JPH0362514A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH0362514A
JPH0362514A JP19657089A JP19657089A JPH0362514A JP H0362514 A JPH0362514 A JP H0362514A JP 19657089 A JP19657089 A JP 19657089A JP 19657089 A JP19657089 A JP 19657089A JP H0362514 A JPH0362514 A JP H0362514A
Authority
JP
Japan
Prior art keywords
exhaust
gas
substrate
thickness
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19657089A
Other languages
Japanese (ja)
Inventor
Yuuta Tezeni
手銭 雄太
Kazuhiro Ito
和弘 伊藤
Shinji Sasaki
真二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19657089A priority Critical patent/JPH0362514A/en
Publication of JPH0362514A publication Critical patent/JPH0362514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deposit a thin film in even thickness and composition on a substrate by a method wherein multiple exhaust ports are provided on the downstream of a gas flow from the substrate position in a reaction part so as to regulate the exhaust resistance using a needle valve and flow rate controlled compensation gas. CONSTITUTION:Reactive gas led in from a gas leading-in port 5 is reacted to a substrate 6 on a graphite-made holding base 1 induction-heated by high-frequency coils 8 so as to deposit a crystal and then reactive gas is exhausted from multiple exhaust ports 2 of an exhaust means 3. An exhaust pressure regulator 9 rough-regulates the pressure of exhaust gas 90 by a needle valve 91 and then feeds compensating gas for microadjustment control. Due to the pressure regulation, the gas flow near the substrate is optimized so that the thickness and the composition of thin film may be equalized.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は気相から固体の薄膜、例えばSi。 Ge、化合物半導体等の結晶、Si、2.Au、O,。 Si3N4等の絶縁物を基板上に成長する装置に係り、
特に素子に用いる場合の歩出りが良い気相成長装置に関
する。
The present invention is directed to thin films from gas phase to solid state, such as Si. Ge, crystals such as compound semiconductors, Si, 2. Au, O,. Regarding equipment for growing insulators such as Si3N4 on substrates,
In particular, the present invention relates to a vapor phase growth apparatus with good yield when used for devices.

【従来の技術】[Conventional technology]

薄膜を基板上に成長させる気相反応装置は、量産性や制
御性の良さから特に半導体薄膜形成用として盛んに利用
されている。その中でも半導体レーザや受光素子に用い
られるGaAs、InP。 InGaAs等の化合物半導体を成長させるMOCVD
装置は、液相成長装置に比して良質の薄膜が得られると
して注目されている。しかし、該装置では、原料物質の
副反応や反応室内壁への生成物の付着等の問題から、先
行技術であるSiのCVDの様に本格的な量産技術は確
立されていない。特に、成長じた薄膜の基板面内での厚
さや組成分布を改善し、歩出りを向上させる事が強く要
請されている。 従来の装置で、本発明に関連するものとして特開昭61
−101492号公報記載の装置がある。 同装置では基板の高さ付近に部分排気口を設けているが
、下部排気口との排気カバランスの調節機構が無い。従
って基板付近でのガス流れが乱れ、面内分布を改善させ
るための基板回転機構等の補動機構が必要とされていた
A gas phase reaction apparatus for growing a thin film on a substrate is widely used particularly for forming semiconductor thin films because of its mass productivity and good controllability. Among them, GaAs and InP are used for semiconductor lasers and photodetectors. MOCVD for growing compound semiconductors such as InGaAs
The device is attracting attention as it can produce thin films of better quality than liquid phase growth devices. However, in this apparatus, full-scale mass production technology has not been established unlike the prior art Si CVD due to problems such as side reactions of raw materials and adhesion of products to the inner walls of the reaction chamber. In particular, there is a strong demand for improving the thickness and composition distribution of the grown thin film within the plane of the substrate to improve yield. A conventional device related to the present invention is disclosed in Japanese Unexamined Patent Application Publication No. 1988-61.
There is a device described in Japanese Patent No.-101492. This device has a partial exhaust port near the height of the board, but there is no mechanism to adjust the exhaust coverage with the lower exhaust port. Therefore, the gas flow near the substrate is disturbed, and an auxiliary mechanism such as a substrate rotation mechanism is required to improve the in-plane distribution.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記従来の技術は、基板の面内分布を減少させて均一な
成長膜を得るために、反応室内において基板の自転およ
び公転機構やガス導入部の回転機構を設けている。しか
し、動力の伝達部や回転部の軸調節や位置の設定2点検
修理等が必要であり、その度毎に装置の停止や反応室の
外気開放といった処置をとらねばならなかった。 本発明の目的は、上記成長膜の均一化のための回転機構
やそれに類する補助機構を設ける事無く、大面積の基板
に面内均一の良質な成長膜を成長させる事の出来る気相
成長装置を提供する事にある。
In the above-mentioned conventional technology, in order to reduce the in-plane distribution of the substrate and obtain a uniformly grown film, a mechanism for rotating and revolving the substrate and a mechanism for rotating the gas introduction part are provided in the reaction chamber. However, it is necessary to perform axis adjustment, position setting, inspection, repair, etc. of the power transmission section and rotating section, and each time it is necessary to take measures such as stopping the device and opening the reaction chamber to outside air. The object of the present invention is to provide a vapor phase growth apparatus that can grow a high-quality, uniform film on a large area substrate without the need for a rotation mechanism or similar auxiliary mechanism for making the grown film uniform. The goal is to provide the following.

【課題を解決するための手段】[Means to solve the problem]

本発明の装置は複数の排気口を設けたものであり、上記
排気口は、例えば反応ガスの流線方向に対し排気ガスの
流線方向が平行から直角までの間の角度になるように反
応管に設置される。その結果、反応ガスの流れは各排気
口の排気力の影響を設け、多方向に流れる事になる。 各排気口における排気力は、排気口と排気ポンプとの間
に設けた排気力調節機構により制御される。各調節機構
は独立しているため、各排気口の排気力は独立して変化
させる事が出来る。従って反応管内の反応ガスの流れは
任意に変更する事が出来、成長膜の厚さや組成の面内分
布を自公転機構を設ける事なく均一化する事が出来る。
The apparatus of the present invention is provided with a plurality of exhaust ports, and the exhaust ports are arranged so that the streamline direction of the exhaust gas is at an angle from parallel to perpendicular to the streamline direction of the reaction gas. installed in the pipe. As a result, the flow of the reaction gas is affected by the exhaust force of each exhaust port, and flows in multiple directions. The exhaust force at each exhaust port is controlled by an exhaust force adjustment mechanism provided between the exhaust port and the exhaust pump. Since each adjustment mechanism is independent, the exhaust force of each exhaust port can be changed independently. Therefore, the flow of the reaction gas in the reaction tube can be changed arbitrarily, and the thickness and composition distribution of the grown film can be made uniform without providing a revolution mechanism.

【作用1 本発明の作用の原理を第1図、第2図および第3図を用
いて説明する。 第1図は本発明の装置の反応管の横断面図であり、ガス
導入口5より導入された反応ガスは、高周波コイル8に
より誘導加熱されたグラファイト支持台1上の基板6上
で反応し、結晶を成長させる。反応ガスは、複数の排気
口2から排気手段3により排出される。 排気口2の取付は状態を第2図で説明する。第2図は第
1図で示した反応部の縦断面図であり。 排気口2は例えばガス流れに垂直な平面上に上下左右の
等間隔に配置されている。反応ガスはこの排気口2のそ
れぞれより排気される。その際、排気口2における排気
力を第3図で示す排気力1iljI′I1機構により制
御を行う。 次に、第3図を用いて排気力調節機構を説明する。本発
明の排気力調節機構9は、ニードル弁91、補償ガスの
N295の流量制御部92および圧力計93より構成さ
れている。まず、ニードル弁91により排気ガス90の
圧力の粗調節を行い、次に補償ガスを流して微調節を行
う。この圧力調節を行う事で基板付近の反応ガスの流れ
を、薄膜の厚さや組成が均一になる様最適化する事が出
来る。 また、上記作用を利用する事で、薄膜の成長速度や反応
管内のガス切換えを、ガス流量を変える事なく行う事が
出来る事になる。 【実施例】 以下、本発明の実施例を第4〜9図を用いて説明する。 [実施例1] InGaAsの成長を行った。石英反応管41の長さは
500m+n、内径は50mmφである。ガス導入口5
1から下流側へ約250m+n離れた位置に、支持棒7
1で支えられたグラファイト支持台11がある。支持台
上には直径50m1!lφのInP単結晶基板61が載
せられている6基板は高周波コイル81によりグラファ
イト支持台11が誘導加熱される事で加熱される。 支持台より下流側の反応管壁には第5図で示すように縦
横十字方向に4ケ所の排気口21があり、反応ガスはこ
こからポンプ31によって排気される。 各排気口と排気用ポンプ31との間には排気力調節機構
19が各々設けられており、各々の排気ラインの排気力
は独立して変える事が出来る。 方、成長相の反応ガスとして、A s H3を40cc
/分、TEGを0.5cc/分、TEIを0.2cc/
分を用いて、ガス導入口51よりH2雰囲気中の反応管
41内へ供給した。同時に結晶基板61を650℃にな
る様加熱し、1時間成長を行った。 成長終了後膜の厚さおよび組成の面内分布を測定したと
ころ、前者は±20%、後者は±2%であった。次に、
各排気口の排気カバランスのみを、各々の排気力が等し
く、すなわち排気力調節機構19中の圧力が等しくなる
様調節し、再度、同一のガス導入、温度条件で成長を行
った。その結果得られた膜は、厚さの分布は±1%、組
成の分布は±0.1%と、各々大幅に改善された。また
、上記と同じガス導入条件および成長温度の下で、4カ
所ある排気口のうち、反応管底のものの排気力のみを増
加させて成長を行ったところ、膜の成長速度はバランス
変更前の半分になった。これは反応管内に疑次的に反応
ガスの偏流が発生し、結晶基板61上のガス流量が減少
したためである。 以上の事から、本発明による装置は厚さや組成の面内分
布が均一な良質の成長膜を得るのに極めて効果的である
事が分かる。 [実施例2] 本発明を適用した別の例を第6図および第7図で説明す
る。本実施例は縦型反応管を用いたものであり、従来は
基板回転機構が必須とされた型である。本実施例では第
6図の如き装置を用いて実施例1と同様InP結晶基板
62上へInGaAsの成長を行なった。 結晶基板62の直径は50mmφである。基板加熱はグ
ラファイト支持台12を高周波コイル82で誘導加熱す
る事で行なう。排気口22の配置は、第7図の様に互い
に直角である。実施例1と同様に各排気口の排気力を排
気力調節機構29で調節しながら成長を行なったところ
、InGaAs成長層の面内分布は厚さ±1%2組成±
0.1%となった。この結果、実施例1の横型管と同様
、縦型管においても同様の効果が得られた。 [実施例3] 本発明を適用した別の例を第8図および第9図を用いて
説明する。本図に示す実施例は、実施例2において4カ
所設置されている排気口を6カ所に増設したものである
。また、各排気口23の取付は角度を鋭角にし、反応管
43との取付は部でのガス流の乱れを少なくした構造に
なっている。 本装置を用いて実施例2と同様にInGaAsの成長を
行なったところ、厚さは±0.6%2組威は±0.04
%の面内分布を持つ成長層が得られた。 実施例2に対して面内分布が向上した理由は、排気口2
3を増設した事により結晶基板63上でのガス流れの制
御がより繊細に行なえるためである。
[Operation 1] The principle of operation of the present invention will be explained using FIGS. 1, 2, and 3. FIG. 1 is a cross-sectional view of the reaction tube of the apparatus of the present invention, in which the reaction gas introduced from the gas inlet 5 reacts on the substrate 6 on the graphite support 1 which is heated by induction by the high-frequency coil 8. , grow crystals. The reaction gas is exhausted from a plurality of exhaust ports 2 by an exhaust means 3. The installation of the exhaust port 2 will be explained with reference to FIG. FIG. 2 is a longitudinal sectional view of the reaction section shown in FIG. 1. The exhaust ports 2 are arranged, for example, at equal intervals vertically and horizontally on a plane perpendicular to the gas flow. The reaction gas is exhausted from each of the exhaust ports 2. At this time, the exhaust force at the exhaust port 2 is controlled by the exhaust force 1iljI'I1 mechanism shown in FIG. Next, the exhaust force adjustment mechanism will be explained using FIG. The exhaust force adjustment mechanism 9 of the present invention is composed of a needle valve 91, a flow rate control section 92 for N295 compensation gas, and a pressure gauge 93. First, the pressure of the exhaust gas 90 is coarsely adjusted using the needle valve 91, and then finely adjusted by flowing compensation gas. By adjusting this pressure, the flow of the reactant gas near the substrate can be optimized so that the thickness and composition of the thin film are uniform. Furthermore, by utilizing the above-mentioned effect, it is possible to change the growth rate of the thin film and the gas in the reaction tube without changing the gas flow rate. [Example] Examples of the present invention will be described below with reference to FIGS. 4 to 9. [Example 1] InGaAs was grown. The length of the quartz reaction tube 41 is 500 m+n, and the inner diameter is 50 mmφ. Gas inlet 5
Support rod 7 is located approximately 250m+n away downstream from 1.
There is a graphite support 11 supported by 1. The diameter is 50m1 on the support stand! The six substrates on which the lφ InP single crystal substrate 61 is mounted are heated by induction heating of the graphite support 11 by the high frequency coil 81. As shown in FIG. 5, there are four exhaust ports 21 in the vertical and horizontal cross directions on the wall of the reaction tube downstream from the support table, and the reaction gas is exhausted from these ports by a pump 31. An exhaust force adjustment mechanism 19 is provided between each exhaust port and the exhaust pump 31, and the exhaust force of each exhaust line can be changed independently. On the other hand, 40cc of A s H3 was used as the reaction gas for the growth phase.
/min, TEG 0.5cc/min, TEI 0.2cc/min
The mixture was supplied from the gas inlet 51 into the reaction tube 41 in an H2 atmosphere. At the same time, the crystal substrate 61 was heated to 650° C. and growth was performed for 1 hour. When the in-plane distribution of the film thickness and composition was measured after the growth was completed, the former was ±20% and the latter was ±2%. next,
Only the exhaust coverage of each exhaust port was adjusted so that each exhaust force was equal, that is, the pressure in the exhaust force adjustment mechanism 19 was equal, and growth was performed again under the same gas introduction and temperature conditions. The resulting film had a thickness distribution of ±1% and a composition distribution of ±0.1%, both of which were significantly improved. In addition, under the same gas introduction conditions and growth temperature as above, growth was performed by increasing only the exhaust force at the bottom of the reaction tube among the four exhaust ports, and the film growth rate was the same as before the balance change. It's now half. This is because a biased flow of the reaction gas occurred in the reaction tube, and the gas flow rate on the crystal substrate 61 decreased. From the above, it can be seen that the apparatus according to the present invention is extremely effective in obtaining a high-quality grown film with a uniform in-plane distribution of thickness and composition. [Example 2] Another example to which the present invention is applied will be described with reference to FIGS. 6 and 7. This example uses a vertical reaction tube, which conventionally requires a substrate rotation mechanism. In this example, InGaAs was grown on an InP crystal substrate 62 in the same manner as in Example 1 using the apparatus shown in FIG. The diameter of the crystal substrate 62 is 50 mmφ. The substrate is heated by induction heating the graphite support 12 using a high frequency coil 82. The exhaust ports 22 are arranged at right angles to each other as shown in FIG. As in Example 1, growth was performed while adjusting the exhaust force of each exhaust port with the exhaust force adjustment mechanism 29, and the in-plane distribution of the InGaAs growth layer was found to be within the thickness ±1%2 composition ±
It became 0.1%. As a result, similar effects were obtained in the vertical tube as in the horizontal tube of Example 1. [Example 3] Another example to which the present invention is applied will be described using FIGS. 8 and 9. In the embodiment shown in this figure, the exhaust ports installed at four locations in the second embodiment are increased to six locations. In addition, each exhaust port 23 is attached at an acute angle, and the attachment to the reaction tube 43 is structured to reduce turbulence in the gas flow at that part. When InGaAs was grown using this apparatus in the same manner as in Example 2, the thickness was ±0.6% and the thickness of the two layers was ±0.04.
A grown layer with an in-plane distribution of % was obtained. The reason why the in-plane distribution was improved compared to Example 2 is that the exhaust port 2
This is because by adding 3, the gas flow on the crystal substrate 63 can be controlled more delicately.

【発明の効果】 本発明を適用した装置を用いると、基板の自公転機構や
反応ガス導入部の回転機構等の開動部を設ける事無く、
基板上に厚さや組成の分布が均一な成長膜を成長させる
事が出来る。そのため、素子用結晶としての歩止まりを
従来の装置の数倍に向上させる事が出来る。また、複雑
な構造を必要としないため、従来の装置を改造して本発
明を適用する事が可能である。
[Effects of the Invention] When the device to which the present invention is applied is used, there is no need to provide an opening mechanism such as a rotation mechanism for the substrate or a rotation mechanism for the reaction gas introduction section.
A film with uniform thickness and composition distribution can be grown on the substrate. Therefore, the yield of device crystals can be improved several times that of conventional devices. Further, since a complicated structure is not required, it is possible to apply the present invention by modifying a conventional device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の横型反応管式の装置の側断面
図、第2図は前記装置の横断面図、第3図は排気力調節
機構の構成を示すブロック図、第4図は第1図の装置の
排気口の形状を変えた実施例の側断面図、第5図は第4
図の装置の横面図、第6図は実施例の縦型反応管式の装
置の縦断面図、第7図は第6図の装置の横面図、第8図
は排気口を増設した実施例の縦型反応管式装置の縦断面
図、第9図は第8図の装置の横断面図である。 9.19,29,39・・・排気力調節機構、2.21
,22,23・・・排気口。 第6図
FIG. 1 is a side sectional view of a horizontal reaction tube type device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the device, FIG. 3 is a block diagram showing the configuration of the exhaust force adjustment mechanism, and FIG. 4 is a side sectional view of an embodiment in which the shape of the exhaust port of the device shown in FIG. 1 is changed, and FIG.
Figure 6 is a vertical cross-sectional view of the vertical reaction tube type apparatus of the example, Figure 7 is a side view of the apparatus shown in Figure 6, and Figure 8 is an additional exhaust port. FIG. 9 is a longitudinal cross-sectional view of the vertical reaction tube type apparatus of the example, and FIG. 9 is a cross-sectional view of the apparatus shown in FIG. 8. 9.19,29,39...Exhaust force adjustment mechanism, 2.21
, 22, 23...exhaust port. Figure 6

Claims (3)

【特許請求の範囲】[Claims] 1.反応部の基板位置よりもガス流の下流側に複数の排
気口を設けた事を特徴とする気相成長装置。
1. A vapor phase growth apparatus characterized in that a plurality of exhaust ports are provided on the downstream side of the gas flow from the substrate position of the reaction section.
2.請求項1記載の気相成長装置に設置された排気力調
節機構において、排気抵抗をニードル弁と流量制御した
補償ガスを用いて制御する事を特徴とする排気力調節機
構。
2. 2. An exhaust force adjusting mechanism installed in a vapor phase growth apparatus according to claim 1, wherein exhaust resistance is controlled using a needle valve and a compensation gas whose flow rate is controlled.
3.排気口の排気流量を変化できる事を特徴とする請求
項1記載の気相成長装置。
3. 2. The vapor phase growth apparatus according to claim 1, wherein the exhaust flow rate of the exhaust port can be changed.
JP19657089A 1989-07-31 1989-07-31 Vapor growth device Pending JPH0362514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19657089A JPH0362514A (en) 1989-07-31 1989-07-31 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19657089A JPH0362514A (en) 1989-07-31 1989-07-31 Vapor growth device

Publications (1)

Publication Number Publication Date
JPH0362514A true JPH0362514A (en) 1991-03-18

Family

ID=16359939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19657089A Pending JPH0362514A (en) 1989-07-31 1989-07-31 Vapor growth device

Country Status (1)

Country Link
JP (1) JPH0362514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329626A (en) * 1991-05-02 1992-11-18 Matsushita Electron Corp Processor of semiconductor device
JP2009117844A (en) * 2007-11-08 2009-05-28 Applied Materials Inc Multi-port pumping system for substrate treating chamber
CN115074704A (en) * 2022-07-27 2022-09-20 拓荆科技(上海)有限公司 Spraying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329626A (en) * 1991-05-02 1992-11-18 Matsushita Electron Corp Processor of semiconductor device
JP2009117844A (en) * 2007-11-08 2009-05-28 Applied Materials Inc Multi-port pumping system for substrate treating chamber
CN115074704A (en) * 2022-07-27 2022-09-20 拓荆科技(上海)有限公司 Spraying device

Similar Documents

Publication Publication Date Title
WO1992005577A1 (en) Method and apparatus for growing compound semiconductor crystals
JP2668687B2 (en) CVD device
JPH04210476A (en) Formation of silicon carbide film
US4976216A (en) Apparatus for vapor-phase growth
JPH0362514A (en) Vapor growth device
CA1325160C (en) Apparatus for producing compound semiconductor
US20210324517A1 (en) Semiconductor manufacturing device
JPH0547669A (en) Vapor growth apparatus
JPH0296324A (en) Manufacture of semiconductor device and vapor growth device used for it
US5685905A (en) Method of manufacturing a single crystal thin film
JP2567309B2 (en) Metalorganic vapor phase growth equipment
JPS61186288A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JPH01257321A (en) Vapor growth apparatus
JP2012248664A (en) Device and method for vapor phase growth, and epitaxial wafer
JPH0354193A (en) Organic metal gaseous phase growth device
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JPH04187594A (en) Device of vapor-phase epitaxial growth
JPS6240720A (en) Vapor phase epitaxial growing device
JPH0341724A (en) Vertical type vapor growth apparatus
JPH0366121A (en) Vapor growth device and vapor growth
JPH03262116A (en) Cvd device
JPH04149097A (en) Barrel type vapor growth device
JPH0376219A (en) Vapor crystal growth device
JPH04130085A (en) Pulse type vapor growth device
JPH01268116A (en) Decompression vapor growth device