flow rate of the source gas at the substrate surface influences the crystal growth rate.

とくに、成長原料ガスを基板面に対して垂直方向に輸送
する方式のMOVPE法(以下これを縦型間VPE法と
称する)においては、基板表面におけるガスの流れが複
雑であるために、成長原料ガスの濃度分布および流速分
布が不均一になりやすく。
In particular, in the MOVPE method (hereinafter referred to as vertical VPE method) in which the growth material gas is transported in a direction perpendicular to the substrate surface, the gas flow on the substrate surface is complicated, so the growth material gas is transported in a direction perpendicular to the substrate surface. Gas concentration distribution and flow velocity distribution tend to become uneven.

したがって、基板上における膜厚分布の不均一性が太き
(なりやすい。このため、縦型MOVPE法においては
2通常、基板をその表面に対して垂直な軸を中心として
回転させることにより、上記のような不均一性を少なく
することが図られている。
Therefore, the film thickness distribution on the substrate tends to be non-uniform. Therefore, in the vertical MOVPE method, the substrate is usually rotated about an axis perpendicular to its surface. Efforts are being made to reduce such non-uniformity.

均一性を向上するその他の方法として1反応容器の形状
、あるいは、基板を載置・回転させるサセプタの形状な
どの形状パラメータのを制御するもの、また、原料ガス
の輸送径路において基板の上流に特殊な形状を有する障
害物を設置して攪拌効果を生じさせることにより、濃度
分布の均一化を図るもの等がある。
Other methods to improve uniformity include controlling shape parameters such as the shape of the reaction vessel or the shape of the susceptor on which the substrate is placed and rotated, and controlling the shape parameters such as the shape of the reaction vessel or the shape of the susceptor on which the substrate is placed and rotated. There are methods that aim to make the concentration distribution uniform by installing an obstacle having a certain shape to produce a stirring effect.

しかしながら、上記のような形状パラメータを最適化す
る方法においては、気相成長装置の設計および製作に要
する時間と費用が大きく、また。
However, in the method of optimizing the shape parameters as described above, the time and cost required for designing and manufacturing the vapor phase growth apparatus are large.

成長原料ガスの種類および組合せによって最適化条件が
同一でない場合があるため2例えば異種の化合物半導体
結晶膜を複数積層させる場合には充分な最適化ができな
い等の問題があった。
Since the optimization conditions may not be the same depending on the type and combination of growth source gases, there is a problem that, for example, when multiple compound semiconductor crystal films of different types are stacked, sufficient optimization cannot be achieved.

本発明は、上記従来のMOVPE法における問題点に鑑
み、基板表面における成長原料ガスの濃度分布および流
速分布を外部から個別に制御可能とすることにより、均
一な膜厚分布を有する半導体結晶を成長可能な方法およ
び装置を提供することを目的とする。
In view of the above-mentioned problems with the conventional MOVPE method, the present invention enables the growth of semiconductor crystals with a uniform film thickness distribution by making it possible to individually control the concentration distribution and flow velocity distribution of the growth source gas on the substrate surface from the outside. The purpose is to provide possible methods and devices.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、半導体結晶が生成される一表面を有する基
板を、気相成長容器内において、該表面に垂直な軸を中
心にして回転し、ガス供給源から供給されるキャリヤガ
スおよび成長原料ガスのそれぞれを、各々の途中に流量
調節手段が設けられたN個(N22)の流路に分流して
各々の該流路における流量を調節したのち、流量調節さ
れた該キャリヤガスと該成長原料ガスを一対の該流路ご
とに合流し9合流されたN対の該キャリヤガスと成長原
料ガスを、該基板の回転軸と直角に交差する一直線上に
配列された別のN個の流路を通じて且つ該表面に対して
実質的に垂直方向から吹き付けられるようにして、該気
相成長容器内に導入する諸工程を含むことを特徴とする
本発明に係る半導体装置の製造方法、および、半導体結
晶が生成される一表面を有する基板をR置するとともに
該基板をその表面に垂直な軸を中心にして回転可能な機
構を内部に備えた気相成長容器と、キャリヤガスを送出
する送出口および成長原料ガスを送出する送出口有する
ガス供給源と、その途中に設けられた流itiM節手段
、および、該キャリヤガス送出口に接続された一端、お
よび、他端をそれぞれ有するN個(N22)のキャリヤ
ガス分流管と、その途中に設けられた流量調節手段、お
よび、該成長原料ガス送出口に接続された一端、および
、他端とをそれぞれ有するN個(N22)の成長原料ガ
ス分流管と、一対の該キャリヤガス分流管および成長原
料ガス分流管のそれぞれの前記他端に接続された一端、
および、該気相成長成長容器に接続されるとともに該気
相成長容器内に延伸する他端をそれぞれ有し、該気相成
長容器内に延伸した各々の咳他端は前記基板の回転軸に
直角な一直線上に且つ回転にある該基板の表面に対して
実質的に垂直方向から前記キャリヤガスと成長原料ガス
から成る混合ガスを吹き付けるように配置されたN個の
混合ガス分流管とを備えたことを特徴とする本発明に係
る気相成長装置によって達成される。
The above purpose is to rotate a substrate having one surface on which a semiconductor crystal is produced in a vapor phase growth container about an axis perpendicular to the surface, and to rotate a substrate having one surface on which a semiconductor crystal is to be produced, and to rotate the substrate with a carrier gas and a growth raw material supplied from a gas supply source. After dividing each of these into N (N22) channels each having a flow rate adjustment means in the middle and adjusting the flow rate in each channel, the carrier gas and the growth raw material whose flow rates were adjusted are separated. The gases are merged into each pair of flow channels, and the N pairs of combined carrier gas and growth source gas are transferred to another N flow channels arranged on a straight line intersecting at right angles to the rotation axis of the substrate. A method for manufacturing a semiconductor device according to the present invention, comprising the steps of introducing the semiconductor into the vapor growth container by spraying the semiconductor through the vapor deposition container in a direction substantially perpendicular to the surface; a vapor phase growth container equipped with a mechanism therein for placing a substrate having one surface on which crystals are to be generated and rotating the substrate around an axis perpendicular to the surface; and a delivery port for delivering a carrier gas. and a gas supply source having a delivery port for sending out the growth raw material gas, a flow node means provided in the middle thereof, and N gas supply sources each having one end and the other end connected to the carrier gas delivery port. ), a flow rate adjustment means provided in the middle thereof, and N (N22) growth source gas distribution tubes each having one end connected to the growth source gas outlet and the other end. a tube, and one end connected to the other end of each of the pair of carrier gas distribution tube and growth raw material gas distribution tube;
and the other end is connected to the vapor growth container and extends into the vapor growth container, and the other end of each of the ends extending into the vapor growth container is connected to the rotation axis of the substrate. N mixed gas distribution pipes arranged to spray a mixed gas consisting of the carrier gas and the growth raw material gas in a straight line at right angles and in a direction substantially perpendicular to the surface of the rotating substrate. This is achieved by the vapor phase growth apparatus according to the present invention, which is characterized by the following.

〔作 用〕[For production]

その表面に垂直な軸を中心として回転する基板面に対し
て一直線上に配列された複数の分流管を配置し、それぞ
れのガス分流管からキャリヤガスによって所定濃度に希
釈された成長原料ガスを所定流量で基板表面に対して垂
直に吹き付けることにより、基板表面に均一な膜厚の半
導体結晶を生成することができる。
A plurality of flow branch tubes are arranged in a straight line with respect to the substrate surface which rotates around an axis perpendicular to the surface, and a growth raw material gas diluted to a predetermined concentration with a carrier gas is supplied from each gas flow distribution tube to a predetermined concentration. By spraying perpendicularly to the substrate surface at a flow rate, a semiconductor crystal having a uniform thickness can be generated on the substrate surface.

上記のような、複数の分流管を一直線上に配列。Arrange multiple branch pipes in a straight line as shown above.

それぞれの分流管から送出される原料ガスの流量を制御
する思想は2本出願人によりすでに出願されている。 
(特願昭62−299158.昭和62年11月27日
付) 本発明は、上記出願における各分流管から送出される原
料ガスのfL量に加え濃度をも個別に制御可能としたも
のである。
The idea of controlling the flow rate of raw material gas sent out from each branch pipe has already been filed by two applicants.
(Japanese Patent Application No. 62-299158, dated November 27, 1988) The present invention makes it possible to individually control not only the fL amount but also the concentration of the raw material gas sent out from each branch pipe in the above application.

従来、横型の気相成長反応管内において、ガス導入口側
での成長原料ガスの消費により、下流に行くほど濃度が
低下し、その結果、成長速度が遅くなり、膜厚分布が不
均一になることを防止するために1反応管の管軸に沿っ
て複数の原料ガス供給補助ノズルを設けて、上流部にお
ける消費を補償する方法がある。(特開昭55−158
623)また、二種の成長原料ガスの混合ガスが反応管
内部に導入後、基板表面に達する前に反応してしまうた
めに、成長速度が低下したり、均一な成長が行われない
等の問題を解決するために、これらのガスを個別のノズ
ルからそれぞれ分散して導入する方法が開示されている
。(特開昭58−176196および6O−18992
8) 上記第1の公開による発明においては、成長原料ガスは
反応管内部におけるその輸送径路上での濃度分布が制御
されるのみで、これに交差する方向における濃度分布、
したがって、膜厚分布の制御については考慮されていな
い。また、上記第2および第3の公開による発明は、二
種の成長原料ガスをそれぞれ複数のノズルから分散して
反応管内部に供給するものであるが1分散された成長原
料ガスの流量および濃度をそれぞれのノズルごとに個別
に制御する思想は開示されていない。したがって、上記
いずれの公開の発明によっても、基板面内における膜厚
分布の均一性を充分に保証することはできない。
Conventionally, in a horizontal vapor phase growth reaction tube, the concentration of the growth material gas decreases downstream due to consumption of the growth material gas at the gas inlet side, resulting in a slow growth rate and uneven film thickness distribution. In order to prevent this, there is a method of providing a plurality of raw material gas supply auxiliary nozzles along the tube axis of one reaction tube to compensate for consumption in the upstream section. (Unexamined Japanese Patent Publication No. 55-158
623) Furthermore, since the mixed gas of two types of growth source gases is introduced into the reaction tube and reacts before reaching the substrate surface, the growth rate may be reduced or uniform growth may not occur. In order to solve the problem, a method has been disclosed in which these gases are introduced in a distributed manner through separate nozzles. (JP-A-58-176196 and 6O-18992
8) In the invention according to the first publication, the concentration distribution of the growth raw material gas on its transport route inside the reaction tube is controlled only, and the concentration distribution in the direction crossing this,
Therefore, control of film thickness distribution is not considered. Further, in the inventions disclosed in the second and third publications above, two types of growth raw material gases are each distributed from a plurality of nozzles and supplied into the reaction tube. The idea of individually controlling each nozzle is not disclosed. Therefore, none of the disclosed inventions described above can sufficiently guarantee the uniformity of the film thickness distribution within the plane of the substrate.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参照しで説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法および装置におけるキャリヤガス
および成長原料ガスを気相成長容器に導入するまでのガ
ス流通径路の構成図である。以下第1図について2例え
ばInP結晶を一層成長させる場合を例に説明する。
FIG. 1 is a configuration diagram of a gas flow path until a carrier gas and a growth source gas are introduced into a vapor phase growth container in the method and apparatus of the present invention. Referring now to FIG. 1, an example will be described in which, for example, an InP crystal is further grown.

図において、符号1はガス供給源1であり、キャリヤガ
ス送出口2から2例えば水素ガス(H2)が送出され、
一方、成長原料ガス送出口3からは成長原料ガスとして
1例えばトリメチルインジュウム((C1l i) 3
 In :)とホスフィンCPlh )が1=10似モ
ル比)で混合されたガスが送出される。上記のようにし
てガス供給源1から送出されたキャリヤガスは、キャリ
ヤガス送出口2に接続された複数のキャリヤガス分流管
47,4□、43.・・・ 4.4(図においてはN・
4)に分流される。分流されたキャリヤガスは、各々の
分流管4の途中に設けられている1例えばマスフローコ
ントローラ(M411 Mt2+M43.・・・M4N
 ;図においてはN・4)によりそれぞれの流量が調節
される。一方、成長原料ガスは。
In the figure, reference numeral 1 is a gas supply source 1, from which a carrier gas outlet 2, for example hydrogen gas (H2), is sent out.
On the other hand, from the growth raw material gas outlet 3, 1, for example, trimethyl indium ((C1l i) 3
A gas containing In:) and phosphine CPlh) mixed at an approximate molar ratio of 1=10 is delivered. The carrier gas sent out from the gas supply source 1 as described above is transferred to a plurality of carrier gas distribution pipes 47, 4□, 43. ... 4.4 (N・in the figure)
4). The branched carrier gas is transferred to a mass flow controller (M411 Mt2+M43...M4N) provided in the middle of each branch pipe 4.
; In the figure, each flow rate is adjusted by N.4). On the other hand, the growth raw material gas.

成長原料ガス送出口3に接続された複数の成長原料ガス
分流管51,5□、53.・・・ 5s  (図におい
てはN=4)に分流される。分流された成長原料ガスは
、各々の分流管5の途中に設けられている1例えばマス
フローコントローラ(Ms+1MS!+ Msz+・・
MSN i図においてはN=4)によりそれぞれの流量
が8周節される。
A plurality of growth source gas distribution pipes 51, 5□, 53. connected to the growth source gas outlet 3. ... 5s (N=4 in the figure). The branched growth raw material gas is transferred to one, for example, a mass flow controller (Ms+1MS!+Msz+...
In the MSN i diagram, each flow rate is divided into 8 cycles by N=4).

上記のようにしてキャリヤガス分流管4および成長原料
ガス分流管5に分流され、かつ、マスフローコントロー
ラ(M)により流量調節されたキャリヤガスおよび成長
原料ガスは、各々−個ずつ対にされたキャリヤガス分流
管4および成長原料ガス分流管5ごとに合流され、それ
ぞれのキャリヤガス分流管4−成長原料ガス分流管5対
に接続されている混合ガス分流管6I、6□、61.・
・・ 68(図においてはN・4)を通じて5図示しな
い気相成長容器に導入される。
The carrier gas and the growth source gas, which have been branched into the carrier gas distribution pipe 4 and the growth source gas distribution tube 5 as described above and whose flow rates have been adjusted by the mass flow controller (M), are each separated into pairs of carrier gases. Mixed gas distribution tubes 6I, 6□, 61. are combined with each gas distribution tube 4 and growth source gas distribution tube 5, and are connected to each pair of carrier gas distribution tube 4 and growth source gas distribution tube 5.・
...68 (N4 in the figure) and is introduced into a vapor phase growth container (not shown).

第2図は上記気相成長容器の構成を示す模式的断面図で
あって1例えば石英管10の内部には、半導体結晶が生
成される基板12を載置する9例えばグラファイトから
成るサセプタ14が設けられている。サセプタ14は3
図示しないモータに接続された回転軸16により支持さ
れるとともに1例えば30rpmの速度で回転される。
FIG. 2 is a schematic cross-sectional view showing the structure of the vapor phase growth container, in which a susceptor 14 made of graphite, for example, is placed inside a quartz tube 10, on which a substrate 12 on which a semiconductor crystal is to be produced is placed. It is provided. The susceptor 14 is 3
It is supported by a rotating shaft 16 connected to a motor (not shown) and rotated at a speed of, for example, 30 rpm.

これにより、基板12はその上表面に垂直な軸を中心と
して回転される。
This causes the substrate 12 to rotate about an axis perpendicular to its upper surface.

石英管10の外部には1例えば高周波加熱コイル18が
設けられており、これにより、サセプタ14が誘導加熱
され、基板12を所定温度1例えば650”Cに維持す
る。
A high-frequency heating coil 18, for example, is provided outside the quartz tube 10, whereby the susceptor 14 is heated by induction, and the substrate 12 is maintained at a predetermined temperature, eg, 650''C.

石英管lOの上部には、第1図を参照して説明した混合
ガス分流管6が接続されている。混合分流管6+、h、
63.64は1回転軸16に直交する一直線上に配列さ
れ、かつ、前記混合ガスが基板12表面に対して垂直方
向から吹き付けられるように配置されている。上記構成
の気相成長容器内部は、排気管20を通じて1図示しな
い排気装置によって排気され、所定圧力1例えば70T
orrに維持される。
The mixed gas distribution pipe 6 described with reference to FIG. 1 is connected to the upper part of the quartz tube IO. Mixing branch pipe 6+, h,
63 and 64 are arranged on a straight line perpendicular to the rotation axis 16, and arranged so that the mixed gas is blown from the direction perpendicular to the surface of the substrate 12. The inside of the vapor growth container configured as described above is evacuated through an exhaust pipe 20 by an exhaust device (not shown) to a predetermined pressure 1, for example, 70T.
maintained at orr.

上記のようにして、ガス供給源1から送出されたキャリ
ヤガスと成長原料ガスは、それぞれのキャリヤガス分流
管4および成長原料ガス分流管5を流通する間に流量が
調節され、これにより、流量および分圧すなわち濃度が
所望の値に制御された前記混合ガスが1回転している基
板12表面に対して、それぞれの混合ガス分流管6から
吹き付けられる。
As described above, the flow rates of the carrier gas and growth source gas sent from the gas supply source 1 are adjusted while flowing through the respective carrier gas distribution tubes 4 and growth source gas distribution tubes 5. The mixed gas, whose partial pressure or concentration is controlled to a desired value, is blown from each mixed gas distribution pipe 6 onto the surface of the substrate 12 that is rotating once.

MOVPE法によって半導体結晶を成長させる場合。When growing a semiconductor crystal using the MOVPE method.

成長速度、したがって、一定時間に生成される結晶膜の
膜厚は、成長原料ガスの濃度および流速に依存する。上
記トリメチルインジュウム(TMI)とフォスフイン(
PH3)を原料ガスとして用いるInP結晶の成長の場
合には、成長速度はTMIの濃度に比例し、流速の17
2乗に比例する。したがって。
The growth rate, and therefore the thickness of the crystal film produced in a certain period of time, depends on the concentration and flow rate of the growth source gas. The above trimethyl indium (TMI) and phosphine (
In the case of InP crystal growth using PH3) as the raw material gas, the growth rate is proportional to the TMI concentration, and the flow rate is 17
Proportional to the square. therefore.

上記において、それぞれのキャリヤガス分流管4および
成長原料ガス分流管5における流量を制御することによ
り、それぞれの混合ガス分流管6から気相成長容器内に
導入されるT旧の濃度および流速が互いに独立に、かつ
、それぞれの混合ガス分流管6ごとに個別に制御され、
基板12表面におけるInP結晶膜の膜厚分布を制御可
能となる。
In the above, by controlling the flow rates in the respective carrier gas distribution pipes 4 and the growth source gas distribution pipes 5, the concentration and flow rate of T introduced into the vapor phase growth container from the respective mixed gas distribution pipes 6 are mutually controlled. independently and individually controlled for each mixed gas distribution pipe 6,
The thickness distribution of the InP crystal film on the surface of the substrate 12 can be controlled.

第3図は上記混合ガス分流管6から基板12に吹き付け
られる前記混合ガスの流れを模式的に示す斜視図、また
、第4図は、直径2インチの基板12表面におけるIn
P結晶の膜厚分布の例である。第4図の膜厚分布は、混
合ガス分流管6からの前記混合ガス中におけるT旧の濃
度を1両側部の混合ガス分流管すなわち第3図における
符号61および64で相対的に高くした場合である。な
お、各々の混合ガス分流管6を流れる前記混合ガスの流
量はすべて等しくシ、かつ、すべての混合分流管6を流
れる前記混合ガスの総流量は一定としている。
FIG. 3 is a perspective view schematically showing the flow of the mixed gas blown onto the substrate 12 from the mixed gas distribution pipe 6, and FIG. 4 shows the In
This is an example of the film thickness distribution of P crystal. The film thickness distribution shown in FIG. 4 is obtained when the concentration of T in the mixed gas from the mixed gas distribution pipe 6 is made relatively high at the mixed gas distribution pipes on both sides, that is, the numbers 61 and 64 in FIG. It is. Note that the flow rate of the mixed gas flowing through each of the mixed gas distribution pipes 6 is the same, and the total flow rate of the mixed gas flowing through all the mixed gas distribution pipes 6 is constant.

第4図に示す曲線4−1は第3図におけるA−A方向、
すなわち、混合ガス分流管6の配列方向における分布、
また1曲線4−2は第3図におけるB−B方向、すなわ
ち、混合ガス分流管6の配列に直角な方向における分布
を示す。第3図および第4図ともに基板12を回転しな
い状態に対応する。
The curve 4-1 shown in FIG. 4 is in the A-A direction in FIG.
That is, the distribution in the arrangement direction of the mixed gas distribution pipes 6,
Further, a curve 4-2 shows the distribution in the B-B direction in FIG. 3, that is, in the direction perpendicular to the arrangement of the mixed gas distribution pipes 6. Both FIG. 3 and FIG. 4 correspond to a state in which the substrate 12 is not rotated.

第4図に示すように3両側部の混合ガス分流管6、およ
び64におけるTMIの濃度を高くすることにより、A
−へ方向では、基板12周辺部における膜厚が相対的に
大きくなる。一方、 B−B方向では、基板12周辺部
に近づくほど膜厚が小さくなる。したがって、上記のよ
うにおいて基板12を回転させれば、膜厚分布が平均化
され、基板12全面に均一な膜厚のInP結晶を形成す
ることができる。上記本発明の効果は、 TMIの濃度
および流量を同時に制御した場合に最も顕著に発揮され
、 1nP結晶の膜厚分布として2μm±0.02μm
が得られ、従来の方法および装置により得られた膜厚分
布2μm±0.06μmに比べて均一性が向上されてい
る。
As shown in FIG. 4, by increasing the concentration of TMI in the mixed gas distribution pipes 6 and 64 on both sides of the
In the − direction, the film thickness at the peripheral portion of the substrate 12 becomes relatively large. On the other hand, in the B-B direction, the film thickness becomes smaller as it approaches the periphery of the substrate 12. Therefore, by rotating the substrate 12 as described above, the film thickness distribution is averaged, and an InP crystal having a uniform film thickness can be formed over the entire surface of the substrate 12. The above effects of the present invention are most prominently exhibited when the concentration and flow rate of TMI are controlled simultaneously, and the film thickness distribution of 1nP crystal is 2 μm ± 0.02 μm.
was obtained, and the uniformity was improved compared to the film thickness distribution of 2 μm±0.06 μm obtained by the conventional method and apparatus.

上記において、混合ガス分流管6の配置は、基板12の
回転軸に関して対称である場合に限定されず 例えば基
板12の半径上に配列し、基板周辺部に対応する混合ガ
ス分流管6におけるTMIta度または流量を相対的に
大きくしてもよい。最も簡単な例は、第4図において混
合ガス分流管6.と64を省略した構成であり、この場
合には前記Nの値は2となる。また、上記実施例におい
ては、 InPのような化合物半導体結晶を成長させる
場合を示したが1本発明は1例えばシラン(Sil+4
)等の熱分解によりシリコン結晶を成長させるような、
化合物半導体以外の半導体結晶の気相成長法に対しても
In the above, the arrangement of the mixed gas distribution tubes 6 is not limited to being symmetrical with respect to the rotation axis of the substrate 12. For example, the arrangement of the mixed gas distribution tubes 6 is not limited to the case where they are arranged on the radius of the substrate 12, and the TMIta degree in the mixed gas distribution tubes 6 corresponding to the substrate periphery is Alternatively, the flow rate may be relatively increased. The simplest example is the mixed gas distribution pipe 6. shown in FIG. and 64 are omitted, and in this case, the value of N is 2. Further, in the above embodiment, a case where a compound semiconductor crystal such as InP is grown is shown, but the present invention is also applicable to growing a compound semiconductor crystal such as InP, for example, silane (Sil+4
) to grow silicon crystals by thermal decomposition, such as
Also for vapor phase growth methods of semiconductor crystals other than compound semiconductors.

同様に膜厚分布の均一な結晶を成長させる目的で適用可
能である。さらに、ペテロ接合を形成する場合のように
、異種の半導体結晶から成る2層もしくはそれ以上の多
層を生成する場合には、各々の半導体ごとに上記実施例
と同様に複数の成長原料ガス分流管6とマスフローコン
トローラ(M)ヲ設け、それぞれのキャリヤガス分流管
5と成長原料ガス分流管6との接続個所に異種の成長原
料ガスを切り換えるための手段を設ければよい。
Similarly, it can be applied for the purpose of growing crystals with uniform film thickness distribution. Furthermore, when producing two or more layers of different types of semiconductor crystals, as in the case of forming a Peter junction, a plurality of growth source gas distribution pipes are provided for each semiconductor as in the above embodiment. 6 and a mass flow controller (M), and a means for switching different types of growth source gases may be provided at the connection points between the respective carrier gas distribution tubes 5 and growth source gas distribution tubes 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、 MOVPE法による半導体結晶の成
長において、成長条件ごとに気相成長容器の形状パラメ
ータを最適値に修正することなく、供給するキャリヤガ
スおよび成長原料ガスの流量を外部から制御するのみで
、基板面における膜厚分布を制御可能とし、大面積の基
板に均一な膜厚の半導体結晶を再現性よく形成可能とす
る効果がある。
According to the present invention, in growing a semiconductor crystal by the MOVPE method, the flow rates of the carrier gas and the growth source gas to be supplied are externally controlled without modifying the shape parameters of the vapor growth container to optimal values for each growth condition. This has the effect of making it possible to control the film thickness distribution on the substrate surface and making it possible to form semiconductor crystals with uniform thickness on a large area substrate with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法および装置におけるキャリヤ
ガスおよび成長原料ガスの流通径路の構成図。 第2図は本発明における気相成長容器の構成を示す模式
的断面図。 第3図は非回転状態の基板に吹き付けられた混合ガスの
流れを模式的に示す斜視図。 第4図は非回転状態の基板表面に成長したInP結晶の
膜厚分布の例 である。 図において。 1はガス供給源。 2はキャリヤガス送出口。 3は成長原料ガス送出口。 =144.と4tと43と44はキャリヤガス分流管。 桐iIと5□と5.と54は成長原料ガス分流管。 −G−A6.と6□と63と64は混合ガス分流管。 10は石英管。 12は基板。 14はサセプタ。 16は回転軸8 18は高周波加熱コイル。 20は排気管。 Hはマスフローコントローラ である。 第 1 図 第 3 図 排気袋!八 本&−明にδlする九矛8h\長算3遡グIII気゛第
 2 図
FIG. 1 is a configuration diagram of the flow paths of carrier gas and growth source gas in the manufacturing method and apparatus of the present invention. FIG. 2 is a schematic cross-sectional view showing the structure of a vapor phase growth container in the present invention. FIG. 3 is a perspective view schematically showing the flow of mixed gas blown onto a non-rotating substrate. FIG. 4 is an example of the film thickness distribution of InP crystal grown on the surface of a non-rotating substrate. In fig. 1 is the gas supply source. 2 is a carrier gas outlet. 3 is a growth raw material gas outlet. =144. , 4t, 43 and 44 are carrier gas distribution pipes. Kiri iI and 5□ and 5. and 54 are growth source gas distribution pipes. -G-A6. and 6□, 63 and 64 are mixed gas distribution pipes. 10 is a quartz tube. 12 is the board. 14 is the susceptor. 16 is a rotating shaft 8. 18 is a high frequency heating coil. 20 is the exhaust pipe. H is a mass flow controller. Figure 1 Figure 3 Exhaust bag! Eight & - Nine spears with δl in the light 8h\Long calculation 3 backtracking III ゛Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体結晶が生成される一表面を有する基板を、
気相成長容器内において、該表面に垂直な軸を中心にし
て回転する工程と、 ガス供給源から供給されるキャリヤガスおよび成長原料
ガスのそれぞれを、各々の途中に流量調節手段が設けら
れたN個(N≧2)の流路に分流して各々の該流路にお
ける流量を調節したのち、流量調節された該キャリヤガ
スと該成長原料ガスを一対の該流路ごとに合流する工程
と、 合流されたN対の該キャリヤガスと成長原料ガスを、該
基板の回転軸と直角に交差する一直線上に配列された別
のN個の流路を通じて且つ該表面に対して実質的に垂直
方向から吹き付けられるようにして、該気相成長容器内
に導入する工程とを含むことを特徴とする半導体装置の
製造方法。
(1) A substrate having one surface on which a semiconductor crystal is generated,
A process of rotating around an axis perpendicular to the surface in a vapor phase growth container, and a flow rate adjustment means provided in the middle of each of the carrier gas and growth raw material gas supplied from the gas supply source. A step of dividing the flow into N (N≧2) channels and adjusting the flow rate in each channel, and then merging the carrier gas and the growth source gas whose flow rates have been adjusted into each pair of channels; , passing the combined N pairs of carrier gas and growth source gas through another N channels arranged in a straight line intersecting at right angles to the rotation axis of the substrate and substantially perpendicular to the surface. A method for manufacturing a semiconductor device, comprising the step of introducing the vapor into the vapor growth container by spraying from a direction.
(2)半導体結晶が生成される一表面を有する基板を載
置するとともに該基板をその表面に垂直な軸を中心にし
て回転可能な機構を内部に備えた気相成長容器と、 キャリヤガスを送出する送出口および成長原料ガスを送
出する送出口有するガス供給源と、その途中に設けられ
た流量調節手段、および、該キャリヤガス送出口に接続
された一端、および、他端をそれぞれ有するN個(N≧
2)のキャリヤガス分流管と、 その途中に設けられた流量調節手段、および、該成長原
料ガス送出口に接続された一端、および、他端とをそれ
ぞれ有するN個(N≧2)の成長原料ガス分流管と、 一対の該キャリヤガス分流管および成長原料ガス分流管
のそれぞれの前記他端に接続された一端、および、該気
相成長成長容器に接続されるとともに該気相成長容器内
に延伸する他端をそれぞれ有し、該気相成長容器内に延
伸した各々の該他端は前記基板の回転軸に直角な一直線
上に且つ回転にある該基板の表面に対して実質的に垂直
方向から前記キャリヤガスと成長原料ガスから成る混合
ガスを吹き付けるように配置されたN個の混合ガス分流
管 とを備えたことを特徴とする気相成長装置。
(2) a vapor phase growth container equipped with a mechanism inside which holds a substrate having one surface on which a semiconductor crystal is to be produced and which can rotate the substrate around an axis perpendicular to the surface; and a carrier gas. A gas supply source having a delivery port for delivery and a delivery port for delivery of growth source gas, a flow rate adjustment means provided in the middle thereof, and an N gas supply source having one end connected to the carrier gas delivery port and the other end, respectively. pieces (N≧
2) N (N≧2) growth tubes each having a carrier gas distribution pipe, a flow rate adjustment means provided in the middle thereof, and one end and the other end connected to the growth source gas delivery port. a raw material gas distribution pipe; one end connected to the other end of each of the carrier gas distribution pipe and the growth raw material gas distribution pipe; and one end connected to the vapor growth vessel and within the vapor growth vessel. each other end extending into the vapor growth vessel is in a straight line perpendicular to the axis of rotation of the substrate and substantially relative to the surface of the substrate in rotation. A vapor phase growth apparatus comprising N mixed gas branch pipes arranged to vertically spray a mixed gas consisting of the carrier gas and the growth raw material gas.
JP63248311A 1987-11-27 1988-09-30 Manufacture of semiconductor device and vapor growth device used for it Pending JPH0296324A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63248311A JPH0296324A (en) 1988-09-30 1988-09-30 Manufacture of semiconductor device and vapor growth device used for it
US07/271,278 US4980204A (en) 1987-11-27 1988-11-15 Metal organic chemical vapor deposition method with controlled gas flow rate
DE88402977T DE3884763T2 (en) 1987-11-27 1988-11-25 Plant for organometallic chemical deposition from the gas phase and process for its use.
EP88402977A EP0318395B1 (en) 1987-11-27 1988-11-25 An apparatus for metal organic chemical vapor deposition and a method using the same
KR1019880015627A KR920010690B1 (en) 1987-11-27 1988-11-26 Metal organic chemical vapor deposition apparatus and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248311A JPH0296324A (en) 1988-09-30 1988-09-30 Manufacture of semiconductor device and vapor growth device used for it

Publications (1)

Publication Number Publication Date
JPH0296324A true JPH0296324A (en) 1990-04-09

Family

ID=17176188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248311A Pending JPH0296324A (en) 1987-11-27 1988-09-30 Manufacture of semiconductor device and vapor growth device used for it

Country Status (1)

Country Link
JP (1) JPH0296324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428227A (en) * 1990-05-23 1992-01-30 Mitsubishi Electric Corp Substrate processing
JPH0513473A (en) * 1991-06-28 1993-01-22 Fujitsu Ltd Vapor epitaxial growth device
JPH06232060A (en) * 1992-12-11 1994-08-19 Shin Etsu Handotai Co Ltd Method and device for growing epitaxial silicon layer
JP2007521633A (en) * 2003-08-20 2007-08-02 ビーコ・インストゥルメンツ・インコーポレイテッド Alkyl push airflow for vertical flow rotating disk reactor
JP2010267982A (en) * 2010-07-05 2010-11-25 Veeco Instruments Inc Method and rotary disk type reactor for growing uniform epitaxial layer on the surface of substrate
US9303319B2 (en) 2010-12-17 2016-04-05 Veeco Instruments Inc. Gas injection system for chemical vapor deposition using sequenced valves

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428227A (en) * 1990-05-23 1992-01-30 Mitsubishi Electric Corp Substrate processing
JPH0513473A (en) * 1991-06-28 1993-01-22 Fujitsu Ltd Vapor epitaxial growth device
JPH06232060A (en) * 1992-12-11 1994-08-19 Shin Etsu Handotai Co Ltd Method and device for growing epitaxial silicon layer
JP2007521633A (en) * 2003-08-20 2007-08-02 ビーコ・インストゥルメンツ・インコーポレイテッド Alkyl push airflow for vertical flow rotating disk reactor
JP4714021B2 (en) * 2003-08-20 2011-06-29 ビーコ・インストゥルメンツ・インコーポレイテッド Method for growing uniform epitaxial layer on substrate surface and rotating disk reactor
US8980000B2 (en) 2003-08-20 2015-03-17 Veeco Instruments Inc. Density-matching alkyl push flow for vertical flow rotating disk reactors
US9593434B2 (en) 2003-08-20 2017-03-14 Veeco Instruments Inc. Alkyl push flow for vertical flow rotating disk reactors
US9982362B2 (en) 2003-08-20 2018-05-29 Veeco Instruments Inc. Density-matching alkyl push flow for vertical flow rotating disk reactors
US10364509B2 (en) 2003-08-20 2019-07-30 Veeco Instruments Inc. Alkyl push flow for vertical flow rotating disk reactors
JP2010267982A (en) * 2010-07-05 2010-11-25 Veeco Instruments Inc Method and rotary disk type reactor for growing uniform epitaxial layer on the surface of substrate
US9303319B2 (en) 2010-12-17 2016-04-05 Veeco Instruments Inc. Gas injection system for chemical vapor deposition using sequenced valves

Similar Documents

Publication Publication Date Title
US5392730A (en) Method for depositing compound semiconductor crystal
EP1220305B1 (en) CVD process
US5487358A (en) Apparatus for growing silicon epitaxial layer
JP3042335B2 (en) Vapor phase growth method and apparatus
JP2505777B2 (en) Epitaxial layer deposition method for semiconductor materials
JPH0296324A (en) Manufacture of semiconductor device and vapor growth device used for it
JPH0230119A (en) Vapor growth device
JPH03263818A (en) Metal organic vapor growth apparatus
JP2500773B2 (en) Vapor phase growth equipment
US5407486A (en) CVD apparatus
JPH0547669A (en) Vapor growth apparatus
JP2567309B2 (en) Metalorganic vapor phase growth equipment
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JP3702403B2 (en) Vapor growth method
JPH01257321A (en) Vapor growth apparatus
JPH04338636A (en) Semiconductor vapor growth device
JPH0682619B2 (en) Semiconductor growth equipment
JP2712910B2 (en) Vapor growth method
JPH0366121A (en) Vapor growth device and vapor growth
JPH0362514A (en) Vapor growth device
JPH07297132A (en) Vapor phase epitaxial growth system
JPH0195517A (en) Apparatus and method for manufacturing compound semiconductor
JPS6353160B2 (en)
JPH07122496A (en) Semiconductor thin film vapor growth equipment
JPH06132227A (en) Vapor growth method